1
|
Chen X, Cai R, Huang Z, Li Z, Zheng J, Wu M. Interpretable high-order knowledge graph neural network for predicting synthetic lethality in human cancers. Brief Bioinform 2025; 26:bbaf142. [PMID: 40194555 PMCID: PMC11975366 DOI: 10.1093/bib/bbaf142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Synthetic lethality (SL) is a promising gene interaction for cancer therapy. Recent SL prediction methods integrate knowledge graphs (KGs) into graph neural networks (GNNs) and employ attention mechanisms to extract local subgraphs as explanations for target gene pairs. However, attention mechanisms often lack fidelity, typically generate a single explanation per gene pair, and fail to ensure trustworthy high-order structures in their explanations. To overcome these limitations, we propose Diverse Graph Information Bottleneck for Synthetic Lethality (DGIB4SL), a KG-based GNN that generates multiple faithful explanations for the same gene pair and effectively encodes high-order structures. Specifically, we introduce a novel DGIB objective, integrating a determinant point process constraint into the standard information bottleneck objective, and employ 13 motif-based adjacency matrices to capture high-order structures in gene representations. Experimental results show that DGIB4SL outperforms state-of-the-art baselines and provides multiple explanations for SL prediction, revealing diverse biological mechanisms underlying SL inference.
Collapse
Affiliation(s)
- Xuexin Chen
- School of Computer Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu, Guangdong, Guangzhou, 510006, China
| | - Ruichu Cai
- School of Computer Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu, Guangdong, Guangzhou, 510006, China
- Pazhou Laboratory (Huangpu), No. 248 Pazhou Qiaotou Street, Haizhu, Guangdong Province, Guangzhou, 510335, China
| | - Zhengting Huang
- School of Computer Science, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu, Guangdong, Guangzhou, 510006, China
| | - Zijian Li
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Masdar, Abu Dhabi, United Arab Emirates
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, No. 393 Huaxia Middle Road, Pudong, Shanghai, 201210, China
- School of Information Science and Technology, Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, No. 393 Huaxia Middle Road, Pudong, Shanghai, 201210, China
| | - Min Wu
- Institute for Infocomm Research (IR), A*STAR, No. 2 Fusionopolis Way, Queenstown Planning, Singapore 138632, Singapore
| |
Collapse
|
2
|
Jiang Y, Wang J, Zhang Y, Cao Z, Zhang Q, Su J, He S, Bo X. Graph based recurrent network for context specific synthetic lethality prediction. SCIENCE CHINA. LIFE SCIENCES 2025; 68:527-540. [PMID: 39422810 DOI: 10.1007/s11427-023-2618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/10/2024] [Indexed: 10/19/2024]
Abstract
The concept of synthetic lethality (SL) has been successfully used for targeted therapies. To further explore SL for cancer therapy, identifying more SL interactions with therapeutic potential are essential. Recently, graph neural network-based deep learning methods have been proposed for SL prediction, which reduce the SL search space of wet-lab based methods. However, these methods ignore that most SL interactions depend strongly on genetic context, which limits the application of the predicted results. In this study, we proposed a graph recurrent network-based model for specific context-dependent SL prediction (SLGRN). In particular, we introduced a Graph Recurrent Network-based encoder to acquire a context-specific, low-dimensional feature representation for each node, facilitating the prediction of novel SL. SLGRN leveraged gate recurrent unit (GRU) and it incorporated a context-dependent-level state to effectively integrate information from all nodes. As a result, SLGRN outperforms the state-of-the-arts models for SL prediction. We subsequently validate novel SL interactions under different contexts based on combination therapy or patient survival analysis. Through in vitro experiments and retrospective clinical analysis, we emphasize the potential clinical significance of this context-specific SL prediction model.
Collapse
Affiliation(s)
- Yuyang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jing Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - ZhiWei Cao
- School of Informatics, Xiamen University, Xiamen, 361005, China
| | - Qinglong Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Jinsong Su
- School of Informatics, Xiamen University, Xiamen, 361005, China.
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Jiang H, Shi S, Zhang S, Zheng J, Li Q. SLInterpreter: An Exploratory and Iterative Human-AI Collaborative System for GNN-Based Synthetic Lethal Prediction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:919-929. [PMID: 39316494 DOI: 10.1109/tvcg.2024.3456325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Synthetic Lethal (SL) relationships, though rare among the vast array of gene combinations, hold substantial promise for targeted cancer therapy. Despite advancements in AI model accuracy, there is still a significant need among domain experts for interpretive paths and mechanism explorations that align better with domain-specific knowledge, particularly due to the high costs of experimentation. To address this gap, we propose an iterative Human-AI collaborative framework with two key components: 1) Human-Engaged Knowledge Graph Refinement based on Metapath Strategies, which leverages insights from interpretive paths and domain expertise to refine the knowledge graph through metapath strategies with appropriate granularity. 2) Cross-Granularity SL Interpretation Enhancement and Mechanism Analysis, which aids experts in organizing and comparing predictions and interpretive paths across different granularities, uncovering new SL relationships, enhancing result interpretation, and elucidating potential mechanisms inferred by Graph Neural Network (GNN) models. These components cyclically optimize model predictions and mechanism explorations, enhancing expert involvement and intervention to build trust. Facilitated by SLInterpreter, this framework ensures that newly generated interpretive paths increasingly align with domain knowledge and adhere more closely to real-world biological principles through iterative Human-AI collaboration. We evaluate the framework's efficacy through a case study and expert interviews.
Collapse
|
4
|
Feng Y, Long Y, Wang H, Ouyang Y, Li Q, Wu M, Zheng J. Benchmarking machine learning methods for synthetic lethality prediction in cancer. Nat Commun 2024; 15:9058. [PMID: 39428397 PMCID: PMC11491473 DOI: 10.1038/s41467-024-52900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Synthetic lethality (SL) is a gold mine of anticancer drug targets, exposing cancer-specific dependencies of cellular survival. To complement resource-intensive experimental screening, many machine learning methods for SL prediction have emerged recently. However, a comprehensive benchmarking is lacking. This study systematically benchmarks 12 recent machine learning methods for SL prediction, assessing their performance across diverse data splitting scenarios, negative sample ratios, and negative sampling techniques, on both classification and ranking tasks. We observe that all the methods can perform significantly better by improving data quality, e.g., excluding computationally derived SLs from training and sampling negative labels based on gene expression. Among the methods, SLMGAE performs the best. Furthermore, the methods have limitations in realistic scenarios such as cold-start independent tests and context-specific SLs. These results, together with source code and datasets made freely available, provide guidance for selecting suitable methods and developing more powerful techniques for SL virtual screening.
Collapse
Affiliation(s)
- Yimiao Feng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yahui Long
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - He Wang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yang Ouyang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Quan Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Wu
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Vision and Imaging, Shanghai, China.
| |
Collapse
|
5
|
Hu Y, Oleshko S, Firmani S, Zhu Z, Cheng H, Ulmer M, Arnold M, Colomé-Tatché M, Tang J, Xhonneux S, Marsico A. BioPathNet: Enhancing Link Prediction in Biomedical Knowledge Graphs through Path Representation Learning. RESEARCH SQUARE 2024:rs.3.rs-5057842. [PMID: 39372928 PMCID: PMC11451641 DOI: 10.21203/rs.3.rs-5057842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Understanding complex interactions in biomedical networks is crucial for advancements in biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity. Representation-based learning techniques improve prediction accuracy by mapping nodes to low-dimensional embeddings, yet they often struggle with interpretability and scalability. We present BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network (NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowledge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node pairs by considering all relations along paths, enhancing prediction accuracy and interpretability. This allows visualization of influential paths and facilitates biological validation. BioPathNet leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent negative sampling to improve precision. In evaluations across various LP tasks, such as gene function annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction, BioPathNet consistently outperformed shallow node embedding methods, relational graph neural networks and task-specific state-of-the-art methods, demonstrating robust performance and versatility. Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and Alzheimer's, validated by medical experts and clinical trials. We also identified new synthetic lethality gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through literature reviews. BioPathNet's interpretability will enable researchers to trace prediction paths and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and biology in general.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Samuele Firmani
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Zhaocheng Zhu
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Hui Cheng
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Maria Ulmer
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Matthias Arnold
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, 905 W Main St., Durham, NC 27701, North Carolina, United States
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
- Faculty of Biology, Ludwig-Maximilian University of Munich, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Bavaria, Germany
| | - Jian Tang
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, CIFAR AI Chair, 661 University Ave, Toronto, ON M5G 1M1, Ontario, Canada
- Department, HEC Montréal, 3000 Chem. de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Quebec, Canada
| | - Sophie Xhonneux
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| |
Collapse
|
6
|
Hu Y, Oleshko S, Firmani S, Zhu Z, Cheng H, Ulmer M, Arnold M, Colomé-Tatché M, Tang J, Xhonneux S, Marsico A. Path-based reasoning for biomedical knowledge graphs with BioPathNet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599219. [PMID: 39149355 PMCID: PMC11326122 DOI: 10.1101/2024.06.17.599219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Understanding complex interactions in biomedical networks is crucial for advancements in biomedicine, but traditional link prediction (LP) methods are limited in capturing this complexity. Representation-based learning techniques improve prediction accuracy by mapping nodes to low-dimensional embeddings, yet they often struggle with interpretability and scalability. We present BioPathNet, a novel graph neural network framework based on the Neural Bellman-Ford Network (NBFNet), addressing these limitations through path-based reasoning for LP in biomedical knowledge graphs. Unlike node-embedding frameworks, BioPathNet learns representations between node pairs by considering all relations along paths, enhancing prediction accuracy and interpretability. This allows visualization of influential paths and facilitates biological validation. BioPathNet leverages a background regulatory graph (BRG) for enhanced message passing and uses stringent negative sampling to improve precision. In evaluations across various LP tasks, such as gene function annotation, drug-disease indication, synthetic lethality, and lncRNA-mRNA interaction prediction, BioPathNet consistently outperformed shallow node embedding methods, relational graph neural networks and task-specific state-of-the-art methods, demonstrating robust performance and versatility. Our study predicts novel drug indications for diseases like acute lymphoblastic leukemia (ALL) and Alzheimer's, validated by medical experts and clinical trials. We also identified new synthetic lethality gene pairs and regulatory interactions involving lncRNAs and target genes, confirmed through literature reviews. BioPathNet's interpretability will enable researchers to trace prediction paths and gain molecular insights, making it a valuable tool for drug discovery, personalized medicine and biology in general.
Collapse
Affiliation(s)
- Yue Hu
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Samuele Firmani
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| | - Zhaocheng Zhu
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Hui Cheng
- School of Computation, Information and Technology, Technical University of Munich, Arcisstrasse 21, Munich, 80333, Bavaria, Germany
| | - Maria Ulmer
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
| | - Matthias Arnold
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- Department of Psychiatry and Behavioural Sciences, Duke University, 905 W Main St., Durham, NC 27701, North Carolina, United States
| | - Maria Colomé-Tatché
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
- School of Life Sciences, Technical University of Munich, Alte Akademie 8, Freising, 85354, Bavaria, Germany
- Faculty of Biology, Ludwig-Maximilian University of Munich, Grosshaderner Str. 2, Planegg-Martinsried, 82152, Bavaria, Germany
| | - Jian Tang
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, CIFAR AI Chair, 661 University Ave, Toronto, ON M5G 1M1, Ontario, Canada
- Department, HEC Montréal, 3000 Chem. de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Quebec, Canada
| | - Sophie Xhonneux
- Department, Mila - Québec AI Institute, 6666 St-Urbain, Montréal, QC H2S 3H1, Quebec, Canada
- Department, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Quebec, Canada
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Bavaria, Germany
| |
Collapse
|
7
|
Jiménez A, Merino MJ, Parras J, Zazo S. Explainable drug repurposing via path based knowledge graph completion. Sci Rep 2024; 14:16587. [PMID: 39025897 PMCID: PMC11258358 DOI: 10.1038/s41598-024-67163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Drug repurposing aims to find new therapeutic applications for existing drugs in the pharmaceutical market, leading to significant savings in time and cost. The use of artificial intelligence and knowledge graphs to propose repurposing candidates facilitates the process, as large amounts of data can be processed. However, it is important to pay attention to the explainability needed to validate the predictions. We propose a general architecture to understand several explainable methods for graph completion based on knowledge graphs and design our own architecture for drug repurposing. We present XG4Repo (eXplainable Graphs for Repurposing), a framework that takes advantage of the connectivity of any biomedical knowledge graph to link compounds to the diseases they can treat. Our method allows methapaths of different types and lengths, which are automatically generated and optimised based on data. XG4Repo focuses on providing meaningful explanations to the predictions, which are based on paths from compounds to diseases. These paths include nodes such as genes, pathways, side effects, or anatomies, so they provide information about the targets and other characteristics of the biomedical mechanism that link compounds and diseases. Paths make predictions interpretable for experts who can validate them and use them in further research on drug repurposing. We also describe three use cases where we analyse new uses for Epirubicin, Paclitaxel, and Predinisone and present the paths that support the predictions.
Collapse
Affiliation(s)
- Ana Jiménez
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avda. Complutense, 30, 28040, Madrid, Spain
| | - María José Merino
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avda. Complutense, 30, 28040, Madrid, Spain
| | - Juan Parras
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avda. Complutense, 30, 28040, Madrid, Spain.
| | - Santiago Zazo
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, ETSI Telecomunicación, Avda. Complutense, 30, 28040, Madrid, Spain
| |
Collapse
|
8
|
Han S, Lee JE, Kang S, So M, Jin H, Lee JH, Baek S, Jun H, Kim TY, Lee YS. Standigm ASK™: knowledge graph and artificial intelligence platform applied to target discovery in idiopathic pulmonary fibrosis. Brief Bioinform 2024; 25:bbae035. [PMID: 38349059 PMCID: PMC10862655 DOI: 10.1093/bib/bbae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Indexed: 02/15/2024] Open
Abstract
Standigm ASK™ revolutionizes healthcare by addressing the critical challenge of identifying pivotal target genes in disease mechanisms-a fundamental aspect of drug development success. Standigm ASK™ integrates a unique combination of a heterogeneous knowledge graph (KG) database and an attention-based neural network model, providing interpretable subgraph evidence. Empowering users through an interactive interface, Standigm ASK™ facilitates the exploration of predicted results. Applying Standigm ASK™ to idiopathic pulmonary fibrosis (IPF), a complex lung disease, we focused on genes (AMFR, MDFIC and NR5A2) identified through KG evidence. In vitro experiments demonstrated their relevance, as TGFβ treatment induced gene expression changes associated with epithelial-mesenchymal transition characteristics. Gene knockdown reversed these changes, identifying AMFR, MDFIC and NR5A2 as potential therapeutic targets for IPF. In summary, Standigm ASK™ emerges as an innovative KG and artificial intelligence platform driving insights in drug target discovery, exemplified by the identification and validation of therapeutic targets for IPF.
Collapse
Affiliation(s)
- Seokjin Han
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Ji Eun Lee
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| | - Seolhee Kang
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Minyoung So
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Hee Jin
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| | - Jang Ho Lee
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Sunghyeob Baek
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Hyungjin Jun
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Tae Yong Kim
- Standigm Inc., Nonhyeon-ro 85-gil, 06234, Seoul, Republic of Korea
| | - Yun-Sil Lee
- College of Pharmacy, Ewha Womans University, Ewhayeodae-gil, 03760, Seoul, Republic of Korea
| |
Collapse
|