1
|
Cravo F, Prakash G, Függer M, Nowak T. MobsPy: A programming language for biochemical reaction networks. PLoS Comput Biol 2025; 21:e1013024. [PMID: 40388503 DOI: 10.1371/journal.pcbi.1013024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/04/2025] [Indexed: 05/21/2025] Open
Abstract
Biochemical Reaction Networks (BCRNs) model species and their interactions via reactions. They have been extensively used in chemistry and extended to biological settings by generalizing the reactions' kinetics. However, detailed models of biochemical processes tend to result in complex BCRN models. We present the Meta-species Oriented Biosystem Syntax (MobsPy), a language designed to simplify the modeling process using the concept of meta-species. Meta-species are constructed using a bottom-up approach from base species, which represent elementary, simple characteristics. These characteristics are then combined to create meta-species with all their complex behavior. The combined species have characteristics that are the Cartesian product of the base species' characteristics and feature inheritance of reactions involving the base species. New reactions can involve all the states of a meta-species or only a subset that is selected via a query. In particular, reactions of meta-species can express a state change of one of the reactants. MobsPy is deployed as a Python package. We showcase its modeling capabilities by building concise models for biochemical systems from the literature.
Collapse
Affiliation(s)
- Fabricio Cravo
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, LISN, Gif-sur-Yvette, France
- Northeastern University, Boston, Massachusetts, United States of America
| | - Gayathri Prakash
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
- Rice University, Houston, Texas, United States of America
| | - Matthias Függer
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
| | - Thomas Nowak
- Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, Gif-sur-Yvette, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
2
|
Adler SO, Kitashova A, Bulović A, Nägele T, Klipp E. Plant cold acclimation and its impact on sensitivity of carbohydrate metabolism. NPJ Syst Biol Appl 2025; 11:28. [PMID: 40108133 PMCID: PMC11923053 DOI: 10.1038/s41540-025-00505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
The ability to acclimate to changing environmental conditions is essential for the fitness and survival of plants. Not only are seasonal differences challenging for plants growing in different habitats but, facing climate change, the likelihood of encountering extreme weather events increases. Previous studies of acclimation processes of Arabidopsis thaliana to changes in temperature and light conditions have revealed a multigenic trait comprising and affecting multiple layers of molecular organization. Here, a combination of experimental and computational methods was applied to study the effects of changing light intensities during cold acclimation on the central carbohydrate metabolism of Arabidopsis thaliana leaf tissue. Mathematical modeling, simulation and sensitivity analysis suggested an important role of hexose phosphate balance for stabilization of photosynthetic CO2 fixation. Experimental validation revealed a profound effect of temperature on the sensitivity of carbohydrate metabolism.
Collapse
Affiliation(s)
- Stephan O Adler
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasia Kitashova
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, München, Germany
| | - Ana Bulović
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, München, Germany
| | - Edda Klipp
- Theoretical Biophysics, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Xu J, Smith L. Curating models from BioModels: Developing a workflow for creating OMEX files. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585236. [PMID: 38559029 PMCID: PMC10979985 DOI: 10.1101/2024.03.15.585236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The reproducibility of computational biology models can be greatly facilitated by widely adopted standards and public repositories. We examined 50 models from the BioModels Database and attempted to validate the original curation and correct some of them if necessary. For each model, we reproduced these published results using Tellurium. Once reproduced we manually created a new set of files, with the model information stored by the Systems Biology Markup Language (SBML), and simulation instructions stored by the Simulation Experiment Description Markup Language (SED-ML), and everything included in an Open Modeling EXchange (OMEX) file, which could be used with a variety of simulators to reproduce the same results. On the one hand, the reproducibility procedure of 50 models developed a manual workflow that we would use to build an automatic platform to help users more easily curate and verify models in the future. On the other hand, these exercises allowed us to find the limitations and possible enhancement of the current curation and tooling to verify and curate models.
Collapse
Affiliation(s)
- Jin Xu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Lucian Smith
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Pal S, Bhattacharya M, Dash S, Lee SS, Chakraborty C. A next-generation dynamic programming language Julia: Its features and applications in biological science. J Adv Res 2024; 64:143-154. [PMID: 37992995 PMCID: PMC11464422 DOI: 10.1016/j.jare.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The advent of Julia as a sophisticated and dynamic programming language in 2012 represented a significant milestone in computational programming, mathematical analysis, and statistical modeling. Having reached its stable release in version 1.9.0 on May 7, 2023, Julia has developed into a powerful and versatile instrument. Despite its potential and widespread adoption across various scientific and technical domains, there exists a noticeable knowledge gap in comprehending its utilization within biological sciences. THE AIM OF REVIEW This comprehensive review aims to address this particular knowledge gap and offer a thorough examination of Julia's fundamental characteristics and its applications in biology. KEY SCIENTIFIC CONCEPTS OF THE REVIEW The review focuses on a research gap in the biological science. The review aims to equip researchers with knowledge and tools to utilize Julia's capabilities in biological science effectively and to demonstrate the gap. It paves the way for innovative solutions and discoveries in this rapidly evolving field. It encompasses an analysis of Julia's characteristics, packages, and performance compared to the other programming languages in this field. The initial part of this review discusses the key features of Julia, such as its dynamic and interactive nature, fast processing speed, ease of expression manipulation, user-friendly syntax, code readability, strong support for multiple dispatch, and advanced type system. It also explores Julia's capabilities in data analysis, visualization, machine learning, and algorithms, making it suitable for scientific applications. The next section emphasizes the importance of using Julia in biological research, highlighting its seamless integration with biological studies for data analysis, and computational biology. It also compares Julia with other programming languages commonly used in biological research through benchmarking and performance analysis. Additionally, it provides insights into future directions and potential challenges in Julia's applications in biology.
Collapse
Affiliation(s)
- Soumen Pal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Snehasish Dash
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| |
Collapse
|
6
|
Feng J, Zhang X, Tian T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. Int J Mol Sci 2024; 25:10204. [PMID: 39337687 PMCID: PMC11432143 DOI: 10.3390/ijms251810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in single-cell proteomic technologies have provided unprecedented opportunities to investigate the heterogeneity and noise within complex, multi-signaling networks across diverse cells and cell types. Mathematical modeling has become a powerful interdisciplinary tool that bridges mathematics and experimental biology, providing valuable insights into these intricate cellular processes. In addition, statistical methods have been developed to infer pathway topologies and estimate unknown parameters within dynamic models. This review presents a comprehensive analysis of how mathematical modeling of the MAPK pathway deepens our understanding of its regulatory mechanisms, enhances the prediction of system behavior, and informs experimental research, with a particular focus on recent advances in modeling and inference using single-cell proteomic data.
Collapse
Affiliation(s)
- Jinping Feng
- School of Mathematics and Statistics, Henan University, Kaifeng 475001, China
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne 3800, Australia
| |
Collapse
|
7
|
Silberberg M, Hermjakob H, Malik-Sheriff RS, Grecco HE. Poincaré and SimBio: a versatile and extensible Python ecosystem for modeling systems. Bioinformatics 2024; 40:btae465. [PMID: 39078116 PMCID: PMC11303501 DOI: 10.1093/bioinformatics/btae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/25/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
MOTIVATION Chemical reaction networks (CRNs) play a pivotal role in diverse fields such as systems biology, biochemistry, chemical engineering, and epidemiology. High-level definitions of CRNs enables to use various simulation approaches, including deterministic and stochastic methods, from the same model. However, existing Python tools for simulation of CRN typically wrap external C/C++ libraries for model definition, translation into equations and/or numerically solving them, limiting their extensibility and integration with the broader Python ecosystem. RESULTS In response, we developed Poincaré and SimBio, two novel Python packages for simulation of dynamical systems and CRNs. Poincaré serves as a foundation for dynamical systems modeling, while SimBio extends this functionality to CRNs, including support for the Systems Biology Markup Language (SBML). Poincaré and SimBio are developed as pure Python packages enabling users to easily extend their simulation capabilities by writing new or leveraging other Python packages. Moreover, this does not compromise the performance, as code can be just-in-time compiled with Numba. Our benchmark tests using curated models from the BioModels repository demonstrate that these tools may provide a potentially superior performance advantage compared to other existing tools. In addition, to ensure a user-friendly experience, our packages use standard typed modern Python syntax that provides a seamless integration with integrated development environments. Our Python-centric approach significantly enhances code analysis, error detection, and refactoring capabilities, positioning Poincaré and SimBio as valuable tools for the modeling community. AVAILABILITY AND IMPLEMENTATION Poincaré and SimBio are released under the MIT license. Their source code is available on GitHub (https://github.com/maurosilber/poincare and https://github.com/hgrecco/simbio) and can be installed from PyPI or conda-forge.
Collapse
Affiliation(s)
- Mauro Silberberg
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires 1426, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires 1426, Argentina
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Henning Hermjakob
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Rahuman S Malik-Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hernán E Grecco
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires 1426, Argentina
- CONICET – Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires 1426, Argentina
| |
Collapse
|
8
|
Sauro HM. Computing the Frequency Response of Biochemical Networks: A Python module. ARXIV 2024:arXiv:2406.11140v2. [PMID: 38947916 PMCID: PMC11213152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this paper, a set of Python methods is described that can be used to compute the frequency response of an arbitrary biochemical network given any input and output. Models can be provided in standard SBML or Antimony format. The code takes into account any conserved moieties so that this software can be used to also study signaling networks where moiety cycles are common. A utility method is also provided to make it easy to plot standard Bode plots from the generated results. The code also takes into account the possibility that the phase shift could exceed 180 degrees which can result in ugly discontinuities in the Bode plot. In the paper, some of the theory behind the method is provided as well as some commentary on the code and several illustrative examples to show the code in operation. Illustrative examples include linear reaction chains of varying lengths and the effect of negative feedback on the frequency response. Software License: MIT Open Source Availability: The code is available from https://github.com/sys-bio/frequencyResponse.
Collapse
|
9
|
Smith L, Sauro HM. An Update to the SBML Human-Readable Antimony Language. ARXIV 2024:arXiv:2405.15109v1. [PMID: 38827452 PMCID: PMC11142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Antimony is a high-level, human-readable text-based language designed for defining and sharing models in the systems biology community. It enables scientists to describe biochemical networks and systems using a simple and intuitive syntax. It allows users to easily create, modify, and distribute reproducible computational models. By allowing the concise representation of complex biological processes, Antimony enhances collaborative efforts, improves reproducibility, and accelerates the iterative development of models in systems biology. This paper provides an update to the Antimony language since it was introduced in 2009. In particular, we highlight new annotation features, support for flux balance analysis, a new rateOf method, support for probability distributions and uncertainty, named stochiometries, and algebraic rules. Antimony is also now distributed as a C/C++ library, together with python and Julia bindings, as well as a JavaScript version for use within a web browser. Availability: https://github.com/sys-bio/antimony.
Collapse
Affiliation(s)
- Lucian Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061
| | - Herbert M Sauro
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061
| |
Collapse
|
10
|
Azimi-Boulali J, Mahler GJ, Murray BT, Huang P. Multiscale computational modeling of aortic valve calcification. Biomech Model Mechanobiol 2024; 23:581-599. [PMID: 38093148 DOI: 10.1007/s10237-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/13/2023] [Indexed: 03/26/2024]
Abstract
Calcific aortic valve disease (CAVD) is a common cardiovascular disease that affects millions of people worldwide. The disease is characterized by the formation of calcium nodules on the aortic valve leaflets, which can lead to stenosis and heart failure if left untreated. The pathogenesis of CAVD is still not well understood, but involves several signaling pathways, including the transforming growth factor beta (TGF β ) pathway. In this study, we developed a multiscale computational model for TGF β -stimulated CAVD. The model framework comprises cellular behavior dynamics, subcellular signaling pathways, and tissue-level diffusion fields of pertinent chemical species, where information is shared among different scales. Processes such as endothelial to mesenchymal transition (EndMT), fibrosis, and calcification are incorporated. The results indicate that the majority of myofibroblasts and osteoblast-like cells ultimately die due to lack of nutrients as they become trapped in areas with higher levels of fibrosis or calcification, and they subsequently act as sources for calcium nodules, which contribute to a polydispersed nodule size distribution. Additionally, fibrosis and calcification processes occur more frequently in regions closer to the endothelial layer where the cell activity is higher. Our results provide insights into the mechanisms of CAVD and TGF β signaling and could aid in the development of novel therapeutic approaches for CAVD and other related diseases such as cancer. More broadly, this type of modeling framework can pave the way for unraveling the complexity of biological systems by incorporating several signaling pathways in subcellular models to simulate tissue remodeling in diseases involving cellular mechanobiology.
Collapse
Affiliation(s)
- Javid Azimi-Boulali
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Bruce T Murray
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Peter Huang
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
11
|
Golebiewski M, Bader G, Gleeson P, Gorochowski TE, Keating SM, König M, Myers CJ, Nickerson DP, Sommer B, Waltemath D, Schreiber F. Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024. J Integr Bioinform 2024; 21:jib-2024-0015. [PMID: 39026464 PMCID: PMC11293897 DOI: 10.1515/jib-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Affiliation(s)
- Martin Golebiewski
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | | | - Padraig Gleeson
- Dept. of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | - Sarah M. Keating
- Advanced Research Computing Centre, University College London, London, UK
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Chris J. Myers
- Dept. of Electrical, Computer, and Energy Eng., University of Colorado Boulder, Boulder, USA
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Dagmar Waltemath
- Medical Informatics Laboratory, University Medicine Greifswald, Greifswald, Germany
| | - Falk Schreiber
- Dept. of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
12
|
Loman TE, Ma Y, Ilin V, Gowda S, Korsbo N, Yewale N, Rackauckas C, Isaacson SA. Catalyst: Fast and flexible modeling of reaction networks. PLoS Comput Biol 2023; 19:e1011530. [PMID: 37851697 PMCID: PMC10584191 DOI: 10.1371/journal.pcbi.1011530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
We introduce Catalyst.jl, a flexible and feature-filled Julia library for modeling and high-performance simulation of chemical reaction networks (CRNs). Catalyst supports simulating stochastic chemical kinetics (jump process), chemical Langevin equation (stochastic differential equation), and reaction rate equation (ordinary differential equation) representations for CRNs. Through comprehensive benchmarks, we demonstrate that Catalyst simulation runtimes are often one to two orders of magnitude faster than other popular tools. More broadly, Catalyst acts as both a domain-specific language and an intermediate representation for symbolically encoding CRN models as Julia-native objects. This enables a pipeline of symbolically specifying, analyzing, and modifying CRNs; converting Catalyst models to symbolic representations of concrete mathematical models; and generating compiled code for numerical solvers. Leveraging ModelingToolkit.jl and Symbolics.jl, Catalyst models can be analyzed, simplified, and compiled into optimized representations for use in numerical solvers. Finally, we demonstrate Catalyst's broad extensibility and composability by highlighting how it can compose with a variety of Julia libraries, and how existing open-source biological modeling projects have extended its intermediate representation.
Collapse
Affiliation(s)
- Torkel E. Loman
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yingbo Ma
- JuliaHub, Cambridge, Massachusetts, United States of America
| | - Vasily Ilin
- Department of Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Shashi Gowda
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Niklas Korsbo
- Pumas-AI, Baltimore, Maryland, United States of America
| | - Nikhil Yewale
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Chris Rackauckas
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- JuliaHub, Cambridge, Massachusetts, United States of America
- Pumas-AI, Baltimore, Maryland, United States of America
| | - Samuel A. Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Deepa Maheshvare M, Raha S, König M, Pal D. A pathway model of glucose-stimulated insulin secretion in the pancreatic β-cell. Front Endocrinol (Lausanne) 2023; 14:1185656. [PMID: 37600713 PMCID: PMC10433753 DOI: 10.3389/fendo.2023.1185656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023] Open
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β-cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct a novel data-driven kinetic model of GSIS in the pancreatic β-cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β-cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and phenomenological equations for insulin secretion coupled to cellular energy state, ATP dynamics and (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β-cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and biphasic insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β-cell.
Collapse
Affiliation(s)
- M. Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Mendes P. Reproducibility and FAIR principles: the case of a segment polarity network model. Front Cell Dev Biol 2023; 11:1201673. [PMID: 37346177 PMCID: PMC10279958 DOI: 10.3389/fcell.2023.1201673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
The issue of reproducibility of computational models and the related FAIR principles (findable, accessible, interoperable, and reusable) are examined in a specific test case. I analyze a computational model of the segment polarity network in Drosophila embryos published in 2000. Despite the high number of citations to this publication, 23 years later the model is barely accessible, and consequently not interoperable. Following the text of the original publication allowed successfully encoding the model for the open source software COPASI. Subsequently saving the model in the SBML format allowed it to be reused in other open source software packages. Submission of this SBML encoding of the model to the BioModels database enables its findability and accessibility. This demonstrates how the FAIR principles can be successfully enabled by using open source software, widely adopted standards, and public repositories, facilitating reproducibility and reuse of computational cell biology models that will outlive the specific software used.
Collapse
Affiliation(s)
- Pedro Mendes
- Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
15
|
Deepa Maheshvare M, Raha S, König M, Pal D. A Consensus Model of Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532028. [PMID: 36945414 PMCID: PMC10028967 DOI: 10.1101/2023.03.10.532028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β -cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct the first consensus model of GSIS in the pancreatic β -cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β -cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and equations for insulin secretion coupled to cellular energy state (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β -cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β -cell.
Collapse
|