1
|
Wang A, Chen W, Tao S. Genome-wide characterization, evolution, structure, and expression analysis of the F-box genes in Caenorhabditis. BMC Genomics 2021; 22:889. [PMID: 34895149 PMCID: PMC8665587 DOI: 10.1186/s12864-021-08189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND F-box proteins represent a diverse class of adaptor proteins of the ubiquitin-proteasome system (UPS) that play critical roles in the cell cycle, signal transduction, and immune response by removing or modifying cellular regulators. Among closely related organisms of the Caenorhabditis genus, remarkable divergence in F-box gene copy numbers was caused by sizeable species-specific expansion and contraction. Although F-box gene number expansion plays a vital role in shaping genomic diversity, little is known about molecular evolutionary mechanisms responsible for substantial differences in gene number of F-box genes and their functional diversification in Caenorhabditis. Here, we performed a comprehensive evolution and underlying mechanism analysis of F-box genes in five species of Caenorhabditis genus, including C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei. RESULTS Herein, we identified and characterized 594, 192, 377, 39, 1426 F-box homologs encoding putative F-box proteins in the genome of C. brenneri, C. briggsae, C. elegans, C. japonica, and C. remanei, respectively. Our work suggested that extensive species-specific tandem duplication followed by a small amount of gene loss was the primary mechanism responsible for F-box gene number divergence in Caenorhabditis genus. After F-box gene duplication events occurred, multiple mechanisms have contributed to gene structure divergence, including exon/intron gain/loss, exonization/pseudoexonization, exon/intron boundaries alteration, exon splits, and intron elongation by tandem repeats. Based on high-throughput RNA sequencing data analysis, we proposed that F-box gene functions have diversified by sub-functionalization through highly divergent stage-specific expression patterns in Caenorhabditis species. CONCLUSIONS Massive species-specific tandem duplications and occasional gene loss drove the rapid evolution of the F-box gene family in Caenorhabditis, leading to complex gene structural variation and diversified functions affecting growth and development within and among Caenorhabditis species. In summary, our findings outline the evolution of F-box genes in the Caenorhabditis genome and lay the foundation for future functional studies.
Collapse
Affiliation(s)
- Ailan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
- Geneis (Beijing) Co., Beijing, China
| | - Wei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
2
|
Hosoda M, Takahashi Y, Shiota M, Shinmachi D, Inomoto R, Higashimoto S, Aoki-Kinoshita KF. MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns. Carbohydr Res 2018; 464:44-56. [PMID: 29859376 DOI: 10.1016/j.carres.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023]
Abstract
Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The profiles in MCAW-DB could potentially be used as predictors of affinity of unknown or novel glycans to particular GBPs by comparing how well they match the existing profiles for those GBPs. Moreover, as the glycan profiles of diseased tissues become available, glycan alignments could also be used to identify glycan biomarkers unique to that tissue. Databases of these alignments may be of great use for drug discovery.
Collapse
Affiliation(s)
- Masae Hosoda
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Yushi Takahashi
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Masaaki Shiota
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Daisuke Shinmachi
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Renji Inomoto
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Shinichi Higashimoto
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, 192-8577, Japan
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, 192-8577, Japan; Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo, 192-8577, Japan.
| |
Collapse
|
3
|
Fei Q, Gao EB, Liu B, Wei Y, Ning D. A Toxin-Antitoxin System VapBC15 from Synechocystis sp. PCC 6803 Shows Distinct Regulatory Features. Genes (Basel) 2018; 9:E173. [PMID: 29561797 PMCID: PMC5924515 DOI: 10.3390/genes9040173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/26/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems play important roles in bacterial stress survival by regulating cell growth or death. They are highly abundant in cyanobacteria yet remain poorly characterized. Here, we report the identification and regulation of a putative type II TA system from Synechocystis PCC6803, VapBC15. The VapBC15 system is encoded by the chromosomal operon vapBC15. Exogenous expression of VapC15 dramatically arrested cell growth of Escherichia coli and reduced the numbers of colony-forming units (CFU). The VapC15 toxicity could be which was counteracted neutralized by simultaneous or delayed production of VapB15. Biochemical analysis demonstrated the formation of VapB15-VapC15 complexes by the physical interaction between VapB15 and VapC15. Notably, the VapB15 antitoxin up-regulated the transcription of the vapBC15 operon by directly binding to the promoter region, and the VapC15 toxin abolished the up-regulatory effect by destabilizing the binding. Moreover, VapB15 can be degraded by the proteases Lons and ClpXP2s from Synechocystis PCC6803, thus activating the latent toxicity of VapBC15. These findings suggest that VapBC15 represents a genuine TA system that utilizes a distinct mechanism to regulate toxin activity.
Collapse
Affiliation(s)
- Qian Fei
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - E-Bin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Biao Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Yao Wei
- Huai'an Research Center, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an 223005, China.
| | - Degang Ning
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- Huai'an Research Center, Institute of Hydrobiology, Chinese Academy of Sciences, Huai'an 223005, China.
| |
Collapse
|
4
|
Ghorbani S, Lin YC, Parizot B, Fernandez A, Njo MF, Van de Peer Y, Beeckman T, Hilson P. Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5257-69. [PMID: 26195730 PMCID: PMC4526923 DOI: 10.1093/jxb/erv346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes.
Collapse
Affiliation(s)
- Sarieh Ghorbani
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ana Fernandez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Genomics Research Institute, University of Pretoria, Hatfield Campus, Pretoria 0028, South Africa
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Pierre Hilson
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Saclay Plant Sciences, INRA, route de Saint-Cyr, 78026 Versailles, France
| |
Collapse
|
5
|
In silico identification of AMPylating enzymes and study of their divergent evolution. Sci Rep 2015; 5:10804. [PMID: 26039278 PMCID: PMC4454073 DOI: 10.1038/srep10804] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/28/2015] [Indexed: 11/09/2022] Open
Abstract
AMPylation is a novel post-translational modification (PTM) involving covalent attachment of an AMP moiety to threonine/tyrosine side chains of a protein. AMPylating enzymes belonging to three different families, namely Fic/Doc, GS-ATase and DrrA have been experimentally characterized. Involvement of these novel enzymes in a myriad of biological processes makes them interesting candidates for genome-wide search. We have used SVM and HMM to develop a computational protocol for identification of AMPylation domains and their classification into various functional subfamilies catalyzing AMPylation, deAMPylation, phosphorylation and phosphocholine transfer. Our analysis has not only identified novel PTM catalyzing enzymes among unannotated proteins, but has also revealed how this novel enzyme family has evolved to generate functional diversity by subtle changes in sequence/structures of the proteins. Phylogenetic analysis of Fic/Doc has revealed three new isofunctional subfamilies, thus adding to their functional divergence. Also, frequent occurrence of Fic/Doc proteins on highly mobile and unstable genomic islands indicated their evolution via extensive horizontal gene transfers. On the other hand phylogenetic analyses indicate lateral evolution of GS-ATase family and an early duplication event responsible for AMPylation and deAMPylation activity of GS-ATase. Our analysis also reveals molecular basis of substrate specificity of DrrA proteins.
Collapse
|
6
|
Zhou W, Ding WL, Zeng XL, Dong LL, Zhao B, Zhou M, Scheer H, Zhao KH, Yang X. Structure and mechanism of the phycobiliprotein lyase CpcT. J Biol Chem 2014; 289:26677-26689. [PMID: 25074932 PMCID: PMC4175310 DOI: 10.1074/jbc.m114.586743] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/24/2014] [Indexed: 12/15/2022] Open
Abstract
Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965-983).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hugo Scheer
- Department of Biologie I, Universität München, Menzinger Str. 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China,.
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, and; Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607.
| |
Collapse
|
7
|
K MJ, Laxmi A. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction. PLoS One 2014; 9:e99074. [PMID: 24901469 PMCID: PMC4047054 DOI: 10.1371/journal.pone.0099074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/11/2014] [Indexed: 11/18/2022] Open
Abstract
Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.
Collapse
Affiliation(s)
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
8
|
Cregut M, Durand MJ, Thouand G. The diversity and functions of choline sulphatases in microorganisms. MICROBIAL ECOLOGY 2014; 67:350-357. [PMID: 24281732 DOI: 10.1007/s00248-013-0328-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/11/2013] [Indexed: 06/02/2023]
Abstract
Choline sulphates have two putative roles in microorganisms: as a reservoir of C, N and S and as osmoprotectants. Although there is no established connection to date regarding the relative distribution of these two functions in microbial communities, this information is crucial in determining the role of choline sulphate in soils, particularly in cultivated soils where S is limiting. Therefore, in order to establish such a connection, the diversity of choline sulphatase (betC) genes was investigated in this study using numerous fully sequenced microbes available in GenBank. Our genomic analyses revealed unequivocally that the betICBA operon is restricted to Rhizobiaceae family members, which live under symbiotic conditions that prevent elemental depletion. Together with the uniform genetic organisation of the betICBA operon in Rhizobiaceae, BetC appears to be both utilised for osmoprotection or S replenishment. In contrast, betC in a wide variety of free-living microbes (including fungi, archaea and bacteria) was found in a cassette encoding only BetC and a choline sulphate transporter, a configuration that appears to be responsible for fulfilling elemental S requirements. Lastly, the relatively high number of BetC sequences available allowed the identification of a specific signature sequence that discriminates between these two functions and also globally defines some conserved motifs in microbial choline sulphatases. Due to the widespread presence of BetC in microbes and the wide repartition of the betC cassette system, the potential importance of choline sulphatase in global S recycling requires further clarification.
Collapse
Affiliation(s)
- Mickael Cregut
- UMR 6144 GEPEA CNRS, CBAC, University of Nantes, 18 Bvd Gaston Defferre, La Roche-sur-Yon, France,
| | | | | |
Collapse
|
9
|
Bertrand S, Iwema T, Escriva H. FGF Signaling Emerged Concomitantly with the Origin of Eumetazoans. Mol Biol Evol 2013; 31:310-8. [DOI: 10.1093/molbev/mst222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Brindefalk B, Dessailly BH, Yeats C, Orengo C, Werner F, Poole AM. Evolutionary history of the TBP-domain superfamily. Nucleic Acids Res 2013; 41:2832-45. [PMID: 23376926 PMCID: PMC3597702 DOI: 10.1093/nar/gkt045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The TATA binding protein (TBP) is an essential transcription initiation factor in Archaea and Eucarya. Bacteria lack TBP, and instead use sigma factors for transcription initiation. TBP has a symmetric structure comprising two repeated TBP domains. Using sequence, structural and phylogenetic analyses, we examine the distribution and evolutionary history of the TBP domain, a member of the helix-grip fold family. Our analyses reveal a broader distribution than for TBP, with TBP-domains being present across all three domains of life. In contrast to TBP, all other characterized examples of the TBP domain are present as single copies, primarily within multidomain proteins. The presence of the TBP domain in the ubiquitous DNA glycosylases suggests that this fold traces back to the ancestor of all three domains of life. The TBP domain is also found in RNase HIII, and phylogenetic analyses show that RNase HIII has evolved from bacterial RNase HII via TBP-domain fusion. Finally, our comparative genomic screens confirm and extend earlier reports of proteins consisting of a single TBP domain among some Archaea. These monopartite TBP-domain proteins suggest that this domain is functional in its own right, and that the TBP domain could have first evolved as an independent protein, which was later recruited in different contexts.
Collapse
Affiliation(s)
- Björn Brindefalk
- Department of Botany, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Benítez-Páez A, Villarroya M, Armengod ME. Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase. RNA (NEW YORK, N.Y.) 2012; 18:795-806. [PMID: 22337945 PMCID: PMC3312566 DOI: 10.1261/rna.029868.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
RsmG is an AdoMet-dependent methyltransferase responsible for the synthesis of m(7)G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m(7)G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Here, we explore the mechanisms controlling RsmG expression and activity, which may somehow respond to the demand set by the amount of rRNA. We confirm that rsmG is the second member in a bicistronic operon and demonstrate that rsmG also has its own promoter, which appears, in actively growing cells, as a control device to offset both the relatively low stability of RsmG and inhibition of the operon promoter. RsmG levels decrease under conditions that down-regulate rRNA synthesis. However, coordination between rRNA and RsmG expression does not seem to occur at the level of transcription initiation. Instead, it might depend on the activity of an inverted repeated region, located between the rsmG promoter and ribosome binding site, which we show to work as a weak transcriptional terminator. To gain insights into the enzymatic mechanism of RsmG, highly conserved residues were mutated and the abilities of the resulting proteins to confer streptomycin resistance, to modify rRNA, and to bind AdoMet were explored. Our data demonstrate for the first time the critical importance of some residues located in the active site of Escherichia coli RsmG for the m(7)G modification process and suggest a role for them in rRNA binding and catalysis.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Bioinformatic Analysis Group–GABi, Centro de Investigación y Desarrollo en Biotecnología, Bogotá D.C. 111221, Colombia
| | - Magda Villarroya
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
12
|
Kinney JN, Salmeen A, Cai F, Kerfeld CA. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 2012; 287:17729-17736. [PMID: 22461622 DOI: 10.1074/jbc.m112.355305] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial microcompartments are organelles composed of a protein shell that surrounds functionally related proteins. Bioinformatic analysis of sequenced genomes indicates that homologs to shell protein genes are widespread among bacteria and suggests that the shell proteins are capable of encapsulating diverse enzymes. The carboxysome is a bacterial microcompartment that enhances CO(2) fixation in cyanobacteria and some chemoautotrophs by sequestering ribulose-1,5-bisphosphate carboxylase/oxygenase and carbonic anhydrase in the microcompartment shell. Here, we report the in vitro and in vivo characterization of CcmN, a protein of previously unknown function that is absolutely conserved in β-carboxysomal gene clusters. We show that CcmN localizes to the carboxysome and is essential for carboxysome biogenesis. CcmN has two functionally distinct regions separated by a poorly conserved linker. The N-terminal portion of the protein is important for interaction with CcmM and, by extension, ribulose-1,5-bisphosphate carboxylase/oxygenase and the carbonic anhydrase CcaA, whereas the C-terminal peptide is essential for interaction with the carboxysome shell. Deletion of the peptide abolishes carboxysome formation, indicating that its interaction with the shell is an essential step in microcompartment formation. Peptides with similar length and sequence properties to those in CcmN can be bioinformatically detected in a large number of diverse proteins proposed to be encapsulated in functionally distinct microcompartments, suggesting that this peptide and its interaction with its cognate shell proteins are common features of microcompartment assembly.
Collapse
Affiliation(s)
- James N Kinney
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Annette Salmeen
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Fei Cai
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
| | - Cheryl A Kerfeld
- Department of Energy Joint Genome Institute, Walnut Creek, California 94598; Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720; Department of Plant and Microbial Biology, University of California, Berkeley, California 94720.
| |
Collapse
|
13
|
Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 2011; 7:e1002290. [PMID: 22022265 PMCID: PMC3192844 DOI: 10.1371/journal.ppat.1002290] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Collapse
Affiliation(s)
- Alga Zuccaro
- Department of Organismic Interactions, Max-Planck Institute (MPI) for Terrestrial Microbiology, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
López-Ramírez V, Alcaraz LD, Moreno-Hagelsieb G, Olmedo-Álvarez G. Phylogenetic distribution and evolutionary history of bacterial DEAD-Box proteins. J Mol Evol 2011; 72:413-31. [PMID: 21437710 PMCID: PMC3093544 DOI: 10.1007/s00239-011-9441-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 03/04/2011] [Indexed: 01/24/2023]
Abstract
DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and γ-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation.
Collapse
Affiliation(s)
- Varinia López-Ramírez
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León CP, 36821 Irapuato, Guanajuato Mexico
| | - Luis D. Alcaraz
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León CP, 36821 Irapuato, Guanajuato Mexico
- Present Address: Department of Genomics and Health, Centro Superior de Investigación en Salud Pública, Avda. Cataluña 21, Valencia, Spain
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON N2L 3C5 Canada
| | - Gabriela Olmedo-Álvarez
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León CP, 36821 Irapuato, Guanajuato Mexico
| |
Collapse
|
15
|
Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL, Fett JP. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC PLANT BIOLOGY 2011; 11:20. [PMID: 21266036 PMCID: PMC3041735 DOI: 10.1186/1471-2229-11-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL) gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. RESULTS Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. CONCLUSIONS We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes, possibly maintaining similar expression patterns between pairs. The enrichment for IDE1 boxes in rice ZIFL gene promoters suggests a role in Zn-excess and Fe-deficiency up-regulation of ZIFL transcripts. Moreover, this is the first description of the ZIFL gene family in plants and the basis for functional studies on this family, which may play important roles in Zn and Fe homeostasis in plants.
Collapse
Affiliation(s)
- Felipe K Ricachenevsky
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, P.O.Box 15005, Porto Alegre, 91501-970, Brazil
| | - Raul A Sperotto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, P.O.Box 15005, Porto Alegre, 91501-970, Brazil
| | - Paloma K Menguer
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Edilena R Sperb
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Karina L Lopes
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Janette P Fett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, P.O.Box 15005, Porto Alegre, 91501-970, Brazil
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| |
Collapse
|
16
|
Gruber S, Vaaje-Kolstad G, Matarese F, López-Mondéjar R, Kubicek CP, Seidl-Seiboth V. Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 2011; 21:122-33. [PMID: 20843785 DOI: 10.1093/glycob/cwq142] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Fungi have a plethora of chitinases, which can be phylogenetically divided into three subgroups (A, B and C). Subgroup C (sgC) chitinases are especially interesting due to their multiple carbohydrate-binding modules, but they have not been investigated in detail yet. In this study, we analyzed sgC chitinases in the mycoparasites Trichoderma atroviride and Trichoderma virens. The expression of sgC chitinase genes in T. atroviride was induced during mycoparasitism of the fungal prey Botrytis cinerea, but not Rhizoctonia solani and correspondingly only by fungal cell walls of the former. Interestingly, only few sgC chitinase genes were inducible by chitin, suggesting that non-chitinous cell wall components can act as inducers. In contrast, the transcriptional profile of the most abundantly expressed sgC chitinase gene tac6 indicated a role of the protein in hyphal network formation. This shows that sgC chitinases have diverse functions and are not only involved in the mycoparasitic attack. However, sequence analysis and 3D modelling revealed that TAC6 and also its ortholog in T. virens have potentially detrimental deletions in the substrate-binding site and are thus probably not catalytically active enzymes. Genomic analysis showed that the genes neighboring sgC chitinases often encode proteins that are solely composed of multiple LysM modules, which were induced by similar stimuli as their neighboring sgC chitinase genes. This study provides first insights into fungal sgC chitinases and their associated LysM proteins.
Collapse
Affiliation(s)
- Sabine Gruber
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Procter JB, Thompson J, Letunic I, Creevey C, Jossinet F, Barton GJ. Visualization of multiple alignments, phylogenies and gene family evolution. Nat Methods 2010; 7:S16-25. [PMID: 20195253 DOI: 10.1038/nmeth.1434] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Software for visualizing sequence alignments and trees are essential tools for life scientists. In this review, we describe the major features and capabilities of a selection of stand-alone and web-based applications useful when investigating the function and evolution of a gene family. These range from simple viewers, to systems that provide sophisticated editing and analysis functions. We conclude with a discussion of the challenges that these tools now face due to the flood of next generation sequence data and the increasingly complex network of bioinformatics information sources.
Collapse
|
18
|
Zhao E, Zhang D, Basak A, Trudeau VL. New insights into granin-derived peptides: evolution and endocrine roles. Gen Comp Endocrinol 2009; 164:161-74. [PMID: 19523383 DOI: 10.1016/j.ygcen.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 12/31/2008] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
The granin protein family is composed of two chromogranin and five secretogranin members that are acidic, heat-stable proteins in secretory granules in cells of the nervous and endocrine systems. We report that there is little evidence for evolutionary relationships among the granins except for the chromogranin group. The main granin members, including chromogranin A and B, and secretogranin II are moderately conserved in the vertebrates. Several small bioactive peptides can be generated by proteolysis from those homologous domains existing within the granin precursors, reflecting the conservation of biological activities in different vertebrates. In this context, we focus on reviewing the distribution and function of the major granin-derived peptides, including vasostatin, bovine CgB(1-41) and secretoneurin in vertebrate endocrine systems, especially those associated with growth, glucose metabolism and reproduction.
Collapse
Affiliation(s)
- E Zhao
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
19
|
Dlakić M. HHsvm: fast and accurate classification of profile-profile matches identified by HHsearch. ACTA ACUST UNITED AC 2009; 25:3071-6. [PMID: 19773335 DOI: 10.1093/bioinformatics/btp555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Recently developed profile-profile methods rival structural comparisons in their ability to detect homology between distantly related proteins. Despite this tremendous progress, many genuine relationships between protein families cannot be recognized as comparisons of their profiles result in scores that are statistically insignificant. RESULTS Using known evolutionary relationships among protein superfamilies in SCOP database, support vector machines were trained on four sets of discriminatory features derived from the output of HHsearch. Upon validation, it was shown that the automatic classification of all profile-profile matches was superior to fixed threshold-based annotation in terms of sensitivity and specificity. The effectiveness of this approach was demonstrated by annotating several domains of unknown function from the Pfam database. AVAILABILITY Programs and scripts implementing the methods described in this manuscript are freely available from http://hhsvm.dlakiclab.org/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, MT 59717-3520, USA.
| |
Collapse
|
20
|
Brandt BW, Heringa J. webPRC: the Profile Comparer for alignment-based searching of public domain databases. Nucleic Acids Res 2009; 37:W48-52. [PMID: 19420063 PMCID: PMC2703954 DOI: 10.1093/nar/gkp279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Profile–profile methods are well suited to detect remote evolutionary relationships between protein families. Profile Comparer (PRC) is an existing stand-alone program for scoring and aligning hidden Markov models (HMMs), which are based on multiple sequence alignments. Since PRC compares profile HMMs instead of sequences, it can be used to find distant homologues. For this purpose, PRC is used by, for example, the CATH and Pfam-domain databases. As PRC is a profile comparer, it only reports profile HMM alignments and does not produce multiple sequence alignments. We have developed webPRC server, which makes it straightforward to search for distant homologues or similar alignments in a number of domain databases. In addition, it provides the results both as multiple sequence alignments and aligned HMMs. Furthermore, the user can view the domain annotation, evaluate the PRC hits with the Jalview multiple alignment editor and generate logos from the aligned HMMs or the aligned multiple alignments. Thus, this server assists in detecting distant homologues with PRC as well as in evaluating and using the results. The webPRC interface is available at http://www.ibi.vu.nl/programs/prcwww/.
Collapse
Affiliation(s)
- Bernd W Brandt
- Centre for Integrative Bioinformatics (IBIVU), VU University Amsterdam, The Netherlands.
| | | |
Collapse
|
21
|
Barker WC, Mazumder R, Vasudevan S, Sagripanti JL, Wu CH. Sequence signatures in envelope protein may determine whether flaviviruses produce hemorrhagic or encephalitic syndromes. Virus Genes 2009; 39:1-9. [PMID: 19283462 DOI: 10.1007/s11262-009-0343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/23/2009] [Indexed: 01/09/2023]
Abstract
We analyzed the envelope proteins in pathogenic flaviviruses to determine whether there are sequence signatures associated with the tendency of viruses to produce hemorrhagic disease (H-viruses) or encephalitis (E-viruses). We found that, at the position corresponding to the glycosylated Asn-67 in dengue virus, asparagine (Asn) occurs in all seven viral species that cause hemorrhagic disease in humans. Furthermore, Asn was extremely rare at position 67 in six flaviviruses that cause encephalitis, being replaced by Asp in four of them. Of the 3,246 sequences from H- and E-viruses, we found that 2,916 sequences (90%) contained Asn in position 67 for H-viruses or Asp in position 67 for E-viruses. The change from Asn-67 that is prevalent in H-viruses to Asp-67 (common in E-viruses) contributes to a stronger electrostatically negative surface in the E-viruses as compared to the H-viruses. These findings should help predicting the disease potential of emerging and re-emerging flaviviruses and understanding the relationship between protein structure and disease outcome.
Collapse
Affiliation(s)
- Winona C Barker
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Summary: Profile Comparer (PRC) is a stand-alone program for scoring and aligning profile hidden Markov models (HMMs) of protein families. PRC can read models produced by SAM and HMMER, two popular profile HMM packages, as well as PSI-BLAST checkpoint files. This application note provides a brief description of the profile–profile algorithm used by PRC. Availability: The C source code licensed under the GNU General Public Licence and Linux and Mac OS X binaries can be downloaded from http://supfam.org/PRC. Contact:martin.madera@gmail.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Martin Madera
- Department of Computer Science, University of Bristol, Bristol, UK.
| |
Collapse
|
23
|
Role of electrostatics on membrane binding, aggregation and destabilization induced by NAD(P)H dehydrogenases. Implication in membrane fusion. Biophys Chem 2008; 137:126-32. [DOI: 10.1016/j.bpc.2008.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
|
24
|
Somogyi K, Sipos B, Pénzes Z, Kurucz E, Zsámboki J, Hultmark D, Andó I. Evolution of genes and repeats in the Nimrod superfamily. Mol Biol Evol 2008; 25:2337-47. [PMID: 18703524 DOI: 10.1093/molbev/msn180] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.
Collapse
Affiliation(s)
- Kálmán Somogyi
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kuwahara Y, Ohno A, Morii T, Yokoyama H, Matsui I, Tochio H, Shirakawa M, Hiroaki H. The solution structure of the C-terminal domain of NfeD reveals a novel membrane-anchored OB-fold. Protein Sci 2008; 17:1915-24. [PMID: 18687870 DOI: 10.1110/ps.034736.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nodulation formation efficiency D (NfeD) is a member of a class of membrane-anchored ClpP-class proteases. There is a second class of NfeD homologs that lack the ClpP domain. The genes of both NfeD classes usually are part of an operon that also contains a gene for a prokaryotic homolog of stomatin. (Stomatin is a major integral-membrane protein of mammalian erythrocytes.) Such NfeD/stomatin homolog gene pairs are present in more than 290 bacterial and archaeal genomes, and their protein products may be part of the machinery used for quality control of membrane proteins. Herein, we report the structure of the isolated C-terminal domain of PH0471, a Pyrococcus horikoshii NfeD homolog, which lacks the ClpP domain. This C-terminal domain (termed NfeDC) contains a five-strand beta-barrel, which is structurally very similar to the OB-fold (oligosaccharide/oligonucleotide-binding fold) domain. However, there is little sequence similarity between it and previously characterized OB-fold domains. The NfeDC domain lacks the conserved surface residues that are necessary for the binding of an OB-fold domain to DNA/RNA, an ion. Instead, its surface is composed of residues that are uniquely conserved in NfeD homologs and that form the structurally conserved surface turns and beta-bulges. There is also a conserved tryptophan present on the surface. We propose that, in general, NfeDC domains may interact with other spatially proximal membrane proteins and thereby regulate their activities.
Collapse
Affiliation(s)
- Yohta Kuwahara
- Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Manning G, Young SL, Miller WT, Zhai Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A 2008; 105:9674-9. [PMID: 18621719 PMCID: PMC2453073 DOI: 10.1073/pnas.0801314105] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Indexed: 11/18/2022] Open
Abstract
Tyrosine kinase signaling has long been considered a hallmark of intercellular communication, unique to multicellular animals. Our genomic analysis of the unicellular choanoflagellate Monosiga brevicollis discovers a remarkable count of 128 tyrosine kinases, 38 tyrosine phosphatases, and 123 phosphotyrosine (pTyr)-binding SH2 proteins, all higher counts than seen in any metazoan. This elaborate signaling network shows little orthology to metazoan counterparts yet displays many innovations reminiscent of metazoans. These include extracellular domains structurally related to those of metazoan receptor kinases, alternative methods for membrane anchoring and phosphotyrosine interaction in cytoplasmic kinases, and domain combinations that link kinases to small GTPase signaling and transcription. These proteins also display a wealth of combinations of known signaling domains. This uniquely divergent and elaborate signaling network illuminates the early evolution of pTyr signaling, explores innovative ways to traverse the cellular signaling circuitry, and shows extensive convergent evolution, highlighting pervasive constraints on pTyr signaling.
Collapse
Affiliation(s)
- Gerard Manning
- *Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Susan L. Young
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720; and
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
| | - Yufeng Zhai
- *Razavi Newman Center for Bioinformatics, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
27
|
Schuster-Böckler B, Bateman A. An introduction to hidden Markov models. CURRENT PROTOCOLS IN BIOINFORMATICS 2007; Appendix 3:Appendix 3A. [PMID: 18428778 DOI: 10.1002/0471250953.bia03as18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This unit introduces the concept of hidden Markov models in computational biology. It describes them using simple biological examples, requiring as little mathematical knowledge as possible. The unit also presents a brief history of hidden Markov models and an overview of their current applications before concluding with a discussion of their limitations.
Collapse
|
28
|
Bateman A, Finn RD. SCOOP: a simple method for identification of novel protein superfamily relationships. Bioinformatics 2007; 23:809-14. [PMID: 17277330 PMCID: PMC2603044 DOI: 10.1093/bioinformatics/btm034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Profile searches of sequence databases are a sensitive way to detect sequence relationships. Sophisticated profile-profile comparison algorithms that have been recently introduced increase search sensitivity even further. RESULTS In this article, a simpler approach than profile-profile comparison is presented that has a comparable performance to state-of-the-art tools such as COMPASS, HHsearch and PRC. This approach is called SCOOP (Simple Comparison Of Outputs Program), and is shown to find known relationships between families in the Pfam database as well as detect novel distant relationships between families. Several novel discoveries are presented including the discovery that a domain of unknown function (DUF283) found in Dicer proteins is related to double-stranded RNA-binding domains. AVAILABILITY SCOOP is freely available under a GNU GPL license from http://www.sanger.ac.uk/Users/agb/SCOOP/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alex Bateman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
| | | |
Collapse
|
29
|
Beitz E. Subfamily logos: visualization of sequence deviations at alignment positions with high information content. BMC Bioinformatics 2006; 7:313. [PMID: 16790056 PMCID: PMC1513608 DOI: 10.1186/1471-2105-7-313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 06/21/2006] [Indexed: 12/03/2022] Open
Abstract
Background Recognition of relevant sequence deviations can be valuable for elucidating functional differences between protein subfamilies. Interesting residues at highly conserved positions can then be mutated and experimentally analyzed. However, identification of such sites is tedious because automated approaches are scarce. Results Subfamily logos visualize subfamily-specific sequence deviations. The display is similar to classical sequence logos but extends into the negative range. Positive, upright characters correspond to residues which are characteristic for the subfamily, negative, upside-down characters to residues typical for the remaining sequences. The symbol height is adjusted to the information content of the alignment position. Residues which are conserved throughout do not appear. Conclusion Subfamily logos provide an intuitive display of relevant sequence deviations. The method has proven to be valid using a set of 135 aligned aquaporin sequences in which established subfamily-specific positions were readily identified by the algorithm.
Collapse
Affiliation(s)
- Eric Beitz
- Dept. of Pharmaceutical Chemistry, University of Tübingen, Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
30
|
Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 2006; 34:2887-905. [PMID: 16738128 PMCID: PMC1474054 DOI: 10.1093/nar/gkl295] [Citation(s) in RCA: 534] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/18/2006] [Accepted: 04/05/2006] [Indexed: 12/14/2022] Open
Abstract
The Snf2 family of helicase-related proteins includes the catalytic subunits of ATP-dependent chromatin remodelling complexes found in all eukaryotes. These act to regulate the structure and dynamic properties of chromatin and so influence a broad range of nuclear processes. We have exploited progress in genome sequencing to assemble a comprehensive catalogue of over 1300 Snf2 family members. Multiple sequence alignment of the helicase-related regions enables 24 distinct subfamilies to be identified, a considerable expansion over earlier surveys. Where information is known, there is a good correlation between biological or biochemical function and these assignments, suggesting Snf2 family motor domains are tuned for specific tasks. Scanning of complete genomes reveals all eukaryotes contain members of multiple subfamilies, whereas they are less common and not ubiquitous in eubacteria or archaea. The large sample of Snf2 proteins enables additional distinguishing conserved sequence blocks within the helicase-like motor to be identified. The establishment of a phylogeny for Snf2 proteins provides an opportunity to make informed assignments of function, and the identification of conserved motifs provides a framework for understanding the mechanisms by which these proteins function.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, University of DundeeDundee DD1 5EH, Scotland, UK
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - David M. A. Martin
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Geoffrey J. Barton
- Bioinformatics and Computational Biology Research Group, School of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Tom Owen-Hughes
- To whom correspondence should be addressed. Tel: +44 0 1382 385796; Fax: +44 0 1382 388702;
| |
Collapse
|
31
|
Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A. Pfam: clans, web tools and services. Nucleic Acids Res 2006; 34:D247-51. [PMID: 16381856 PMCID: PMC1347511 DOI: 10.1093/nar/gkj149] [Citation(s) in RCA: 1704] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 11/13/2022] Open
Abstract
Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://pfam.cgb.ki.se/).
Collapse
Affiliation(s)
- Robert D Finn
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|