1
|
Meng Y, Zhang Z, Zhou C, Tang X, Hu X, Tian G, Yang J, Yao Y. Protein structure prediction via deep learning: an in-depth review. Front Pharmacol 2025; 16:1498662. [PMID: 40248099 PMCID: PMC12003282 DOI: 10.3389/fphar.2025.1498662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/28/2025] [Indexed: 04/19/2025] Open
Abstract
The application of deep learning algorithms in protein structure prediction has greatly influenced drug discovery and development. Accurate protein structures are crucial for understanding biological processes and designing effective therapeutics. Traditionally, experimental methods like X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy have been the gold standard for determining protein structures. However, these approaches are often costly, inefficient, and time-consuming. At the same time, the number of known protein sequences far exceeds the number of experimentally determined structures, creating a gap that necessitates the use of computational approaches. Deep learning has emerged as a promising solution to address this challenge over the past decade. This review provides a comprehensive guide to applying deep learning methodologies and tools in protein structure prediction. We initially outline the databases related to the protein structure prediction, then delve into the recently developed large language models as well as state-of-the-art deep learning-based methods. The review concludes with a perspective on the future of predicting protein structure, highlighting potential challenges and opportunities.
Collapse
Affiliation(s)
- Yajie Meng
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Zhuang Zhang
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Chang Zhou
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Xianfang Tang
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Xinrong Hu
- College of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | | | | | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China
| |
Collapse
|
2
|
Yan T, Shi X, Fu J. Identification of peptide-mediated interactions between human PTTG and SH3 domains in pALL gene expression profile. J Mol Graph Model 2017; 76:11-16. [PMID: 28667917 DOI: 10.1016/j.jmgm.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022]
Abstract
Human pituitary tumor-transforming gene (PTTG) plays an essential role in the development and progression of pediatric acute lymphoblastic leukemia (pALL). PTTG has two SH3-binding peptide motifs that can be recognized by a variety of SH3-containing proteins in the pALL through peptide-mediated interactions. In this study, the gene expression profile of pALL was examined in detail by integrating computational modeling and experimental assay, aiming to identify those potential partner proteins of human PTTG. The binding potency of domain candidates to peptide motifs was ranked using knowledge-based scoring and fluorescence titration. A number of SH3 domains found in a variety of pALL proteins were identified as potent binders with moderate or high affinity for PTTG. It is revealed that the PTTG peptide motifs show different affinity profiles for various candidate proteins, indicating that the PTTG selectivity is optimized across pALL gene expression space. The PTTG peptides were then mutated rationally to target the SH3 domains of identified partner proteins by competing with the native peptide motifs.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Pediatrics, The Second People's Hospital of Huai'an, Huai'an 223002, PR China.
| | - Xiangxiang Shi
- Department of Pediatrics, The Second People's Hospital of Huai'an, Huai'an 223002, PR China
| | - Jing Fu
- ICU, The Second People's Hospital of Huai'an, Huai'an 223002, PR China
| |
Collapse
|
3
|
Liu J, Wang D, Li Y, Yao H, Zhang N, Zhang X, Zhong F, Huang Y. Integrated In Silico-In Vitro Identification and Characterization of the SH3-Mediated Interaction between Human PTTG and its Cognate Partners in Medulloblastoma. Cell Biochem Biophys 2017. [PMID: 28646413 DOI: 10.1007/s12013-017-0810-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The human pituitary tumor-transforming gene is an oncogenic protein which serves as a central hub in the cellular signaling network of medulloblastoma. The protein contains two vicinal PxxP motifs at its C terminus that are potential binding sites of peptide-recognition SH3 domains. Here, a synthetic protocol that integrated in silico analysis and in vitro assay was described to identify the SH3-binding partners of pituitary tumor-transforming gene in the gene expression profile of medulloblastoma. In the procedure, a variety of structurally diverse, non-redundant SH3 domains with high gene expression in medulloblastoma were compiled, and their three-dimensional structures were either manually retrieved from the protein data bank database or computationally modeled through bioinformatics technique. The binding capability of these domains towards the two PxxP-containing peptides m1p: 161LGPPSPVK168 and m2p: 168KMPSPPWE175 of pituitary tumor-transforming gene were ranked by structure-based scoring and fluorescence-based assay. Consequently, a number of SH3 domains, including MAP3K and PI3K, were found to have moderate or high affinity for m1p and/or m2p. Interestingly, the two overlapping peptides exhibits a distinct binding profile to these identified domain partners, suggesting that the binding selectivity of m1p and m2p is optimized across the medulloblastoma expression spectrum by competing for domain candidates. In addition, two redesigned versions of m1p peptide ware obtained via a structure-based rational mutation approach, which exhibited an increased affinity for the domain as compared to native peptide.
Collapse
Affiliation(s)
- Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Dapeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yanyan Li
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hui Yao
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Nan Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuewen Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Fangping Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yulun Huang
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Geddie ML, Kohli N, Kirpotin DB, Razlog M, Jiao Y, Kornaga T, Rennard R, Xu L, Schoerberl B, Marks JD, Drummond DC, Lugovskoy AA. Improving the developability of an anti-EphA2 single-chain variable fragment for nanoparticle targeting. MAbs 2016; 9:58-67. [PMID: 27854147 DOI: 10.1080/19420862.2016.1259047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins. Improved thermostability was achieved by modifying the framework of the scFv, and complementarity-determining region (CDR)-H2 was modified to increase binding to protein A resins. The results of our engineering campaigns demonstrate that it is possible, using focused design strategies, to rapidly improve the stability and manufacturing characteristics of an antibody fragment for use as a component of a novel therapeutic construct.
Collapse
Affiliation(s)
| | | | | | | | - Yang Jiao
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | | | - Lihui Xu
- a Merrimack, Inc. , Cambridge , MA , USA
| | | | - James D Marks
- a Merrimack, Inc. , Cambridge , MA , USA.,b Department of Anesthesia and Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA
| | | | | |
Collapse
|
5
|
Gaillard T, Panel N, Simonson T. Protein side chain conformation predictions with an MMGBSA energy function. Proteins 2016; 84:803-19. [PMID: 26948696 DOI: 10.1002/prot.25030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 12/17/2022]
Abstract
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Gaillard
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Nicolas Panel
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | - Thomas Simonson
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| |
Collapse
|
6
|
Zhang K, Geddie ML, Kohli N, Kornaga T, Kirpotin DB, Jiao Y, Rennard R, Drummond DC, Nielsen UB, Xu L, Lugovskoy AA. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs 2015; 7:42-52. [PMID: 25484041 DOI: 10.4161/19420862.2014.985933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.
Collapse
Affiliation(s)
- Kathy Zhang
- a Merrimack Pharmaceuticals, Inc. ; Cambridge , MA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
ZHANG SISEN, WU LIHUA. Roles of neural precursor cell expressed, developmentally downregulated 9 in tumor-associated cellular processes (Review). Mol Med Rep 2015; 12:6415-21. [DOI: 10.3892/mmr.2015.4240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/15/2015] [Indexed: 11/05/2022] Open
|
8
|
Kozma D, Tusnády GE. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool. BMC Bioinformatics 2015; 16:201. [PMID: 26123059 PMCID: PMC4486421 DOI: 10.1186/s12859-015-0638-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/06/2015] [Indexed: 12/26/2022] Open
Abstract
Background Transmembrane proteins (TMPs) are the key components of signal transduction, cell-cell adhesion and energy and material transport into and out from the cells. For the deep understanding of these processes, structure determination of transmembrane proteins is indispensable. However, due to technical difficulties, only a few transmembrane protein structures have been determined experimentally. Large-scale genomic sequencing provides increasing amounts of sequence information on the proteins and whole proteomes of living organisms resulting in the challenge of bioinformatics; how the structural information should be gained from a sequence. Results Here, we present a novel method, TMFoldRec, for fold prediction of membrane segments in transmembrane proteins. TMFoldRec based on statistical potentials was tested on a benchmark set containing 124 TMP chains from the PDBTM database. Using a 10-fold jackknife method, the native folds were correctly identified in 77 % of the cases. This accuracy overcomes the state-of-the-art methods. In addition, a key feature of TMFoldRec algorithm is the ability to estimate the reliability of the prediction and to decide with an accuracy of 70 %, whether the obtained, lowest energy structure is the native one. Conclusion These results imply that the membrane embedded parts of TMPs dictate the TM structures rather than the soluble parts. Moreover, predictions with reliability scores make in this way our algorithm applicable for proteome-wide analyses. Availability The program is available upon request for academic use. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0638-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dániel Kozma
- "Momentum" Membrane Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, , H 1518, Budapest, Hungary.
| | - Gábor E Tusnády
- "Momentum" Membrane Protein Bioinformatics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 7, , H 1518, Budapest, Hungary.
| |
Collapse
|
9
|
Hirsh L, Piovesan D, Giollo M, Ferrari C, Tosatto SCE. The Victor C++ library for protein representation and advanced manipulation. Bioinformatics 2014; 31:1138-40. [PMID: 25414364 DOI: 10.1093/bioinformatics/btu773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/15/2014] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein sequence and structure representation and manipulation require dedicated software libraries to support methods of increasing complexity. Here, we describe the VIrtual Constrution TOol for pRoteins (Victor) C++ library, an open source platform dedicated to enabling inexperienced users to develop advanced tools and gathering contributions from the community. The provided application examples cover statistical energy potentials, profile-profile sequence alignments and ab initio loop modeling. Victor was used over the last 15 years in several publications and optimized for efficiency. It is provided as a GitHub repository with source files and unit tests, plus extensive online documentation, including a Wiki with help files and tutorials, examples and Doxygen documentation. AVAILABILITY AND IMPLEMENTATION The C++ library and online documentation, distributed under a GPL license are available from URL: http://protein.bio.unipd.it/victor/.
Collapse
Affiliation(s)
- Layla Hirsh
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Manuel Giollo
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Carlo Ferrari
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| |
Collapse
|
10
|
Fofou-Caillierez MB, Mrabet NT, Chéry C, Dreumont N, Flayac J, Pupavac M, Paoli J, Alberto JM, Coelho D, Camadro JM, Feillet F, Watkins D, Fowler B, Rosenblatt DS, Guéant JL. Interaction between methionine synthase isoforms and MMACHC: characterization in cblG-variant, cblG and cblC inherited causes of megaloblastic anaemia. Hum Mol Genet 2013; 22:4591-601. [DOI: 10.1093/hmg/ddt308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL. A new model for allosteric regulation of phenylalanine hydroxylase: implications for disease and therapeutics. Arch Biochem Biophys 2013; 530:73-82. [PMID: 23296088 PMCID: PMC3580015 DOI: 10.1016/j.abb.2012.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the intersubunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Developmental Therapeutics, Institute for Cancer Research, Fox Chase Cancer Center, Temple Health, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
12
|
Xu L, Kohli N, Rennard R, Jiao Y, Razlog M, Zhang K, Baum J, Johnson B, Tang J, Schoeberl B, Fitzgerald J, Nielsen U, Lugovskoy AA. Rapid optimization and prototyping for therapeutic antibody-like molecules. MAbs 2013; 5:237-54. [PMID: 23392215 PMCID: PMC3893234 DOI: 10.4161/mabs.23363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multispecific antibody-like molecules have the potential to advance the standard-of-care in many human diseases. The design of therapeutic molecules in this class, however, has proven to be difficult and, despite significant successes in preclinical research, only one trivalent antibody, catumaxomab, has demonstrated clinical utility. The challenge originates from the complexity of the design space where multiple parameters such as affinity, avidity, effector functions, and pharmaceutical properties need to be engineered in concurrent fashion to achieve the desired therapeutic efficacy. Here, we present a rapid prototyping approach that allows us to successfully optimize these parameters within one campaign cycle that includes modular design, yeast display of structure focused antibody libraries and high throughput biophysical profiling. We delineate this approach by presenting a design case study of MM-141, a tetravalent bispecific antibody targeting two compensatory signaling growth factor receptors: insulin-like growth factor 1 receptor (IGF-1R) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3). A MM-141 proof-of-concept (POC) parent molecule did not meet initial design criteria due to modest bioactivity and poor stability properties. Using a combination of yeast display, structured-guided antibody design and library-scale thermal challenge assay, we discovered a diverse set of stable and active anti-IGF-1R and anti-ErbB3 single-chain variable fragments (scFvs). These optimized modules were reformatted to create a diverse set of full-length tetravalent bispecific antibodies. These re-engineered molecules achieved complete blockade of growth factor induced pro-survival signaling, were stable in serum, and had adequate activity and pharmaceutical properties for clinical development. We believe this approach can be readily applied to the optimization of other classes of bispecific or even multispecific antibody-like molecules.
Collapse
Affiliation(s)
- Lihui Xu
- Merrimack Pharmaceuticals, Inc. Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
An amino acid substitution in Fasciola hepatica P-glycoprotein from triclabendazole-resistant and triclabendazole-susceptible populations. Mol Biochem Parasitol 2012; 186:69-72. [PMID: 22982092 DOI: 10.1016/j.molbiopara.2012.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 11/21/2022]
Abstract
Control of fasciolosis is threatened by the development of anthelmintic resistance. Enhanced triclabendazole (TCBZ) efflux by ABC transporters such as P-glycoprotein (Pgp) has been implicated in this process. A putative full length cDNA coding for a Pgp expressed in adult Fasciola hepatica has been constructed and used to design a primer set capable of amplifying a region encoding part of the second nucleotide binding domain of Pgp when genomic DNA was used as a template. Application of this primer set to genomic DNA from TCBZ-resistant and -susceptible field populations has shown a significant difference in the alleles present. Analysis of an allele occurring at a three-fold higher frequency in the "resistant" population revealed that it was characterised by a serine to arginine substitution at residue 1144. Homology modelling studies have been used to locate this site in the Pgp structure and hence assess its potential to modify functional activity.
Collapse
|
14
|
PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL. BMC Bioinformatics 2012; 13 Suppl 4:S2. [PMID: 22536966 PMCID: PMC3303726 DOI: 10.1186/1471-2105-13-s4-s2] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, an exponential growing number of tools for protein sequence analysis, editing and modeling tasks have been put at the disposal of the scientific community. Despite the vast majority of these tools have been released as open source software, their deep learning curves often discourages even the most experienced users. RESULTS A simple and intuitive interface, PyMod, between the popular molecular graphics system PyMOL and several other tools (i.e., [PSI-]BLAST, ClustalW, MUSCLE, CEalign and MODELLER) has been developed, to show how the integration of the individual steps required for homology modeling and sequence/structure analysis within the PyMOL framework can hugely simplify these tasks. Sequence similarity searches, multiple sequence and structural alignments generation and editing, and even the possibility to merge sequence and structure alignments have been implemented in PyMod, with the aim of creating a simple, yet powerful tool for sequence and structure analysis and building of homology models. CONCLUSIONS PyMod represents a new tool for the analysis and the manipulation of protein sequences and structures. The ease of use, integration with many sequence retrieving and alignment tools and PyMOL, one of the most used molecular visualization system, are the key features of this tool.Source code, installation instructions, video tutorials and a user's guide are freely available at the URL http://schubert.bio.uniroma1.it/pymod/index.html.
Collapse
|
15
|
Díaz N, Suárez D. Alternative interdomain configurations of the full-length MMP-2 enzyme explored by molecular dynamics simulations. J Phys Chem B 2012; 116:2677-86. [PMID: 22324833 DOI: 10.1021/jp211088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational freedom between the different domains of the matrix metalloproteinase family of enzymes has been repeatedly invoked to explain the mechanism of hydrolysis of some of their most complex macromolecular substrates. This proposed interdomain motion has been experimentally confirmed to occur in solution for matrix metalloproteinases MMP-1, MMP-9, and MMP-12. In this work, we computationally assess the likely conformational freedom in aqueous solution of the full-length form of the MMP-2 enzyme in the absence of its pro-peptide domain. To this end, we perform molecular dynamics (MD) simulations and approximate free energy analyses in four different arrangements of the protein domains that correspond to (a) the compact conformation observed in the X-ray structure; (b) an initially elongated structure in which the hemopexin (HPX) domain is separated from the catalytic (CAT) and fibronectin domains; and (c-d) two alternative conformations suggested by protein-protein docking calculations. Overall, our results indicate that the interdomain flexibility is very likely a general property of the MMP-2 enzyme in solution.
Collapse
Affiliation(s)
- Natalia Díaz
- Departamento de Química Física y Analítica, Julián Clavería 8, Universidad de Oviedo, Oviedo (Asturias), 33006 Spain.
| | | |
Collapse
|
16
|
Design, synthesis and characterization of a highly effective inhibitor for analog-sensitive (as) kinases. PLoS One 2011; 6:e20789. [PMID: 21698101 PMCID: PMC3117834 DOI: 10.1371/journal.pone.0020789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Abstract
Highly selective, cell-permeable and fast-acting inhibitors of individual kinases are sought-after as tools for studying the cellular function of kinases in real time. A combination of small molecule synthesis and protein mutagenesis, identified a highly potent inhibitor (1-Isopropyl-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine) of a rationally engineered Hog1 serine/threonine kinase (Hog1T100G). This inhibitor has been successfully used to study various aspects of Hog1 signaling, including a transient cell cycle arrest and gene expression changes mediated by Hog1 in response to stress. This study also underscores that the general applicability of this approach depends, in part, on the selectivity of the designed the inhibitor with respect to activity versus the engineered and wild type kinases. To explore this specificity in detail, we used a validated chemogenetic assay to assess the effect of this inhibitor on all gene products in yeast in parallel. The results from this screen emphasize the need for caution and for case-by-case assessment when using the Analog-Sensitive Kinase Allele technology to assess the physiological roles of kinases.
Collapse
|
17
|
Katz RA, Merkel G, Andrake MD, Roder H, Skalka AM. Retroviral integrases promote fraying of viral DNA ends. J Biol Chem 2011; 286:25710-8. [PMID: 21622554 DOI: 10.1074/jbc.m111.229179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the initial step of integration, retroviral integrase (IN) introduces precise nicks in the degenerate, short inverted repeats at the ends of linear viral DNA. The scissile phosphodiester bond is located immediately 3' of a highly conserved CA/GT dinucleotide, usually 2 bp from the ends. These nicks create new recessed 3'-OH viral DNA ends that are required for joining to host cell DNA. Previous studies have indicated that unpairing, "fraying," of the viral DNA ends by IN contributes to end recognition or catalysis. Here, we report that end fraying can be detected independently of catalysis with both avian sarcoma virus (ASV) and human immunodeficiency virus type 1 (HIV-1) IN proteins by use of fluorescence resonance energy transfer (FRET). The results were indicative of an IN-induced intramolecular conformational change in the viral DNA ends (cis FRET). Fraying activity is tightly coupled to the DNA binding capabilities of these enzymes, as follows: an inhibitor effective against both IN proteins was shown to block ASV IN DNA binding and end fraying, with similar dose responses; ASV IN substitutions that reduced DNA binding also reduced end fraying activity; and HIV-1 IN DNA binding and end fraying were both undetectable in the absence of a metal cofactor. Consistent with our previous results, end fraying is sequence-independent, suggesting that the DNA terminus per se is a major structural determinant for recognition. We conclude that frayed ends represent a functional intermediate in which DNA termini can be sampled for suitability for endonucleolytic processing.
Collapse
Affiliation(s)
- Richard A Katz
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
18
|
Arthur JW, Reichardt JKV. Modeling single nucleotide polymorphisms in the human AKR1C1 and AKR1C2 genes: implications for functional and genotyping analyses. PLoS One 2010; 5:e15604. [PMID: 21217827 PMCID: PMC3013106 DOI: 10.1371/journal.pone.0015604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022] Open
Abstract
Enzymes encoded by the AKR1C1 and AKR1C2 genes are responsible for the metabolism of progesterone and 5α-dihydrotestosterone (DHT), respectively. The effect of amino acid substitutions, resulting from single nucleotide polymorphisms (SNPs) in the AKR1C2 gene, on the enzyme kinetics of the AKR1C2 gene product were determined experimentally by Takashi et al. In this paper, we used homology modeling to predict and analyze the structure of AKR1C1 and AKR1C2 genetic variants. The experimental reduction in enzyme activity in the AKR1C2 variants F46Y and L172Q, as determined by Takahashi et al., is predicted to be due to increased instability in cofactor binding, caused by disruptions to the hydrogen bonds between NADP and AKR1C2, resulting from the insertion of polar residues into largely non-polar environments near the site of cofactor binding. Other AKR1C2 variants were shown to involve either conservative substitutions or changes taking place on the surface of the molecule and distant from the active site, confirming the experimental finding of Takahashi et al. that these variants do not result in any statistically significant reduction in enzyme activity. The AKR1C1 R258C variant is predicted to have no effect on enzyme activity for similar reasons. Thus, we provide further insight into the molecular mechanism of the enzyme kinetics of these proteins. Our data also highlight previously reported difficulties with online databases.
Collapse
Affiliation(s)
- Jonathan W Arthur
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | | |
Collapse
|
19
|
Biasini M, Mariani V, Haas J, Scheuber S, Schenk AD, Schwede T, Philippsen A. OpenStructure: a flexible software framework for computational structural biology. ACTA ACUST UNITED AC 2010; 26:2626-8. [PMID: 20733063 PMCID: PMC2951092 DOI: 10.1093/bioinformatics/btq481] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Motivation: Developers of new methods in computational structural biology are often hampered in their research by incompatible software tools and non-standardized data formats. To address this problem, we have developed OpenStructure as a modular open source platform to provide a powerful, yet flexible general working environment for structural bioinformatics. OpenStructure consists primarily of a set of libraries written in C++ with a cleanly designed application programmer interface. All functionality can be accessed directly in C++ or in a Python layer, meeting both the requirements for high efficiency and ease of use. Powerful selection queries and the notion of entity views to represent these selections greatly facilitate the development and implementation of algorithms on structural data. The modular integration of computational core methods with powerful visualization tools makes OpenStructure an ideal working and development environment. Several applications, such as the latest versions of IPLT and QMean, have been implemented based on OpenStructure—demonstrating its value for the development of next-generation structural biology algorithms. Availability: Source code licensed under the GNU lesser general public license and binaries for MacOS X, Linux and Windows are available for download at http://www.openstructure.org. Contact:torsten.schwede@unibas.ch Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
|
20
|
Shanmugam D, Wu B, Ramirez U, Jaffe EK, Roos DS. Plastid-associated porphobilinogen synthase from Toxoplasma gondii: kinetic and structural properties validate therapeutic potential. J Biol Chem 2010; 285:22122-31. [PMID: 20442414 DOI: 10.1074/jbc.m110.107243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apicomplexan parasites (including Plasmodium spp. and Toxoplasma gondii) employ a four-carbon pathway for de novo heme biosynthesis, but this pathway is distinct from the animal/fungal C4 pathway in that it is distributed between three compartments: the mitochondrion, cytosol, and apicoplast, a plastid acquired by secondary endosymbiosis of an alga. Parasite porphobilinogen synthase (PBGS) resides within the apicoplast, and phylogenetic analysis indicates a plant origin. The PBGS family exhibits a complex use of metal ions (Zn(2+) and Mg(2+)) and oligomeric states (dimers, hexamers, and octamers). Recombinant T. gondii PBGS (TgPBGS) was purified as a stable approximately 320-kDa octamer, and low levels of dimers but no hexamers were also observed. The enzyme displays a broad activity peak (pH 7-8.5), with a K(m) for aminolevulinic acid of approximately 150 microM and specific activity of approximately 24 micromol of porphobilinogen/mg of protein/h. Like the plant enzyme, TgPBGS responds to Mg(2+) but not Zn(2+) and shows two Mg(2+) affinities, interpreted as tight binding at both the active and allosteric sites. Unlike other Mg(2+)-binding PBGS, however, metal ions are not required for TgPBGS octamer stability. A mutant enzyme lacking the C-terminal 13 amino acids distinguishing parasite PBGS from plant and animal enzymes purified as a dimer, suggesting that the C terminus is required for octamer stability. Parasite heme biosynthesis is inhibited (and parasites are killed) by succinylacetone, an active site-directed suicide substrate. The distinct phylogenetic, enzymatic, and structural features of apicomplexan PBGS offer scope for developing selective inhibitors of the parasite enzyme based on its quaternary structure characteristics.
Collapse
Affiliation(s)
- Dhanasekaran Shanmugam
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
21
|
Levy R, Edelman M, Sobolev V. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates. Proteins 2010; 76:365-74. [PMID: 19173310 DOI: 10.1002/prot.22352] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Database-scale analysis was performed to determine whether structural models, based on remote homologues, are effective in predicting 3D transition metal binding sites in proteins directly from translated gene sequences. The extent by which side chain modeling alone reduces sensitivity and selectivity is shown to be <10%. Surprisingly, selectivity was not dependent on the level of sequence homology between template and target, or on the presence of a metal ion in the structural template. Applying a modification of the CHED algorithm (Babor et al., Proteins 2008;70:208-217) and machine learning filters, a selectivity of approximately 90% was achieved for protein sequences using unrelated structural templates over a sequence identity range of 18-100%. Below approximately 18% identity, the number of analyzable target-template pairs and predictability of metal binding sites falls off sharply. A full third of structural templates were found to have target partners only in the remote homology range of 18-30%. In this range, nonmetal-binding templates are calculated to be the majority and serve to predict with 50% sensitivity at the geometric level. Overall, sensitivity at the geometric level for targets having templates in the 18-30% sequence identity range is 73%, with an average of one false positive site per true site. Protein sequences described as "unknown" in the UniProt database and composed largely of unidentified genome project sequences were studied and metal binding sites predicted. A web server for prediction of metal binding sites from protein sequence is provided.
Collapse
Affiliation(s)
- Ronen Levy
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
22
|
Abstract
Determination of side-chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease-of-use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone-dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short-range, soft van der Waals atom-atom interaction potential; (5) fast collision detection using k-discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low-electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of chi(1) angles and 75% of chi(1+2) angles are predicted correctly within 40 degrees of the X-ray positions. Among side chains with higher electron density (25-100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command-line interface, designed for homology modeling, and is now available as a dynamic-linked library for incorporation into other software programs.
Collapse
Affiliation(s)
- Georgii G Krivov
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
23
|
Weitzner B, Meehan T, Xu Q, Dunbrack RL. An unusually small dimer interface is observed in all available crystal structures of cytosolic sulfotransferases. Proteins 2009; 75:289-95. [PMID: 19173308 PMCID: PMC2728805 DOI: 10.1002/prot.22347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytosolic sulfotransferases catalyze the sulfonation of hormones, metabolites, and xenobiotics. Many of these proteins have been shown to form homodimers and heterodimers. An unusually small dimer interface was previously identified by Petrotchenko et al. (FEBS Lett 2001;490:39-43) by cross-linking, protease digestion, and mass spectrometry and verified by site-directed mutagenesis. Analysis of the crystal packing interfaces in all 28 available crystal structures consisting of 17 crystal forms shows that this interface occurs in all of them. With a small number of exceptions, the publicly available databases of biological assemblies contain either monomers or incorrect dimers. Even crystal structures of mouse SULT1E1, which is a monomer in solution, contain the common dimeric interface, although distorted and missing two important salt bridges.
Collapse
Affiliation(s)
- Brian Weitzner
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA 19111,
| | - Thomas Meehan
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA 19111,
| | - Qifang Xu
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA 19111,
| | - Roland L. Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia PA 19111,
| |
Collapse
|
24
|
Killock DJ, Parsons M, Zarrouk M, Ameer-Beg SM, Ridley AJ, Haskard DO, Zvelebil M, Ivetic A. In Vitro and in Vivo Characterization of Molecular Interactions between Calmodulin, Ezrin/Radixin/Moesin, and L-selectin. J Biol Chem 2009; 284:8833-45. [PMID: 19129194 PMCID: PMC2659241 DOI: 10.1074/jbc.m806983200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
L-selectin is a cell adhesion molecule that tethers leukocytes to the
luminal walls of venules during inflammation and enables them to roll under
the force of blood flow. Clustering of L-selectin during rolling is thought to
promote outside-in signals that lead to integrin activation and chemokine
receptor expression, ultimately contributing to leukocyte arrest. Several
studies have underscored the importance of the L-selectin cytoplasmic tail in
functionally regulating adhesion and signaling. Interestingly, the L-selectin
tail comprises only 17 amino acids, and yet it is thought to bind
simultaneously to several proteins. For example, constitutive association of
calmodulin (CaM) and ezrin/radixin/moesin (ERM) to L-selectin confers
resistance to proteolysis and microvillar positioning, respectively. In this
report we found that recombinant purified CaM and ERM bound non-competitively
to the same tail of L-selectin. Furthermore, molecular modeling supported the
possibility that CaM, L-selectin, and moesin could form a heterotrimeric
complex. Finally, using fluorescence lifetime imaging microscopy to measure
fluorescence resonance energy transfer, it was shown that CaM, L-selectin, and
ERM could interact simultaneously in vivo. Moreover, L-selectin
clustering promoted CaM/ERM interaction in cis (i.e. derived
from neighboring L-selectin tails). These results highlight a novel
intracellular event that occurs as a consequence of L-selectin clustering,
which could participate in transducing signals that promote the transition
from rolling to arrest.
Collapse
Affiliation(s)
- David J Killock
- Cardiovascular Science Unit, National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P. Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 2008; 32:540-53. [PMID: 19026784 PMCID: PMC2713662 DOI: 10.1016/j.molcel.2008.09.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/14/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase's proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1's E3 activity or drICE's ubiquitin-acceptor lysines, abrogates DIAP1's ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an "inactive" conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 "activation" and nondegradative polyubiquitylation.
Collapse
Affiliation(s)
- Mark Ditzel
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Meike Broemer
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Clare Bolduc
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Tom V. Lee
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Kristoffer T.G. Rigbolt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Richard Elliott
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Marketa Zvelebil
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andreas Bergmann
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| |
Collapse
|
26
|
Wang Q, Dunbrack RL. An Integrated Database for Complex Protein Structure Modeling. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2008; 2008:33-40. [PMID: 21151784 PMCID: PMC3000042 DOI: 10.1109/bibmw.2008.4686206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In homology modeling of protein structures, it is typical to find templates through a sequence search against a database of proteins with known structures. In more complicated modeling cases, such as modeling a protein structure in contact with a ligand, sequence information itself may not be enough and more biological information is required for a successful modeling process. SCOP and PFAM are two databases providing protein domain information which can be utilized in complex protein structure modeling. However, due to the manually-curated nature of both databases, they fail to provide timely coverage of protein sequences existing in the Protein Data Bank (PDB). In this paper, we introduce a new relational database, IDOPS, which integrates sequence and biological information extracted from remediated PDB files and protein domain information generated with HMM profiles of PFAM families. With a carefully designed protocol, this database is updated regularly and the coverage rate of PDB entries is guaranteed to be high.
Collapse
|
27
|
Lawrence SH, Ramirez UD, Tang L, Fazliyev F, Kundrat L, Markham GD, Jaffe EK. Shape shifting leads to small-molecule allosteric drug discovery. CHEMISTRY & BIOLOGY 2008; 15:586-96. [PMID: 18559269 PMCID: PMC2703447 DOI: 10.1016/j.chembiol.2008.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 04/17/2008] [Accepted: 04/21/2008] [Indexed: 11/19/2022]
Abstract
Enzymes that regulate their activity by modulating an equilibrium of alternate, nonadditive, functionally distinct oligomeric assemblies (morpheeins) constitute a recently described mode of allostery. The oligomeric equilibrium for porphobilinogen synthase (PBGS) consists of high-activity octamers, low-activity hexamers, and two dimer conformations. A phylogenetically diverse allosteric site specific to hexamers is proposed as an inhibitor binding site. Inhibitor binding is predicted to draw the oligomeric equilibrium toward the low-activity hexamer. In silico docking enriched a selection from a small-molecule library for compounds predicted to bind to this allosteric site. In vitro testing of selected compounds identified one compound whose inhibition mechanism is species-specific conversion of PBGS octamers to hexamers. We propose that this strategy for inhibitor discovery can be applied to other proteins that use the morpheein model for allosteric regulation.
Collapse
Affiliation(s)
| | | | - Lei Tang
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, U.S.A
| | - Farit Fazliyev
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, U.S.A
| | - Lenka Kundrat
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, U.S.A
| | - George D. Markham
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, U.S.A
| | - Eileen K. Jaffe
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, U.S.A
| |
Collapse
|
28
|
Oh DY, Yoon JM, Moon MJ, Hwang JI, Choe H, Lee JY, Kim JI, Kim S, Rhim H, O'Dell DK, Walker JM, Na HS, Lee MG, Kwon HB, Kim K, Seong JY. Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. J Biol Chem 2008; 283:21054-64. [PMID: 18499677 DOI: 10.1074/jbc.m708908200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of small compounds acting at the orphan G protein-coupled receptor GPR92 were screened using a signaling pathway-specific reporter assay system. Lipid-derived molecules including farnesyl pyrophosphate (FPP), N-arachidonylglycine (NAG), and lysophosphatidic acid were found to activate GPR92. FPP and lysophosphatidic acid were able to activate both G(q/11)- and G(s)-mediated signaling pathways, whereas NAG activated only the G(q/11)-mediated signaling pathway. Computer-simulated modeling combined with site-directed mutagenesis of GPR92 indicated that Thr(97), Gly(98), Phe(101), and Arg(267) of GPR92 are responsible for the interaction of GPR92 with FPP and NAG. Reverse transcription-PCR analysis revealed that GPR92 mRNA is highly expressed in the dorsal root ganglia (DRG) but faint in other brain regions. Peripheral tissues including, spleen, stomach, small intestine, and kidney also expressed GPR92 mRNA. Immunohistochemical analysis revealed that GPR92 is largely co-localized with TRPV1, a nonspecific cation channel that responds to noxious heat, in mouse and human DRG. FPP and NAG increased intracellular Ca(2+) levels in cultured DRG neurons. These results suggest that FPP and NAG play a role in the sensory nervous system through activation of GPR92.
Collapse
Affiliation(s)
- Da Young Oh
- Laboratory of G Protein-Coupled Receptors and Department of Physiology, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Singh MK, Dadke D, Nicolas E, Serebriiskii IG, Apostolou S, Canutescu A, Egleston BL, Golemis EA. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell 2008; 19:1627-36. [PMID: 18256281 DOI: 10.1091/mbc.e07-09-0953] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
For over a decade, p130Cas/BCAR1, HEF1/NEDD9/Cas-L, and Efs/Sin have defined the Cas (Crk-associated substrate) scaffolding protein family. Cas proteins mediate integrin-dependent signals at focal adhesions, regulating cell invasion and survival; at least one family member, HEF1, regulates mitosis. We here report a previously undescribed novel branch of the Cas protein family, designated HEPL (for HEF1-Efs-p130Cas-like). The HEPL branch is evolutionarily conserved through jawed vertebrates, and HEPL is found in some species lacking other members of the Cas family. The human HEPL mRNA and protein are selectively expressed in specific primary tissues and cancer cell lines, and HEPL maintains Cas family function in localization to focal adhesions, as well as regulation of FAK activity, focal adhesion integrity, and cell spreading. It has recently been demonstrated that upregulation of HEF1 expression marks and induces metastasis, whereas high endogenous levels of p130Cas are associated with poor prognosis in breast cancer, emphasizing the clinical relevance of Cas proteins. Better understanding of the complete protein family should help inform prediction of cancer incidence and prognosis.
Collapse
|
30
|
Wang Q, Canutescu AA, Dunbrack RL. SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 2008; 3:1832-47. [PMID: 18989261 PMCID: PMC2682191 DOI: 10.1038/nprot.2008.184] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SCWRL and MolIDE are software applications for prediction of protein structures. SCWRL is designed specifically for the task of prediction of side-chain conformations given a fixed backbone usually obtained from an experimental structure determined by X-ray crystallography or NMR. SCWRL is a command-line program that typically runs in a few seconds. MolIDE provides a graphical interface for basic comparative (homology) modeling using SCWRL and other programs. MolIDE takes an input target sequence and uses PSI-BLAST to identify and align templates for comparative modeling of the target. The sequence alignment to any template can be manually modified within a graphical window of the target-template alignment and visualization of the alignment on the template structure. MolIDE builds the model of the target structure on the basis of the template backbone, predicted side-chain conformations with SCWRL and a loop-modeling program for insertion-deletion regions with user-selected sequence segments. SCWRL and MolIDE can be obtained at (http://dunbrack.fccc.edu/Software.php).
Collapse
Affiliation(s)
- Qiang Wang
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
31
|
Sadowski MI, Jones DT. Benchmarking template selection and model quality assessment for high-resolution comparative modeling. Proteins 2007; 69:476-85. [PMID: 17623860 DOI: 10.1002/prot.21531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Comparative modeling is presently the most accurate method of protein structure prediction. Previous experiments have shown the selection of the correct template to be of paramount importance to the quality of the final model. We have derived a set of 732 targets for which a choice of ten or more templates exist with 30-80% sequence identity and used this set to compare a number of possible methods for template selection: BLAST, PSI-BLAST, profile-profile alignment, HHpred HMM-HMM comparison, global sequence alignment, and the use of a model quality assessment program (MQAP). In addition, we have investigated the question of whether any structurally defined subset of the sequence could be used to predict template quality better than overall sequence similarity. We find that template selection by BLAST is sufficient in 75% of cases but that there are examples in which improvement (global RMSD 0.5 A or more) could be made. No significant improvement is found for any of the more sophisticated sequence-based methods of template selection at high sequence identities. A subset of 118 targets extending to the lowest levels of sequence similarity was examined and the HHpred and MQAP methods were found to improve ranking when available templates had 35-40% maximum sequence identity. Structurally defined subsets in general are found to be less discriminative than overall sequence similarity, with the coil residue subset performing equivalently to sequence similarity. Finally, we demonstrate that if models are built and model quality is assessed in combination with the sequence-template sequence similarity that a extra 7% of "best" models can be found.
Collapse
Affiliation(s)
- M I Sadowski
- Bioinformatics Unit, Department of Computer Science, University College London, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
32
|
Nicklasson M, Sjöling A, Lebens M, Tobias J, Janzon A, Brive L, Svennerholm AM. Mutations in the periplasmic chaperone leading to loss of surface expression of the colonization factor CS6 in enterotoxigenic Escherichia coli (ETEC) clinical isolates. Microb Pathog 2007; 44:246-54. [PMID: 18037262 DOI: 10.1016/j.micpath.2007.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause diarrhoea by adhesion to human enterocytes by one or more colonization factors (CFs) and secretion of heat-labile (LT) and/or heat-stable (ST) enterotoxins. Expression of coli surface antigen 6 (CS6) on the bacterial surface, usually associated with ETEC strains that produce ST alone or in combination with LT, is rarely found in strains expressing only LT. However, a number of LT-only strains which are genotypically positive but phenotypically negative for CS6 have been identified. In this study, eight such strains from India and Guinea-Bissau belonging to different clones were analysed. The CS6 operon cssABCD was transcribed but protein analyses suggested that the structural subunits CssA and CssB of CS6 were absent in the periplasm. Most strains contained truncating mutations within the periplasmic chaperone-encoding gene cssC and protein modelling indicated that this severely affected the substrate-binding capacity of the chaperone. A single-nucleotide polymorphism (SNP) (A-->T) in the 5'-untranslated region of cssC distinguished the eight strains from ETEC strains that do express CS6 on the surface and may be a potential marker for ETEC strains containing phenotypically silent cssABCD. The study emphasizes the importance of using both genotypic and phenotypic methods in epidemiological studies of ETEC, e.g. for vaccine development.
Collapse
Affiliation(s)
- Matilda Nicklasson
- Department of Microbiology and Immunology, Institute of Biomedicine, Göteborg University, P.O. Box 435, 405 30 Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Roberts JL, Lauritsen JPH, Cooney M, Parrott RE, Sajaroff EO, Win CM, Keller MD, Carpenter JH, Carabana J, Krangel MS, Sarzotti M, Zhong XP, Wiest DL, Buckley RH. T-B+NK+ severe combined immunodeficiency caused by complete deficiency of the CD3zeta subunit of the T-cell antigen receptor complex. Blood 2007; 109:3198-206. [PMID: 17170122 PMCID: PMC1852234 DOI: 10.1182/blood-2006-08-043166] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 12/05/2006] [Indexed: 01/14/2023] Open
Abstract
CD3zeta is a subunit of the T-cell antigen receptor (TCR) complex required for its assembly and surface expression that also plays an important role in TCR-mediated signal transduction. We report here a patient with T(-)B(+)NK(+) severe combined immunodeficiency (SCID) who was homozygous for a single C insertion following nucleotide 411 in exon 7 of the CD3zeta gene. The few T cells present contained no detectable CD3zeta protein, expressed low levels of cell surface CD3epsilon, and were nonfunctional. CD4(+)CD8(-)CD3epsilon(low), CD4(-)CD8(+)CD3epsilon(low), and CD4(-)CD8(-)CD3epsilon(low) cells were detected in the periphery, and the patient also exhibited an unusual population of CD56(-)CD16(+) NK cells with diminished cytolytic activity. Additional studies demonstrated that retrovirally transduced patient mutant CD3zeta cDNA failed to rescue assembly of nascent complete TCR complexes or surface TCR expression in CD3zeta-deficient MA5.8 murine T-cell hybridoma cells. Nascent transduced mutant CD3zeta protein was also not detected in metabolically labeled MA5.8 cells, suggesting that it was unstable and rapidly degraded. Taken together, these findings provide the first demonstration that complete CD3zeta deficiency in humans can cause SCID by preventing normal TCR assembly and surface expression.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Pediatrics and Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singh MK, Cowell L, Seo S, O’Neill GM, Golemis EA. Molecular basis for HEF1/NEDD9/Cas-L action as a multifunctional co-ordinator of invasion, apoptosis and cell cycle. Cell Biochem Biophys 2007; 48:54-72. [PMID: 17703068 PMCID: PMC1976382 DOI: 10.1007/s12013-007-0036-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/11/2007] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Upregulation of the scaffolding protein HEF1, also known as NEDD9 and Cas-L, has recently been identified as a pro-metastatic stimulus in a number of different solid tumors, and has also been strongly associated with pathogenesis of BCR-Abl-dependent tumors. As the evidence mounts for HEF1/NEDD9/Cas-L as a key player in metastatic cancer, it is timely to review the molecular regulation of HEF1/NEDD9/Cas-L. Most of the mortality associated with cancer arises from uncontrolled metastases, thus a better understanding of the properties of proteins specifically associated with promotion of this process may yield insights that improve cancer diagnosis and treatment. In this review, we summarize the extensive literature regarding HEF1/NEDD9/Cas-L expression and function in signaling relevant to cell attachment, migration, invasion, cell cycle, apoptosis, and oncogenic signal transduction. The complex function of HEF1/NEDD9/Cas-L revealed by this analysis leads us to propose a model in which alleviation of cell cycle checkpoints and acquired resistance to apoptosis is permissive for a HEF1/NEDD9/Cas-L-promoted pro-metastatic phenotype.
Collapse
Affiliation(s)
- Mahendra K. Singh
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lauren Cowell
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Sachiko Seo
- Department of Hematology and Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Geraldine M. O’Neill
- Oncology Research Unit, The Children’s Hospital at Westmead, NSW, Australia
- Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia
| | - Erica A. Golemis
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
35
|
Xu Q, Canutescu A, Obradovic Z, Dunbrack RL. ProtBuD: a database of biological unit structures of protein families and superfamilies. Bioinformatics 2006; 22:2876-82. [PMID: 17018535 DOI: 10.1093/bioinformatics/btl490] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Modeling of protein interactions is often possible from known structures of related complexes. It is often time-consuming to find the most appropriate template. Hypothesized biological units (BUs) often differ from the asymmetric units and it is usually preferable to model from the BUs. RESULTS ProtBuD is a database of BUs for all structures in the Protein Data Bank (PDB). We use both the PDBs BUs and those from the Protein Quaternary Server. ProtBuD is searchable by PDB entry, the Structural Classification of Proteins (SCOP) designation or pairs of SCOP designations. The database provides the asymmetric and BU contents of related proteins in the PDB as identified in SCOP and Position-Specific Iterated BLAST (PSI-BLAST). The asymmetric unit is different from PDB and/or Protein Quaternary Server (PQS) BUs for 52% of X-ray structures, and the PDB and PQS BUs disagree on 18% of entries. AVAILABILITY The database is provided as a standalone program and a web server from http://dunbrack.fccc.edu/ProtBuD.php.
Collapse
Affiliation(s)
- Qifang Xu
- Institute for Cancer Research, Fox Chase Cancer Center 333 Cottman Avenue, Philadelphia, PA 19111 USA
| | | | | | | |
Collapse
|
36
|
Roberts E, Eargle J, Wright D, Luthey-Schulten Z. MultiSeq: unifying sequence and structure data for evolutionary analysis. BMC Bioinformatics 2006; 7:382. [PMID: 16914055 PMCID: PMC1586216 DOI: 10.1186/1471-2105-7-382] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Accepted: 08/16/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. RESULTS Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. CONCLUSION MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: http://www.scs.uiuc.edu/~schulten/multiseq/
Collapse
Affiliation(s)
- Elijah Roberts
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John Eargle
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dan Wright
- Graduate School of Library and Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zaida Luthey-Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
37
|
Arthur JW, Sanchez-Perez A, Cook DI. Scoring of predicted GRK2 phosphorylation sites in Nedd4-2. Bioinformatics 2006; 22:2192-5. [PMID: 16844705 DOI: 10.1093/bioinformatics/btl381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Epithelial Na(+) channels (ENaC) mediate the transport of sodium (Na) across epithelia in the kidney, gut and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4-2. These ligases bind to proline-rich motifs (PY motifs) present in the C-termini of ENaC subunits. Loss of this inhibition leads to hypertension. We have previously reported that ENaC channels are maintained in the active state by the G protein coupled receptor kinase, GRK2. The enzyme has been implicated in the development of essential hypertension [R. D. Feldman (2002) Mol. Pharmacol., 61, 707-709]. Additional findings in our lab pointed towards a possible role for GRK2 in the phosphorylation and inactivation of Nedd4-2. RESULTS We have predicted GRK2 phosphorylation sites on Nedd4-2 by combining sequence analysis, homology modeling and surface accessibility calculations. A total of 24 potential phosphorylation sites were predicted by sequence analysis. Of these, 16 could be modeled using homology modeling and 6 of these were found to have sufficient surface exposure to be accessible to the GRK2 enzyme responsible for the phosphorylation of Nedd4-2. The method provides an ordered list of the most probable GRK2 phosphorylation sites on Nedd4-2 providing invaluable guidance to future experimental studies aimed at mutating certain Nedd4-2 residues in order to prevent phosphorylation by GRK2. The method developed could be applied in a wide variety of biological applications involving the binding of one molecule to a protein. The relative effectiveness of the technique is determined mainly by the quality of the homology model built for the protein of interest. CONTACT jarthur@med.usyd.edu.au
Collapse
|
38
|
Dunbrack RL. Sequence comparison and protein structure prediction. Curr Opin Struct Biol 2006; 16:374-84. [PMID: 16713709 DOI: 10.1016/j.sbi.2006.05.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 03/22/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment.
Collapse
Affiliation(s)
- Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|