1
|
Ramos-Hernández I, Fuster-García C, Aguilar-González A, Lozano-Vinagre M, Guenechea-Amurrio G, Sanchez-Luque F, Gonçalves MFV, Cathomen T, Muñoz P, Molina-Estévez F, Martín F. Donor insertion into CX3CR1 allows epigenetic modulation of a constitutive promoter on hematopoietic stem cells and its activation upon myeloid differentiation. Nucleic Acids Res 2025; 53:gkaf344. [PMID: 40298109 PMCID: PMC12038399 DOI: 10.1093/nar/gkaf344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
To improve ex vivo gene therapy strategies involving hematopoietic stem and progenitor cells (HSPCs), we propose a novel knock-in strategy (named KI-Ep) aiming to achieve transgene regulation of the inserted cassette through the acquisition of naturally occurring epigenetic marks. Based on this hypothesis, we selected CX3CR1 (a myeloid-specific gene presenting a poised histone signature on primitive HSPCs) as safe harbor to generate KI-Ep HSPCs. We demonstrated that, unlike the expression pattern achieved with lentiviral vectors (LVs), the insertion of a constitutive expression cassette into the intron 1 of the CX3CR1 locus (CX3CR1-I) in HSPCs resulted in very low expression levels in the more primitive HSPCs but, crucially, strong expression in HSPC-differentiated populations (especially myeloid cells), both in vitro and in vivo. Furthermore, we showed that the promoter of the expression cassette inserted into CX3CR1-I acquired epigenetic marks associated with poised genes during the HSPC stage. These marks transitioned to activated histone states upon KI-Ep HSPCs differentiation. In summary, here, we introduce the KI-Ep concept which enables the epigenetic modulation of the inserted transgene during the HSPCs stem cell stages and its subsequent activation upon differentiation.
Collapse
Affiliation(s)
- Iris Ramos-Hernández
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Carla Fuster-García
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Araceli Aguilar-González
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| | - María L Lozano-Vinagre
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Guillermo Guenechea-Amurrio
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine ‘López-Neyra’ (Spanish National Research Council), Avda. del Conocimiento 17 (PTS Granada), 18016 Armilla (Granada), Spain
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg,79110 Freiburg, Germany
| | - Pilar Muñoz
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco J Molina-Estévez
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco Martín
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de la Investigación 11, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016, 34 Granada, Spain
| |
Collapse
|
2
|
Emami M, Tavalaee M, Forouzanfar M, Shahhoseini M, Nasr-Esfahani MH. Evaluation of DNA Methylation and Expression of DLK1 and MEG3 Genes in Placenta and Umbilical Cord Blood Samples of Infertile People after ICSI-AOA Method. Reprod Sci 2025; 32:1129-1146. [PMID: 40011392 DOI: 10.1007/s43032-025-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Assissted oocyte activation (AOA) has emerged as a promising method to overcome fertilization failures that can occur after intracytoplasmic sperm injection (ICSI) due to the sperm's inability to adequately stimulate the oocyte. Fertilization failure after ICSI accounts for approximately 30% of human oocyte failures, contributing to an estimated total fertilization failure rate of 2-3%. However, concerns remain regarding the potential epigenetic changes that could influence both placental and fetal development. This study aims to examine the methylation and expression changes of key imprinted genes (DLK1 and MEG3) in umbilical cord blood and placental tissue. Therefore, the methylation and expression changes of DLK1 and MEG3 were compared among ICSI, ICSI-AOA, and natural fertilization groups. The analysis involved DNA methylation and real-time PCR. Results indicated no significant differences in overall methylation levels between the groups, although individual CpG positions displayed significant variations. Similarly, gene expression levels did not differ significantly across the groups. The study concludes that ICSI-AOA does not significantly impact the DNA methylation or gene expression of the imprinted genes (DLK1 and MEG3), suggesting that both ICSI and ICSI-AOA appear to be safe and reliable for infertility treatments. However, further research is essential to explore the long-term effects and safety profiles associated with ICSI-AOA.
Collapse
Affiliation(s)
- Maryam Emami
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Pooyesh & Rooyesh Fertility Center, Isfahan Health Center, Isfahan, Iran.
| |
Collapse
|
3
|
Wang Y, Liu W, Chen Z, Zang Y, Xu L, Dai Z, Zhou Y, Zhu J. A noninvasive method for predicting clinically significant prostate cancer using magnetic resonance imaging combined with PRKY promoter methylation level: a machine learning study. BMC Med Imaging 2024; 24:60. [PMID: 38468226 DOI: 10.1186/s12880-024-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Traditional process for clinically significant prostate cancer (csPCA) diagnosis relies on invasive biopsy and may bring pain and complications. Radiomic features of magnetic resonance imaging MRI and methylation of the PRKY promoter were found to be associated with prostate cancer. METHODS Fifty-four Patients who underwent prostate biopsy or photoselective vaporization of the prostate (PVP) from 2022 to 2023 were selected for this study, and their clinical data, blood samples and MRI images were obtained before the operation. Methylation level of two PRKY promoter sites, cg05618150 and cg05163709, were tested through bisulfite sequencing PCR (BSP). The PI-RADS score of each patient was estimated and the region of interest (ROI) was delineated by 2 experienced radiologists. After being extracted by a plug-in of 3D-slicer, radiomic features were selected through LASSCO regression and t-test. Selected radiomic features, methylation levels and clinical data were used for model construction through the random forest (RF) algorithm, and the predictive efficiency was analyzed by the area under the receiver operation characteristic (ROC) curve (AUC). RESULTS Methylation level of the site, cg05618150, was observed to be associated with prostate cancer, for which the AUC was 0.74. The AUC of T2WI in csPCA prediction was 0.84, which was higher than that of the apparent diffusion coefficient ADC (AUC = 0.81). The model combined with T2WI and clinical data reached an AUC of 0.94. The AUC of the T2WI-clinic-methylation-combined model was 0.97, which was greater than that of the model combined with the PI-RADS score, clinical data and PRKY promoter methylation levels (AUC = 0.86). CONCLUSIONS The model combining with radiomic features, clinical data and PRKY promoter methylation levels based on machine learning had high predictive efficiency in csPCA diagnosis.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Weifeng Liu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Zeyu Chen
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China
| | - Zheng Dai
- Department of Urology, Hefei First People's Hopital, Hefei, Anhui Province, 230000, China.
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China.
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China.
| |
Collapse
|
4
|
Li Y, Mao X, Li M, Li L, Tong X, Huang L. The predictive value of BTG1 for the response of newly diagnosed acute myeloid leukemia to decitabine. Clin Epigenetics 2024; 16:16. [PMID: 38254153 PMCID: PMC10802042 DOI: 10.1186/s13148-024-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Decitabine has been widely used to treat acute myeloid leukemia (AML); however as AML is a heterogeneous disease, not all patients benefit from decitabine. This study aimed to identify markers for predicting the response to decitabine. METHODS An intersection of in vitro experiments and bioinformatics was performed using a combination of epigenetic and transcriptomic analysis. A tumor-suppressor gene associated with methylation and the response to decitabine was screened. Then the sensitivity and specificity of this marker in predicting the response to decitabine was confirmed in 54 samples from newly diagnosed AML patients treated with decitabine plus IA regimen in a clinical trial (ChiCTR2000037928). RESULTS In vitro experiments showed that decitabine caused hypomethylation and upregulation of BTG1, while downregulation of BTG1 attenuated the inhibitory effect of decitabine. In newly diagnosed AML patients who received decitabine plus IA regimen, the predictive value of BTG1 to predict complete remission (CR) was assigned with a sensitivity of 86.7% and a specificity of 100.0% when BTG1 expression was < 0.292 (determined using real-time quantitative PCR), with area under the curve (AUC) = 0.933, P = 0.021. The predictive value of BTG1 to predict measurable residual disease (MRD) negativity was assigned with a sensitivity of 100.0% and a specificity of 80.0% when BTG1 expression was < 0.292 (AUC = 0.892, P = 0.012). Patients were divided into low and high BTG1 expression groups according to a cutoff of 0.292, and the CR rate of the low-expression group was significantly higher than that of the high-expression group (97.5% vs. 50%, P < 0.001). CONCLUSIONS Low expression of BTG1 was associated with CR and MRD negativity in newly diagnosed AML patients treated with a decitabine-containing regimen, suggesting that BTG1 is a potential marker for predicting the response to decitabine in newly diagnosed AML. CLINICAL TRIAL REGISTRATION ChiCTR2000037928.
Collapse
Affiliation(s)
- Yi Li
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Li Li
- Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xiwen Tong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China
| | - Lifang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-fang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Capra E, Turri F, Lazzari B, Biffani S, Lange Consiglio A, Ajmone Marsan P, Stella A, Pizzi F. CpG DNA methylation changes during epididymal sperm maturation in bulls. Epigenetics Chromatin 2023; 16:20. [PMID: 37254160 DOI: 10.1186/s13072-023-00495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND During epididymal transit spermatozoa acquire specific morphological features which enhance their ability to swim in a progressive manner and interact with the oocytes. At the same time, sperm cells undergo specific molecular rearrangements essential for the fertilizing sperm to drive a correct embryo development. To assess epigenetic sperm changes during epididymal maturation, the caput, corpus and cauda epididymis sperm tracts were isolated from eight bulls and characterized for different sperm quality parameters and for CpG DNA methylation using Reduced Representation Bisulfite Sequencing (RRBS) able to identify differentially methylated regions (DMRs) in higher CpG density regions. RESULTS Caput sperm showed significant variation in motility and sperm kinetics variables, whereas spermatozoa collected from the corpus presented morphology variation and significant alterations in variables related to acrosome integrity. A total of 57,583 methylated regions were identified across the eight bulls, showing a significantly diverse distribution for sperm collected in the three epididymal regions. Differential methylation was observed between caput vs corpus (n = 11,434), corpus vs cauda (n = 12,372) and caput vs cauda (n = 2790). During epididymal transit a high proportion of the epigenome was remodeled, showing several regions in which methylation decreases from caput to corpus and increases from corpus to cauda. CONCLUSIONS Specific CpG DNA methylation changes in sperm isolated from the caput, corpus, and cauda epididymis tracts are likely to refine the sperm epigenome during sperm maturation, potentially impacting sperm fertilization ability and spatial organization of the genome during early embryo development.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 26900, Lodi, Italy.
| | - F Turri
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 26900, Lodi, Italy
| | - B Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 26900, Lodi, Italy
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 20133, Milano, Italy
| | - S Biffani
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 20133, Milano, Italy
| | - A Lange Consiglio
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, 26900, Lodi, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Technology-DIANA, and Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production-CREI, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - A Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 20133, Milano, Italy
| | - F Pizzi
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, 26900, Lodi, Italy
| |
Collapse
|