1
|
Genomic Insights into Achromobacter mucicolens IA Antibiotic Resistance. Microbiol Spectr 2022; 10:e0191621. [PMID: 35377213 PMCID: PMC9045304 DOI: 10.1128/spectrum.01916-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter denitrificans is an environmental opportunistic pathogen that is infecting a large number of immunocompromised patients. A more recently identified strain from the historical collection of strains of Achromobacter denitrificans is Achromobacter mucicolens. In hosts with a variety of underlying diseases, Achromobacter spp. can induce a wide spectrum of disorders. Because of the bacterium’s intrinsic genetic constitution and resistance gained over time, antibiotics are challenged to handle A. mucicolens. Due to the fact that A. mucicolens is rare and its taxonomy is not completely understood, it is difficult to define clinical symptoms, acquisition risk factors, and thus the best therapeutic course of action. To help comprehend this intrinsic and acquired resistance, we analyzed the entire genome of the A. mucicolens IA strain and utilized bioinformatics methods to estimate the strain's probable drug resistance profile. In our study, we have isolated and cultured a clinically important A. mucicolens strain and subjected it to antimicrobial susceptibility tests against antibiotics in the Vitek 2 testing system. The strain’s genome sequence as well as an investigation of 27 of its phenotypic traits provides important information regarding this pathogen. The genome of this A. mucicolens IA strain possesses a number of antibiotic resistance genes that code for efflux pump systems and other antibiotic-regulating as well as -modifying enzymes. Our research analysis predicted genes involved in drug resistance, including genes for efflux pump systems, antibiotic efflux, antibiotic inactivation, and antibiotic target alteration. In vitro studies validated the genomic evidence for its ability to exhibit resistance against a wide range of antibiotics. Our investigation paves the way for more research on understanding the functioning of the key discovered genes that contribute toward the pathogenicity of A. mucicolens and hence gives new information and treatment options for this emerging pathogen. IMPORTANCEAchromobacter species are well-known opportunistic human pathogens that can be found in water and soil and most commonly in hospital settings. They thrive in immunocompromised individuals, producing sporadic cases of pneumonia, septicemia, peritonitis, urinary tract infections, and other illnesses. Achromobacter strains are inherently resistant to a wide spectrum of antibiotics, making them difficult to treat promptly. The strain under study, A. mucicolens, was notably resistant to various antibiotics, and the infection could be controlled only after several rounds of prescription medications at different doses. This consumed a lot of time and put the already immunosuppressed leukemic patient through a great ordeal. The study aimed to raise awareness about the importance of the Achromobacter bacterium’s lethality, and doctors should evaluate the bacterium’s potential for resistance before prescribing antibiotics. Sanitation and other precautions should also be implemented in hospitals and other public places.
Collapse
|
2
|
Mrázek J, Karls AC. In silico simulations of occurrence of transcription factor binding sites in bacterial genomes. BMC Evol Biol 2019; 19:67. [PMID: 30823869 PMCID: PMC6397444 DOI: 10.1186/s12862-019-1381-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Background Interactions between transcription factors and their specific binding sites are a key component of regulation of gene expression. Until recently, it was generally assumed that most bacterial transcription factor binding sites are located at or near promoters. However, several recent works utilizing high-throughput technology to detect transcription factor binding sites in bacterial genomes found a large number of binding sites in unexpected locations, particularly inside genes, as opposed to known or expected promoter regions. While some of these intragenic binding sites likely have regulatory functions, an alternative scenario is that many of these binding sites arise by chance in the absence of selective constraints. The latter possibility was supported by in silico simulations for σ54 binding sites in Salmonella. Results In this work, we extend these simulations to more than forty transcription factors from E. coli and other bacteria. The results suggest that binding sites for all analyzed transcription factors are likely to arise throughout the genome by random genetic drift and many transcription factor binding sites found in genomes may not have specific regulatory functions. In addition, when comparing observed and expected patterns of occurrence of binding sites in genomes, we observed distinct differences among different transcription factors. Conclusions We speculate that transcription factor binding sites randomly occurring throughout the genome could be beneficial in promoting emergence of new regulatory interactions and thus facilitating evolution of gene regulatory networks. Electronic supplementary material The online version of this article (10.1186/s12862-019-1381-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Mrázek
- Department of Microbiology, University of Georgia, Athens, GA, USA. .,Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| | - Anna C Karls
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Genotoxic, Metabolic, and Oxidative Stresses Regulate the RNA Repair Operon of Salmonella enterica Serovar Typhimurium. J Bacteriol 2018; 200:JB.00476-18. [PMID: 30201777 DOI: 10.1128/jb.00476-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
The σ54 regulon in Salmonella enterica serovar Typhimurium includes a predicted RNA repair operon encoding homologs of the metazoan Ro60 protein (Rsr), Y RNAs (YrlBA), RNA ligase (RtcB), and RNA 3'-phosphate cyclase (RtcA). Transcription from σ54-dependent promoters requires that a cognate bacterial enhancer binding protein (bEBP) be activated by a specific environmental or cellular signal; the cognate bEBP for the σ54-dependent promoter of the rsr-yrlBA-rtcBA operon is RtcR. To identify conditions that generate the signal for RtcR activation in S Typhimurium, transcription of the RNA repair operon was assayed under multiple stress conditions that result in nucleic acid damage. RtcR-dependent transcription was highly induced by the nucleic acid cross-linking agents mitomycin C (MMC) and cisplatin, and this activation was dependent on RecA. Deletion of rtcR or rtcB resulted in decreased cell viability relative to that of the wild type following treatment with MMC. Oxidative stress from peroxide exposure also induced RtcR-dependent transcription of the operon. Nitrogen limitation resulted in RtcR-independent increased expression of the operon; the effect of nitrogen limitation required NtrC. The adjacent toxin-antitoxin module, dinJ-yafQ, was cotranscribed with the RNA repair operon but was not required for RtcR activation, although YafQ endoribonuclease activated RtcR-dependent transcription. Stress conditions shown to induce expression the RNA repair operon of Escherichia coli (rtcBA) did not stimulate expression of the S Typhimurium RNA repair operon. Similarly, MMC did not induce expression of the E. coli rtcBA operon, although when expressed in S Typhimurium, E. coli RtcR responds effectively to the unknown signal(s) generated there by MMC exposure.IMPORTANCE Homologs of the metazoan RNA repair enzymes RtcB and RtcA occur widely in eubacteria, suggesting a selective advantage. Although the enzymatic activities of the eubacterial RtcB and RtcA have been well characterized, the physiological roles remain largely unresolved. Here we report stress responses that activate expression of the σ54-dependent RNA repair operon (rsr-yrlBA-rtcBA) of S Typhimurium and demonstrate that expression of the operon impacts cell survival under MMC-induced stress. Characterization of the requirements for activation of this tightly regulated operon provides clues to the possible functions of operon components in vivo, enhancing our understanding of how this human pathogen copes with environmental stressors.
Collapse
|
4
|
Novel DNA Binding and Regulatory Activities for σ 54 (RpoN) in Salmonella enterica Serovar Typhimurium 14028s. J Bacteriol 2017; 199:JB.00816-16. [PMID: 28373272 DOI: 10.1128/jb.00816-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
The variable sigma (σ) subunit of the bacterial RNA polymerase (RNAP) holoenzyme, which is responsible for promoter specificity and open complex formation, plays a strategic role in the response to environmental changes. Salmonella enterica serovar Typhimurium utilizes the housekeeping σ70 and five alternative sigma factors, including σ54 The σ54-RNAP differs from other σ-RNAP holoenzymes in that it forms a stable closed complex with the promoter and requires ATP hydrolysis by an activated cognate bacterial enhancer binding protein (bEBP) to transition to an open complex and initiate transcription. In S. Typhimurium, σ54-dependent promoters normally respond to one of 13 different bEBPs, each of which is activated under a specific growth condition. Here, we utilized a constitutively active, promiscuous bEBP to perform a genome-wide identification of σ54-RNAP DNA binding sites and the transcriptome of the σ54 regulon of S. Typhimurium. The position and context of many of the identified σ54 RNAP DNA binding sites suggest regulatory roles for σ54-RNAP that connect the σ54 regulon to regulons of other σ factors to provide a dynamic response to rapidly changing environmental conditions.IMPORTANCE The alternative sigma factor σ54 (RpoN) is required for expression of genes involved in processes with significance in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The characterization of the σ54 regulon of the versatile pathogen S. Typhimurium has expanded our understanding of the scope of the σ54 regulon and how it links to other σ regulons within the complex regulatory network for gene expression in bacteria.
Collapse
|
5
|
Yang J, Chen X, McDermaid A, Ma Q. DMINDA 2.0: integrated and systematic views of regulatory DNA motif identification and analyses. Bioinformatics 2017; 33:2586-2588. [DOI: 10.1093/bioinformatics/btx223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jinyu Yang
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Xin Chen
- Center for Applied Mathematics, Tianjin University, Tianjin, China
| | - Adam McDermaid
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
- BioSNTR, Brookings, SD, USA
- Population Health group, Sanford Research, Sioux Falls, SD, USA
| |
Collapse
|
6
|
Tong H, Schliekelman P, Mrázek J. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes. BMC Genomics 2017; 18:27. [PMID: 28056763 PMCID: PMC5217627 DOI: 10.1186/s12864-016-3400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA sequences contain repetitive motifs which have various functions in the physiology of the organism. A number of methods have been developed for discovery of such sequence motifs with a primary focus on detection of regulatory motifs and particularly transcription factor binding sites. Most motif-finding methods apply probabilistic models to detect motifs characterized by unusually high number of copies of the motif in the analyzed sequences. RESULTS We present a novel method for detection of pairs of motifs separated by spacers of variable nucleotide sequence but conserved length. Unlike existing methods for motif discovery, the motifs themselves are not required to occur at unusually high frequency but only to exhibit a significant preference to occur at a specific distance from each other. In the present implementation of the method, motifs are represented by pentamers and all pairs of pentamers are evaluated for statistically significant preference for a specific distance. An important step of the algorithm eliminates motif pairs where the spacers separating the two motifs exhibit a high degree of sequence similarity; such motif pairs likely arise from duplications of the whole segment including the motifs and the spacer rather than due to selective constraints indicative of a functional importance of the motif pair. The method was used to scan 569 complete prokaryotic genomes for novel sequence motifs. Some motifs detected were previously known but other motifs found in the search appear to be novel. Selected motif pairs were subjected to further investigation and in some cases their possible biological functions were proposed. CONCLUSIONS We present a new motif-finding technique that is applicable to scanning complete genomes for sequence motifs. The results from analysis of 569 genomes suggest that the method detects previously known motifs that are expected to be found as well as new motifs that are unlikely to be discovered by traditional motif-finding methods. We conclude that our approach to detection of significant motif pairs can complement existing motif-finding techniques in discovery of novel functional sequence motifs in complete genomes.
Collapse
Affiliation(s)
- Hao Tong
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Paul Schliekelman
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Zere TR, Vakulskas CA, Leng Y, Pannuri A, Potts AH, Dias R, Tang D, Kolaczkowski B, Georgellis D, Ahmer BMM, Romeo T. Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. PLoS One 2015; 10:e0145035. [PMID: 26673755 PMCID: PMC4682653 DOI: 10.1371/journal.pone.0145035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/30/2015] [Indexed: 11/30/2022] Open
Abstract
The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA) away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA) binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.
Collapse
Affiliation(s)
- Tesfalem R. Zere
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Christopher A. Vakulskas
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Yuanyuan Leng
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Anastasia H. Potts
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Raquel Dias
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Dongjie Tang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, United States of America
- * E-mail:
| |
Collapse
|
8
|
Huang Y, Mrázek J. Assessing diversity of DNA structure-related sequence features in prokaryotic genomes. DNA Res 2014; 21:285-97. [PMID: 24408877 PMCID: PMC4060949 DOI: 10.1093/dnares/dst057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches.
Collapse
Affiliation(s)
- Yongjie Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jan Mrázek
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Touzain F, Petit MA, Schbath S, El Karoui M. DNA motifs that sculpt the bacterial chromosome. Nat Rev Microbiol 2011; 9:15-26. [PMID: 21164534 DOI: 10.1038/nrmicro2477] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the bacterial cell cycle, the processes of chromosome replication, DNA segregation, DNA repair and cell division are coordinated by precisely defined events. Tremendous progress has been made in recent years in identifying the mechanisms that underlie these processes. A striking feature common to these processes is that non-coding DNA motifs play a central part, thus 'sculpting' the bacterial chromosome. Here, we review the roles of these motifs in the mechanisms that ensure faithful transmission of genetic information to daughter cells. We show how their chromosomal distribution is crucial for their function and how it can be analysed quantitatively. Finally, the potential roles of these motifs in bacterial chromosome evolution are discussed.
Collapse
Affiliation(s)
- Fabrice Touzain
- INRA, UMR 1319, Institut Micalis, FR-78352, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
10
|
Biggs PJ, Collins LJ. RNA networks in prokaryotes I: CRISPRs and riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:209-20. [PMID: 21915791 DOI: 10.1007/978-1-4614-0332-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
As with eukaryotes, prokaryotes employ a variety of mechanisms to allow the various types of RNA to interact and perform complex functions as a network. This chapter will detail prokaryotic molecular systems, such as riboswitches and CRISPRs, to show how they perform unique functions within the cell. These systems can interact with each other to gain a higher level of control and here we highlight some examples of such interactions including the cleavage of certain riboswitches by RNaseP, and endoribonuclease cleavage of pre-crRNAs in the CRISPR system. Thanks to such insights, we are beginning to get a glimpse of the prokaryotic RNA infrastructure, just as we have done with eukaryotes.
Collapse
Affiliation(s)
- Patrick J Biggs
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
11
|
Mrázek J. Finding sequence motifs in prokaryotic genomes--a brief practical guide for a microbiologist. Brief Bioinform 2009; 10:525-36. [PMID: 19553402 DOI: 10.1093/bib/bbp032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Finding significant nucleotide sequence motifs in prokaryotic genomes can be divided into three types of tasks: (1) supervised motif finding, where a sample of motif sequences is used to find other similar sequences in genomes; (2) unsupervised motif finding, which typically relates to the task of finding regulatory motifs and protein binding sites and (3) exploratory motif finding, which aims to identify potential functionally significant sequence motifs as those that are unusual in some statistical sense. This article provides a conceptual overview for each type of task, a brief description of basic algorithms used in their solution, and a review of selected relevant software available online.
Collapse
Affiliation(s)
- Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602-2605, USA.
| |
Collapse
|
12
|
The Sac10b homolog in Methanococcus maripaludis binds DNA at specific sites. J Bacteriol 2009; 191:2315-29. [PMID: 19168623 DOI: 10.1128/jb.01534-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Sac10b protein family, also known as Alba, is widely distributed in Archaea. Sac10b homologs in thermophilic Sulfolobus species are very abundant. They bind both DNA and RNA with high affinity and without sequence specificity, and their physiological functions are still not fully understood. Mma10b from the euryarchaeote Methanococcus maripaludis is a mesophilic member of the Sac10b family. Mma10b is not abundant and constitutes only approximately 0.01% of the total cellular protein. Disruption of mma10b resulted in poor growth of the mutant in minimal medium at near the optimal growth temperature but had no detectable effect on growth in rich medium. Quantitative proteomics, real time reverse transcription-PCR, and enzyme assays revealed that the expression levels of some genes involved in CO(2) assimilation and other activities were changed in the Deltamma10b mutant. Chromatin immunoprecipitation suggested a direct association of Mma10b with an 18-bp DNA binding motif in vivo. Electrophoretic mobility shift assays and DNase I footprinting confirmed that Mma10b preferentially binds specific sequences of DNA with an apparent Kd in the 100 nM range. These results suggested that the physiological role of Mma10b in the mesophilic methanococci is greatly diverged from that of homologs in thermophiles.
Collapse
|