1
|
Luo X, Chi ASY, Lin AH, Ong TJ, Wong L, Rahman CR. Benchmarking recent computational tools for DNA-binding protein identification. Brief Bioinform 2024; 26:bbae634. [PMID: 39657630 PMCID: PMC11630855 DOI: 10.1093/bib/bbae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Identification of DNA-binding proteins (DBPs) is a crucial task in genome annotation, as it aids in understanding gene regulation, DNA replication, transcriptional control, and various cellular processes. In this paper, we conduct an unbiased benchmarking of 11 state-of-the-art computational tools as well as traditional tools such as ScanProsite, BLAST, and HMMER for identifying DBPs. We highlight the data leakage issue in conventional datasets leading to inflated performance. We introduce new evaluation datasets to support further development. Through a comprehensive evaluation pipeline, we identify potential limitations in models, feature extraction techniques, and training methods, and recommend solutions regarding these issues. We show that combining the predictions of the two best computational tools with BLAST-based prediction significantly enhances DBP identification capability. We provide this consensus method as user-friendly software. The datasets and software are available at https://github.com/Rafeed-bot/DNA_BP_Benchmarking.
Collapse
Affiliation(s)
- Xizi Luo
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Amadeus Song Yi Chi
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Andre Huikai Lin
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Tze Jet Ong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | | |
Collapse
|
2
|
Basu S, Yu J, Kihara D, Kurgan L. Twenty years of advances in prediction of nucleic acid-binding residues in protein sequences. Brief Bioinform 2024; 26:bbaf016. [PMID: 39833102 PMCID: PMC11745544 DOI: 10.1093/bib/bbaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment. We observe that the past decade has brought increased use of deep neural networks and protein language models, which contributed to substantial gains in the predictive performance. We also highlight advancements in vital and challenging issues that include cross-predictions between deoxyribonucleic acid (DNA)-binding and ribonucleic acid (RNA)-binding residues and targeting the two distinct sources of binding annotations, structure-based versus intrinsic disorder-based. The methods trained on the structure-annotated interactions tend to perform poorly on the disorder-annotated binding and vice versa, with only a few methods that target and perform well across both annotation types. The cross-predictions are a significant problem, with some predictors of DNA-binding or RNA-binding residues indiscriminately predicting interactions with both nucleic acid types. Moreover, we show that methods with web servers are cited substantially more than tools without implementation or with no longer working implementations, motivating the development and long-term maintenance of the web servers. We close by discussing future research directions that aim to drive further progress in this area.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Jing Yu
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907, United States
- Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States
| |
Collapse
|
3
|
Daanial Khan Y, Alkhalifah T, Alturise F, Hassan Butt A. DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest. Methods 2024; 231:26-36. [PMID: 39270885 DOI: 10.1016/j.ymeth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Interactions of biological molecules in organisms are considered to be primary factors for the lifecycle of that organism. Various important biological functions are dependent on such interactions and among different kinds of interactions, the protein DNA interactions are very important for the processes of transcription, regulation of gene expression, DNA repairing and packaging. Thus, keeping the knowledge of such interactions and the sites of those interactions is necessary to study the mechanism of various biological processes. As experimental identification through biological assays is quite resource-demanding, costly and error-prone, scientists opt for the computational methods for efficient and accurate identification of such DNA-protein interaction sites. Thus, herein, we propose a novel and accurate method namely DeepDBS for the identification of DNA-binding sites in proteins, using primary amino acid sequences of proteins under study. From protein sequences, deep representations were computed through a one-dimensional convolution neural network (1D-CNN), recurrent neural network (RNN) and long short-term memory (LSTM) network and were further used to train a Random Forest classifier. Random Forest with LSTM-based features outperformed the other models, as well as the existing state-of-the-art methods with an accuracy score of 0.99 for self-consistency test, 10-fold cross-validation, 5-fold cross-validation, and jackknife validation while 0.92 for independent dataset testing. It is concluded based on results that the DeepDBS can help accurate and efficient identification of DNA binding sites (DBS) in proteins.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab 54770, Pakistan
| | - Tamim Alkhalifah
- Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Fahad Alturise
- Department of Cybersecurity, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ahmad Hassan Butt
- Department of Computer Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
4
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
5
|
Zhang J, Basu S, Kurgan L. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins. Nucleic Acids Res 2024; 52:e10. [PMID: 38048333 PMCID: PMC10810184 DOI: 10.1093/nar/gkad1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Current predictors of DNA-binding residues (DBRs) from protein sequences belong to two distinct groups, those trained on binding annotations extracted from structured protein-DNA complexes (structure-trained) vs. intrinsically disordered proteins (disorder-trained). We complete the first empirical analysis of predictive performance across the structure- and disorder-annotated proteins for a representative collection of ten predictors. Majority of the structure-trained tools perform well on the structure-annotated proteins while doing relatively poorly on the disorder-annotated proteins, and vice versa. Several methods make accurate predictions for the structure-annotated proteins or the disorder-annotated proteins, but none performs highly accurately for both annotation types. Moreover, most predictors make excessive cross-predictions for the disorder-annotated proteins, where residues that interact with non-DNA ligand types are predicted as DBRs. Motivated by these results, we design, validate and deploy an innovative meta-model, hybridDBRpred, that uses deep transformer network to combine predictions generated by three best current predictors. HybridDBRpred provides accurate predictions and low levels of cross-predictions across the two annotation types, and is statistically more accurate than each of the ten tools and baseline meta-predictors that rely on averaging and logistic regression. We deploy hybridDBRpred as a convenient web server at http://biomine.cs.vcu.edu/servers/hybridDBRpred/ and provide the corresponding source code at https://github.com/jianzhang-xynu/hybridDBRpred.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, PR China
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Chen P, Shen H, Zhang Y, Wang B, Gu P. SGNet: Sequence-Based Convolution and Ligand Graph Network for Protein Binding Affinity Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3257-3266. [PMID: 37030867 DOI: 10.1109/tcbb.2023.3262821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Protein-ligand binding can play an important role in many fields. It is of great importance to accurately predict the binding affinity between molecules by computational methods. Most computational binding affinity methods require molecular structures. However, there are still a large number of protein molecules with known amino acid sequences whose structures have not yet been solved. To address this issue, this paper proposes a sequence-based convolution and ligand graph network, called SGNet, to fuse the molecular graph information and the amino acid sequence information. This method integrates Conjoint Triad (CT) encoding of amino acid sequence and one-dimensional convolutional neural network module to extract protein molecules, develops graph attention network to extract molecular features of ligand, and then fuses the two feature sets to predict the binding affinity between molecules from the fully connected layer. As a result, SGNet achieves good prediction performance on both KIKD and IC50 data sets, with prediction error RMSEs of 1.287 and 1.58, and correlation Pearson Rs of 0.687 and 0.592, respectively. Comparative experimental results under the same conditions showed that SGNet outperformed Kdeep and GraphDTA in predicting binding affinities between protein-ligand molecules.
Collapse
|
7
|
Jain A, Begum T, Ahmad S. Analysis and Prediction of Pathogen Nucleic Acid Specificity for Toll-like Receptors in Vertebrates. J Mol Biol 2023; 435:168208. [PMID: 37479078 DOI: 10.1016/j.jmb.2023.168208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Identification of key sequence, expression and function related features of nucleic acid-sensing host proteins is of fundamental importance to understand the dynamics of pathogen-specific host responses. To meet this objective, we considered toll-like receptors (TLRs), a representative class of membrane-bound sensor proteins, from 17 vertebrate species covering mammals, birds, reptiles, amphibians, and fishes in this comparative study. We identified the molecular signatures of host TLRs that are responsible for sensing pathogen nucleic acids or other pathogen-associated molecular patterns (PAMPs), and potentially play important roles in host defence mechanism. Interestingly, our findings reveal that such host-specific features are directly related to the strand (single or double) specificity of nucleic acid from pathogens. However, during host-pathogen interactions, such features were unable to explain the pathogenic PAMP (i.e., DNA, RNA or other) selectivity, suggesting a more complex mechanism. Using these features, we developed a number of machine learning models, of which Random Forest achieved a high performance (94.57% accuracy) to predict strand specificity of TLRs from protein-derived features. We applied the trained model to propose strand specificity of some previously uncharacterized distinct fish-specific novel TLRs (TLR18, TLR23, TLR24, TLR25, TLR27).
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India. https://twitter.com/@Anuja334
| | - Tina Begum
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Xie P, Zhuang J, Tian G, Yang J. Emvirus: An embedding-based neural framework for human-virus protein-protein interactions prediction. BIOSAFETY AND HEALTH 2023; 5:152-158. [PMID: 37362223 PMCID: PMC10166638 DOI: 10.1016/j.bsheal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023] Open
Abstract
Human-virus protein-protein interactions (PPIs) play critical roles in viral infection. For example, the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds primarily to human angiotensin-converting enzyme 2 (ACE2) protein to infect human cells. Thus, identifying and blocking these PPIs contribute to controlling and preventing viruses. However, wet-lab experiment-based identification of human-virus PPIs is usually expensive, labor-intensive, and time-consuming, which presents the need for computational methods. Many machine-learning methods have been proposed recently and achieved good results in predicting human-virus PPIs. However, most methods are based on protein sequence features and apply manually extracted features, such as statistical characteristics, phylogenetic profiles, and physicochemical properties. In this work, we present an embedding-based neural framework with convolutional neural network (CNN) and bi-directional long short-term memory unit (Bi-LSTM) architecture, named Emvirus, to predict human-virus PPIs (including human-SARS-CoV-2 PPIs). In addition, we conduct cross-viral experiments to explore the generalization ability of Emvirus. Compared to other feature extraction methods, Emvirus achieves better prediction accuracy.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jujuan Zhuang
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
9
|
Zheng J, Yang X, Huang Y, Yang S, Wuchty S, Zhang Z. Deep learning-assisted prediction of protein-protein interactions in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:984-994. [PMID: 36919205 DOI: 10.1111/tpj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Currently, the experimentally identified interactome of Arabidopsis (Arabidopsis thaliana) is still far from complete, suggesting that computational prediction methods can complement experimental techniques. Motivated by the prosperity and success of deep learning algorithms and natural language processing techniques, we introduce an integrative deep learning framework, DeepAraPPI, allowing us to predict protein-protein interactions (PPIs) of Arabidopsis utilizing sequence, domain and Gene Ontology (GO) information. Our current DeepAraPPI comprises: (i) a word2vec encoding-based Siamese recurrent convolutional neural network (RCNN) model; (ii) a Domain2vec encoding-based multiple-layer perceptron (MLP) model; and (iii) a GO2vec encoding-based MLP model. Finally, DeepAraPPI combines the prediction results of the three individual predictors through a logistic regression model. Compiling high-quality positive and negative training and test samples by applying strict filtering strategies, DeepAraPPI shows superior performance compared with existing state-of-the-art Arabidopsis PPI prediction methods. DeepAraPPI also provides better cross-species predictive ability in rice (Oryza sativa) than traditional machine learning methods, although the overall performance in cross-species prediction remains to be improved. DeepAraPPI is freely accessible at http://zzdlab.com/deeparappi/. In the meantime, we have also made the source code and data sets of DeepAraPPI available at https://github.com/zjy1125/DeepAraPPI.
Collapse
Affiliation(s)
- Jingyan Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Yan Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
- Institute of Data Science and Computing, University of Miami, Miami, FL, 33146, USA
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Hu Y, Zheng C, Chen H, Wang C, Ren X, Fu S, Xu N, Li P, Song J, Wang C. Characteristics and Discrimination of the Commercial Chinese Four Famous Vinegars Based on Flavor Compositions. Foods 2023; 12:foods12091865. [PMID: 37174404 PMCID: PMC10178022 DOI: 10.3390/foods12091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Shanxi aged vinegar (SAV), Zhenjiang aromatic vinegar (ZAV), Sichuan bran vinegar (SBV), and Fujian monascus vinegar (FMV) are the representative Chinese traditional vinegars. However, the basic differential compositions between the four vinegars are unknown. In this study, compositions of commercial vinegar were investigated to evaluate the influence of diverse technologies on their distinct flavor. Unlike amino acids and organic acids which were mostly shared, only five volatiles were detected in all vinegars, whereas a dozen volatiles were common to each type of vinegar. The four vinegars could only be classified well with all compositions, and difference analysis suggested the most significant difference between FMV and SBV. However, SAV, ZAV, and SBV possessed similar volatile characteristics due to their common heating treatments. Further, the correlation of identification markers with vinegars stressed the contributions of the smoking process, raw materials, and Monascus inoculum to SAV, SBV, and FMV clustering, respectively. Therefore, regardless of the technology modification, this basic process supported the uniqueness of the vinegars. This study contributes to improving the standards of defining the characteristics of types of vinegar.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
- Suizhou February Wind Food Co., Ltd., Suizhou 431518, China
- Zhongxiang Weicheng Fruit and Vegetable Professional Planting Cooperative, Jingmen 431999, China
| | - Chuanyang Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Haiyin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Xiyue Ren
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Shiming Fu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Ning Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Panheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Jinyi Song
- Suizhou February Wind Food Co., Ltd., Suizhou 431518, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
11
|
PSnpBind-ML: predicting the effect of binding site mutations on protein-ligand binding affinity. J Cheminform 2023; 15:31. [PMID: 36864534 PMCID: PMC9983232 DOI: 10.1186/s13321-023-00701-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Protein mutations, especially those which occur in the binding site, play an important role in inter-individual drug response and may alter binding affinity and thus impact the drug's efficacy and side effects. Unfortunately, large-scale experimental screening of ligand-binding against protein variants is still time-consuming and expensive. Alternatively, in silico approaches can play a role in guiding those experiments. Methods ranging from computationally cheaper machine learning (ML) to the more expensive molecular dynamics have been applied to accurately predict the mutation effects. However, these effects have been mostly studied on limited and small datasets, while ideally a large dataset of binding affinity changes due to binding site mutations is needed. In this work, we used the PSnpBind database with six hundred thousand docking experiments to train a machine learning model predicting protein-ligand binding affinity for both wild-type proteins and their variants with a single-point mutation in the binding site. A numerical representation of the protein, binding site, mutation, and ligand information was encoded using 256 features, half of them were manually selected based on domain knowledge. A machine learning approach composed of two regression models is proposed, the first predicting wild-type protein-ligand binding affinity while the second predicting the mutated protein-ligand binding affinity. The best performing models reported an RMSE value within 0.5 [Formula: see text] 0.6 kcal/mol-1 on an independent test set with an R2 value of 0.87 [Formula: see text] 0.90. We report an improvement in the prediction performance compared to several reported models developed for protein-ligand binding affinity prediction. The obtained models can be used as a complementary method in early-stage drug discovery. They can be applied to rapidly obtain a better overview of the ligand binding affinity changes across protein variants carried by people in the population and narrow down the search space where more time-demanding methods can be used to identify potential leads that achieve a better affinity for all protein variants.
Collapse
|
12
|
Swinka C, Hellmann E, Zwack P, Banda R, Rashotte AM, Heyl A. Cytokinin Response Factor 9 Represses Cytokinin Responses in Flower Development. Int J Mol Sci 2023; 24:4380. [PMID: 36901811 PMCID: PMC10002603 DOI: 10.3390/ijms24054380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
A multi-step phosphorelay system is the main conduit of cytokinin signal transduction. However, several groups of additional factors that also play a role in this signaling pathway have been found-among them the Cytokinin Response Factors (CRFs). In a genetic screen, CRF9 was identified as a regulator of the transcriptional cytokinin response. It is mainly expressed in flowers. Mutational analysis indicates that CRF9 plays a role in the transition from vegetative to reproductive growth and silique development. The CRF9 protein is localized in the nucleus and functions as a transcriptional repressor of Arabidopsis Response Regulator 6 (ARR6)-a primary response gene for cytokinin signaling. The experimental data suggest that CRF9 functions as a repressor of cytokinin during reproductive development.
Collapse
Affiliation(s)
- Christine Swinka
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Eva Hellmann
- Institut für Angewandte Genetik, Freie Universität Berlin, Albrecht Thaer Weg 6, 14195 Berlin, Germany
| | - Paul Zwack
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Ramya Banda
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, AL 36849, USA
| | - Alexander Heyl
- Department of Biology, Adelphi University, 1 South Ave, Garden City, NY 11530, USA
| |
Collapse
|
13
|
Patiyal S, Dhall A, Raghava GPS. A deep learning-based method for the prediction of DNA interacting residues in a protein. Brief Bioinform 2022; 23:6658239. [PMID: 35943134 DOI: 10.1093/bib/bbac322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
DNA-protein interaction is one of the most crucial interactions in the biological system, which decides the fate of many processes such as transcription, regulation and splicing of genes. In this study, we trained our models on a training dataset of 646 DNA-binding proteins having 15 636 DNA interacting and 298 503 non-interacting residues. Our trained models were evaluated on an independent dataset of 46 DNA-binding proteins having 965 DNA interacting and 9911 non-interacting residues. All proteins in the independent dataset have less than 30% of sequence similarity with proteins in the training dataset. A wide range of traditional machine learning and deep learning (1D-CNN) techniques-based models have been developed using binary, physicochemical properties and Position-Specific Scoring Matrix (PSSM)/evolutionary profiles. In the case of machine learning technique, eXtreme Gradient Boosting-based model achieved a maximum area under the receiver operating characteristics (AUROC) curve of 0.77 on the independent dataset using PSSM profile. Deep learning-based model achieved the highest AUROC of 0.79 on the independent dataset using a combination of all three profiles. We evaluated the performance of existing methods on the independent dataset and observed that our proposed method outperformed all the existing methods. In order to facilitate scientific community, we developed standalone software and web server, which are accessible from https://webs.iiitd.edu.in/raghava/dbpred.
Collapse
Affiliation(s)
- Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
14
|
Cui F, Zhang Z, Cao C, Zou Q, Chen D, Su X. Protein-DNA/RNA interactions: Machine intelligence tools and approaches in the era of artificial intelligence and big data. Proteomics 2022; 22:e2100197. [PMID: 35112474 DOI: 10.1002/pmic.202100197] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
With the development of artificial intelligence technologies and the availability of large amounts of biological data, computational methods for proteomics have undergone a developmental process from traditional machine learning to deep learning. This review focuses on computational approaches and tools for the prediction of protein-DNA/RNA interactions using machine intelligence techniques. We provide an overview of the development progress of computational methods and summarize the advantages and shortcomings of these methods. We further compiled applications in tasks related to the protein-DNA/RNA interactions, and pointed out possible future application trends. Moreover, biological sequence-digitizing representation strategies used in different types of computational methods are also summarized and discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feifei Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Zilong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Chen Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, 324000, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
15
|
Zhang J, Ghadermarzi S, Katuwawala A, Kurgan L. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences. Brief Bioinform 2021; 22:6355416. [PMID: 34415020 DOI: 10.1093/bib/bbab336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Efforts to elucidate protein-DNA interactions at the molecular level rely in part on accurate predictions of DNA-binding residues in protein sequences. While there are over a dozen computational predictors of the DNA-binding residues, they are DNA-type agnostic and significantly cross-predict residues that interact with other ligands as DNA binding. We leverage a custom-designed machine learning architecture to introduce DNAgenie, first-of-its-kind predictor of residues that interact with A-DNA, B-DNA and single-stranded DNA. DNAgenie uses a comprehensive physiochemical profile extracted from an input protein sequence and implements a two-step refinement process to provide accurate predictions and to minimize the cross-predictions. Comparative tests on an independent test dataset demonstrate that DNAgenie outperforms the current methods that we adapt to predict residue-level interactions with the three DNA types. Further analysis finds that the use of the second (refinement) step leads to a substantial reduction in the cross predictions. Empirical tests show that DNAgenie's outputs that are converted to coarse-grained protein-level predictions compare favorably against recent tools that predict which DNA-binding proteins interact with double-stranded versus single-stranded DNAs. Moreover, predictions from the sequences of the whole human proteome reveal that the results produced by DNAgenie substantially overlap with the known DNA-binding proteins while also including promising leads for several hundred previously unknown putative DNA binders. These results suggest that DNAgenie is a valuable tool for the sequence-based characterization of protein functions. The DNAgenie's webserver is available at http://biomine.cs.vcu.edu/servers/DNAgenie/.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology at the Xinyang Normal University, No.237, Nanhu Road, Xinyang 464000, Henan Province, P.R. China
| | - Sina Ghadermarzi
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Akila Katuwawala
- Department of Computer Science from the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science at the Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, Virginia 23284, USA
| |
Collapse
|
16
|
Yang X, Yang S, Lian X, Wuchty S, Zhang Z. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction. Bioinformatics 2021; 37:4771-4778. [PMID: 34273146 PMCID: PMC8406877 DOI: 10.1093/bioinformatics/btab533] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Motivation To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human–virus protein–protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance. Results To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our main contribution, we introduce two transfer learning methods (i.e. ‘frozen’ type and ‘fine-tuning’ type) that reliably predict interactions in a target human–virus domain based on training in a source human–virus domain, by retraining CNN layers. Finally, we utilize the ‘frozen’ type transfer learning approach to predict human–SARS-CoV-2 PPIs, indicating that our predictions are topologically and functionally similar to experimentally known interactions. Availability and implementation: The source codes and datasets are available at https://github.com/XiaodiYangCAU/TransPPI/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Stefan Wuchty
- Dept. of Computer Science, University of Miami, Miami, FL 33146, USA.,Dept. of Biology, University of Miami, Miami, FL 33146, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Mahajan K, Verma H, Choudhary S, Raju B, Silakari O. Identification of kinase inhibitors that rule out the CYP27B1-mediated activation of vitamin D: an integrated machine learning and structure-based drug designing approach. Mol Divers 2021; 25:1617-1641. [PMID: 34272637 DOI: 10.1007/s11030-021-10270-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
CYP27B1, a cytochrome P450-containing hydroxylase enzyme, converts vitamin D precursor calcidiol (25-hydroxycholecalciferol) to its active form calcitriol (1α,25(OH)2D3). Tyrosine kinase inhibitor such as imatinib is reported to interfere with the activation of vitamin D3 by inhibiting CYP27B1 enzyme. Consequently, there is a decrease in the serum levels of active vitamin D that in turn may increase the relapse risk among the cancer patients treated with imatinib. Within this framework, the current study focuses on identifying other possible kinase inhibitors that may affect the calcitriol level in the body by inhibiting CYP27B1. To achieve this, we explored multiple machine learning approaches including support vector machine (SVM), random forest (RF), and artificial neural network (ANN) to identify possible CYP27B1 inhibitors from a pool of kinase inhibitors database. The most reliable classification model was obtained from the SVM approach with Matthews correlation coefficient of 0.82 for the external test set. This model was further employed for the virtual screening of kinase inhibitors from the binding database (DB), which tend to interfere with the CYP27B1-mediated activation of vitamin D. This screening yielded around 4646 kinase inhibitors that were further subjected to structure-based analyses using the homology model of CYP27B1, as the 3D structure of CYP27B1 complexed with heme was not available. Overall, five kinase inhibitors including two well-known drugs, i.e., AT7867 (Compound-2) and amitriptyline N-oxide (Compound-3), were found to interact with CYP27B1 in such a way that may preclude the conversion of vitamin D to its active form and hence testify the impairment of vitamin D activation pathway.
Collapse
Affiliation(s)
- Kanupriya Mahajan
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, 147002, India
| | - Shalki Choudhary
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, 147002, India
| | - Baddipadige Raju
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, 147002, India
| | - Om Silakari
- Molecular Modeling Lab, Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, Punjab, 147002, India.
| |
Collapse
|
18
|
Montesinos-López OA, Montesinos-López A, Mosqueda-Gonzalez BA, Montesinos-López JC, Crossa J, Ramirez NL, Singh P, Valladares-Anguiano FA. A zero altered Poisson random forest model for genomic-enabled prediction. G3-GENES GENOMES GENETICS 2021; 11:6042695. [PMID: 33693599 PMCID: PMC8022945 DOI: 10.1093/g3journal/jkaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
In genomic selection choosing the statistical machine learning model is of paramount importance. In this paper, we present an application of a zero altered random forest model with two versions (ZAP_RF and ZAPC_RF) to deal with excess zeros in count response variables. The proposed model was compared with the conventional random forest (RF) model and with the conventional Generalized Poisson Ridge regression (GPR) using two real datasets, and we found that, in terms of prediction performance, the proposed zero inflated random forest model outperformed the conventional RF and GPR models.
Collapse
Affiliation(s)
| | - Abelardo Montesinos-López
- Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430 Guadalajara, Jalisco, México
| | | | | | - José Crossa
- Colegio de Postgraduados, Montecillos, Edo. de México CP 56230, México.,International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | - Nerida Lozano Ramirez
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | - Pawan Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | | |
Collapse
|
19
|
Hendrix SG, Chang KY, Ryu Z, Xie ZR. DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method. Int J Mol Sci 2021; 22:ijms22115510. [PMID: 34073705 PMCID: PMC8197219 DOI: 10.3390/ijms22115510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
It is essential for future research to develop a new, reliable prediction method of DNA binding sites because DNA binding sites on DNA-binding proteins provide critical clues about protein function and drug discovery. However, the current prediction methods of DNA binding sites have relatively poor accuracy. Using 3D coordinates and the atom-type of surface protein atom as the input, we trained and tested a deep learning model to predict how likely a voxel on the protein surface is to be a DNA-binding site. Based on three different evaluation datasets, the results show that our model not only outperforms several previous methods on two commonly used datasets, but also demonstrates its robust performance to be consistent among the three datasets. The visualized prediction outcomes show that the binding sites are also mostly located in correct regions. We successfully built a deep learning model to predict the DNA binding sites on target proteins. It demonstrates that 3D protein structures plus atom-type information on protein surfaces can be used to predict the potential binding sites on a protein. This approach should be further extended to develop the binding sites of other important biological molecules.
Collapse
Affiliation(s)
- Samuel Godfrey Hendrix
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
| | - Kuan Y. Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Zeezoo Ryu
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Zhong-Ru Xie
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA; (S.G.H.); (Z.R.)
- Correspondence:
| |
Collapse
|
20
|
Li G, Du X, Li X, Zou L, Zhang G, Wu Z. Prediction of DNA binding proteins using local features and long-term dependencies with primary sequences based on deep learning. PeerJ 2021; 9:e11262. [PMID: 33986992 PMCID: PMC8101451 DOI: 10.7717/peerj.11262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
DNA-binding proteins (DBPs) play pivotal roles in many biological functions such as alternative splicing, RNA editing, and methylation. Many traditional machine learning (ML) methods and deep learning (DL) methods have been proposed to predict DBPs. However, these methods either rely on manual feature extraction or fail to capture long-term dependencies in the DNA sequence. In this paper, we propose a method, called PDBP-Fusion, to identify DBPs based on the fusion of local features and long-term dependencies only from primary sequences. We utilize convolutional neural network (CNN) to learn local features and use bi-directional long-short term memory network (Bi-LSTM) to capture critical long-term dependencies in context. Besides, we perform feature extraction, model training, and model prediction simultaneously. The PDBP-Fusion approach can predict DBPs with 86.45% sensitivity, 79.13% specificity, 82.81% accuracy, and 0.661 MCC on the PDB14189 benchmark dataset. The MCC of our proposed methods has been increased by at least 9.1% compared to other advanced prediction models. Moreover, the PDBP-Fusion also gets superior performance and model robustness on the PDB2272 independent dataset. It demonstrates that the PDBP-Fusion can be used to predict DBPs from sequences accurately and effectively; the online server is at http://119.45.144.26:8080/PDBP-Fusion/.
Collapse
Affiliation(s)
- Guobin Li
- School of Artificial Intelligence and Big Data, Hefei University, Hefei, China
| | - Xiuquan Du
- School of Computer Science and Technology, Anhui University, Hefei, China
| | - Xinlu Li
- School of Artificial Intelligence and Big Data, Hefei University, Hefei, China
| | - Le Zou
- School of Artificial Intelligence and Big Data, Hefei University, Hefei, China
| | - Guanhong Zhang
- School of Artificial Intelligence and Big Data, Hefei University, Hefei, China
| | - Zhize Wu
- School of Artificial Intelligence and Big Data, Hefei University, Hefei, China
| |
Collapse
|
21
|
Multiple protein-DNA interfaces unravelled by evolutionary information, physico-chemical and geometrical properties. PLoS Comput Biol 2020; 16:e1007624. [PMID: 32012150 PMCID: PMC7018136 DOI: 10.1371/journal.pcbi.1007624] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/13/2020] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Interactions between proteins and nucleic acids are at the heart of many essential biological processes. Despite increasing structural information about how these interactions may take place, our understanding of the usage made of protein surfaces by nucleic acids is still very limited. This is in part due to the inherent complexity associated to protein surface deformability and evolution. In this work, we present a method that contributes to decipher such complexity by predicting protein-DNA interfaces and characterizing their properties. It relies on three biologically and physically meaningful descriptors, namely evolutionary conservation, physico-chemical properties and surface geometry. We carefully assessed its performance on several hundreds of protein structures and compared it to several machine-learning state-of-the-art methods. Our approach achieves a higher sensitivity compared to the other methods, with a similar precision. Importantly, we show that it is able to unravel ‘hidden’ binding sites by applying it to unbound protein structures and to proteins binding to DNA via multiple sites and in different conformations. It is also applicable to the detection of RNA-binding sites, without significant loss of performance. This confirms that DNA and RNA-binding sites share similar properties. Our method is implemented as a fully automated tool, JETDNA2, freely accessible at: http://www.lcqb.upmc.fr/JET2DNA. We also provide a new dataset of 187 protein-DNA complex structures, along with a subset of 82 associated unbound structures. The set represents the largest body of high-resolution crystallographic structures of protein-DNA complexes, use biological protein assemblies as DNA-binding units, and covers all major types of protein-DNA interactions. It is available at: http://www.lcqb.upmc.fr/PDNAbenchmarks. Protein-DNA interactions are essential to living organisms and their impairment is associated to many diseases. For these reasons, they have become increasingly important therapeutic targets. Experimental structure determination has revealed different binding motifs and modes, associated to different functions. Yet, the available structural data gives us only a glimpse of the multiplicity and complexity of protein surface usage by DNA. In this work, we use a three-layer model to describe and predict DNA-binding sites at protein surfaces. Given a protein, we consider the way its residues are conserved through evolution, their physico-chemical properties and geometrical shapes to decrypt its surface. We are able to detect a large portion of interacting residues with good precision, even when they are ‘hidden’ by conformational changes. We highlight cases where one protein binds DNA via distinct regions to perform different functions. We are able to uncover the alternative binding sites and relate their properties with their specific roles. Our work can help guiding mutagenesis experiments and the development of new drugs specifically targeting one site while limiting possible side effects.
Collapse
|
22
|
Sun S, Wang C, Ding H, Zou Q. Machine learning and its applications in plant molecular studies. Brief Funct Genomics 2019; 19:40-48. [DOI: 10.1093/bfgp/elz036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 01/16/2023] Open
Abstract
Abstract
The advent of high-throughput genomic technologies has resulted in the accumulation of massive amounts of genomic information. However, biologists are challenged with how to effectively analyze these data. Machine learning can provide tools for better and more efficient data analysis. Unfortunately, because many plant biologists are unfamiliar with machine learning, its application in plant molecular studies has been restricted to a few species and a limited set of algorithms. Thus, in this study, we provide the basic steps for developing machine learning frameworks and present a comprehensive overview of machine learning algorithms and various evaluation metrics. Furthermore, we introduce sources of important curated plant genomic data and R packages to enable plant biologists to easily and quickly apply appropriate machine learning algorithms in their research. Finally, we discuss current applications of machine learning algorithms for identifying various genes related to resistance to biotic and abiotic stress. Broad application of machine learning and the accumulation of plant sequencing data will advance plant molecular studies.
Collapse
Affiliation(s)
- Shanwen Sun
- University of Bayreuth in Germany. He is now a postdoctoral fellow at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| | - Chunyu Wang
- Harbin Institute of Technology in China. He is an associate professor in the School of Computer Science and Technology, Harbin Institute of Technology
| | - Hui Ding
- Inner Mongolia University in China. She is an associate professor in the Center for Informational Biology, University of Electronic Science and Technology of China
| | - Quan Zou
- Harbin Institute of Technology in China. He is a professor in the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| |
Collapse
|
23
|
Zheng N, Wang K, Zhan W, Deng L. Targeting Virus-host Protein Interactions: Feature Extraction and Machine Learning Approaches. Curr Drug Metab 2019; 20:177-184. [PMID: 30156155 DOI: 10.2174/1389200219666180829121038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 08/02/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Targeting critical viral-host Protein-Protein Interactions (PPIs) has enormous application prospects for therapeutics. Using experimental methods to evaluate all possible virus-host PPIs is labor-intensive and time-consuming. Recent growth in computational identification of virus-host PPIs provides new opportunities for gaining biological insights, including applications in disease control. We provide an overview of recent computational approaches for studying virus-host PPI interactions. METHODS In this review, a variety of computational methods for virus-host PPIs prediction have been surveyed. These methods are categorized based on the features they utilize and different machine learning algorithms including classical and novel methods. RESULTS We describe the pivotal and representative features extracted from relevant sources of biological data, mainly include sequence signatures, known domain interactions, protein motifs and protein structure information. We focus on state-of-the-art machine learning algorithms that are used to build binary prediction models for the classification of virus-host protein pairs and discuss their abilities, weakness and future directions. CONCLUSION The findings of this review confirm the importance of computational methods for finding the potential protein-protein interactions between virus and host. Although there has been significant progress in the prediction of virus-host PPIs in recent years, there is a lot of room for improvement in virus-host PPI prediction.
Collapse
Affiliation(s)
- Nantao Zheng
- School of Software, Central South University, Changsha, 410075, China
| | - Kairou Wang
- School of Software, Central South University, Changsha, 410075, China
| | - Weihua Zhan
- School of Electronics and Computer Science, Zhejiang Wanli University, Ningbo 315100, China
| | - Lei Deng
- School of Software, Central South University, Changsha, 410075, China.,Shanghai Key Lab of Intelligent Information Processing, Shanghai 200433, China
| |
Collapse
|
24
|
Nguyen VM, Young N, Brownscombe JW, Cooke SJ. Collaboration and engagement produce more actionable science: quantitatively analyzing uptake of fish tracking studies. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01943. [PMID: 31161708 DOI: 10.1002/eap.1943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Aquatic telemetry technology generates new knowledge about the underwater world that can inform decision-making processes and thus can improve conservation and natural resource management. Still, there is lack of evidence on how telemetry-derived knowledge can or has informed management, and what factors facilitate or deter its use. We present one of the first quantitative studies related to the science-action gap and evaluate factors that influence the uptake of fish telemetry findings into policies and practices, as well as social acceptance of these findings. We globally surveyed 212 fish telemetry researchers regarding the knowledge uptake of an applied fish telemetry research project of their choice. Respondents' personal and professional attributes, as well as the attributes of their chosen projects, were analyzed using machine learning algorithms to identify important factors that influenced the uptake (i.e., use, trust, and/or acceptance) of their findings. Researchers with extensive collaborations and who spent more time engaging in public outreach experienced greater uptake of their findings. Respondents with greater telemetry experience and commitment (e.g., more telemetry publications, higher proportion of research on fish telemetry) tended to achieve more social acceptance of their findings. Projects led by researchers who were highly involved and familiar with the fisheries management processes, and those where greater effort was devoted to research dissemination, also tended to experience greater uptake. Last, the levels of complexity and controversy of the issue addressed by the research project had a positive influence on the uptake of findings. The empirical results of this study support recent messages in the science practitioner literature for greater collaboration, knowledge co-production with partners, and public engagement to enable the transfer of knowledge and the use of evidence in decision-making and policies. Scientific organizations should consider shifting reward incentives to promote engagement and collaboration with non-scientific actors, and perhaps even rethinking hiring practices to consider personal and professional characteristics or attitudes such as altruism and networking skills given the influence of these factors in our model. Last, networks composed of both research and practice potentially have a key role in brokering and facilitating knowledge exchange and actions.
Collapse
Affiliation(s)
- Vivian M Nguyen
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Nathan Young
- Department of Sociology and Anthropology, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B4H 4R2, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
25
|
Ahmad S, Prathipati P, Tripathi LP, Chen YA, Arya A, Murakami Y, Mizuguchi K. Integrating sequence and gene expression information predicts genome-wide DNA-binding proteins and suggests a cooperative mechanism. Nucleic Acids Res 2019; 46:54-70. [PMID: 29186632 PMCID: PMC5758906 DOI: 10.1093/nar/gkx1166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
DNA-binding proteins (DBPs) perform diverse biological functions ranging from transcription to pathogen sensing. Machine learning methods can not only identify DBPs de novo but also provide insights into their DNA-recognition dynamics. However, it remains unclear whether available methods that can accurately predict DNA-binding sites in known DBPs can also identify novel DBPs. Moreover, sequence information is blind to the cellular- and disease-specific contexts of DBP activities, whereas the under-utilized knowledge from public gene expression data offers great promise. To address these issues, we have developed novel methods for predicting DBPs by integrating sequence and gene expression-derived features and applied them to explore human, mouse and Arabidopsis proteomes. While our sequence-based models outperformed the gene expression-based ones, some proteins with weaker DBP-like sequence features were correctly predicted by gene expression-based features, suggesting that these proteins acquire a tangible DBP functionality in a conducive gene expression environment. Analysis of motif enrichment among the co-expressed genes of top 100 candidates DBPs from hitherto unannotated genes provides further avenues to explore their functional associations.
Collapse
Affiliation(s)
- Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.,Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| | - Lokesh P Tripathi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| | - Yi-An Chen
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yoichi Murakami
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-asagi, Ibaraki, Osaka 5670085, Japan
| |
Collapse
|
26
|
Zhu YH, Hu J, Song XN, Yu DJ. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines. J Chem Inf Model 2019; 59:3057-3071. [PMID: 30943723 DOI: 10.1021/acs.jcim.8b00749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate identification of protein-DNA binding sites is significant for both understanding protein function and drug design. Machine-learning-based methods have been extensively used for the prediction of protein-DNA binding sites. However, the data imbalance problem, in which the number of nonbinding residues (negative-class samples) is far larger than that of binding residues (positive-class samples), seriously restricts the performance improvements of machine-learning-based predictors. In this work, we designed a two-stage imbalanced learning algorithm, called ensembled hyperplane-distance-based support vector machines (E-HDSVM), to improve the prediction performance of protein-DNA binding sites. The first stage of E-HDSVM designs a new iterative sampling algorithm, called hyperplane-distance-based under-sampling (HD-US), to extract multiple subsets from the original imbalanced data set, each of which is used to train a support vector machine (SVM). Unlike traditional sampling algorithms, HD-US selects samples by calculating the distances between the samples and the separating hyperplane of the SVM. The second stage of E-HDSVM proposes an enhanced AdaBoost (EAdaBoost) algorithm to ensemble multiple trained SVMs. As an enhanced version of the original AdaBoost algorithm, EAdaBoost overcomes the overfitting problem. Stringent cross-validation and independent tests on benchmark data sets demonstrated the superiority of E-HDSVM over several popular imbalanced learning algorithms. Based on the proposed E-HDSVM algorithm, we further implemented a sequence-based protein-DNA binding site predictor, called DNAPred, which is freely available at http://csbio.njust.edu.cn/bioinf/dnapred/ for academic use. The computational experimental results showed that our predictor achieved an average overall accuracy of 91.7% and a Mathew's correlation coefficient of 0.395 on five benchmark data sets and outperformed several state-of-the-art sequence-based protein-DNA binding site predictors.
Collapse
Affiliation(s)
- Yi-Heng Zhu
- School of Computer Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , P. R. China
| | - Jun Hu
- College of Information Engineering , Zhejiang University of Technology , Hangzhou 310023 , P. R. China
| | - Xiao-Ning Song
- School of Internet of Things , Jiangnan University , 1800 Lihu Road , Wuxi 214122 , P. R. China
| | - Dong-Jun Yu
- School of Computer Science and Engineering , Nanjing University of Science and Technology , Xiaolingwei 200 , Nanjing 210094 , P. R. China
| |
Collapse
|
27
|
Emamjomeh A, Choobineh D, Hajieghrari B, MahdiNezhad N, Khodavirdipour A. DNA-protein interaction: identification, prediction and data analysis. Mol Biol Rep 2019; 46:3571-3596. [PMID: 30915687 DOI: 10.1007/s11033-019-04763-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
Life in living organisms is dependent on specific and purposeful interaction between other molecules. Such purposeful interactions make the various processes inside the cells and the bodies of living organisms possible. DNA-protein interactions, among all the types of interactions between different molecules, are of considerable importance. Currently, with the development of numerous experimental techniques, diverse methods are convenient for recognition and investigating such interactions. While the traditional experimental techniques to identify DNA-protein complexes are time-consuming and are unsuitable for genome-scale studies, the current high throughput approaches are more efficient in determining such interaction at a large-scale, but they are clearly too costly to be practice for daily applications. Hence, according to the availability of much information related to different biological sequences and clearing different dimensions of conditions in which such interactions are formed, with the developments related to the computer, mathematics, and statistics motivate scientists to develop bioinformatics tools for prediction the interaction site(s). Until now, there has been much progress in this field. In this review, the factors and conditions governing the interaction and the laboratory techniques for examining such interactions are addressed. In addition, developed bioinformatics tools are introduced and compared for this reason and, in the end, several suggestions are offered for the promotion of such tools in prediction with much more precision.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran.
| | - Darush Choobineh
- Agricultural Biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, 74135-111, Iran.
| | - Nafiseh MahdiNezhad
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran
| | - Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. John's hospital, Bangalore, India
| |
Collapse
|
28
|
Abstract
Background:DNA-binding proteins, binding to DNA, widely exist in living cells, participating in many cell activities. They can participate some DNA-related cell activities, for instance DNA replication, transcription, recombination, and DNA repair.Objective:Given the importance of DNA-binding proteins, studies for predicting the DNA-binding proteins have been a popular issue over the past decades. In this article, we review current machine-learning methods which research on the prediction of DNA-binding proteins through feature representation methods, classifiers, measurements, dataset and existing web server.Method:The prediction methods of DNA-binding protein can be divided into two types, based on amino acid composition and based on protein structure. In this article, we accord to the two types methods to introduce the application of machine learning in DNA-binding proteins prediction.Results:Machine learning plays an important role in the classification of DNA-binding proteins, and the result is better. The best ACC is above 80%.Conclusion:Machine learning can be widely used in many aspects of biological information, especially in protein classification. Some issues should be considered in future work. First, the relationship between the number of features and performance must be explored. Second, many features are used to predict DNA-binding proteins and propose solutions for high-dimensional spaces.
Collapse
Affiliation(s)
- Kaiyang Qu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Leyi Wei
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Wu J, Yin Q, Zhang C, Geng J, Wu H, Hu H, Ke X, Zhang Y. Function Prediction for G Protein-Coupled Receptors through Text Mining and Induction Matrix Completion. ACS OMEGA 2019; 4:3045-3054. [PMID: 31459527 PMCID: PMC6649004 DOI: 10.1021/acsomega.8b02454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the key component of cellular signal transduction. Accurately annotating the biological functions of GPCR proteins is vital to the understanding of the physiological processes they involve in. With the rapid development of text mining technologies and the exponential growth of biomedical literature, it becomes urgent to explore biological functional information from various literature for systematically and reliably annotating these known GPCRs. We design a novel three-stage approach, TM-IMC, using text mining and inductive matrix completion, for automated prediction of the gene ontology (GO) terms of the GPCR proteins. Large-scale benchmark tests show that inductive matrix completion models contribute to GPCR-GO association prediction for both molecular function and biological process aspects. Moreover, our detailed data analysis shows that information extracted from GPCR-associated literature indeed contributes to the prediction of GPCR-GO associations. The study demonstrated a new avenue to enhance the accuracy of GPCR function annotation through the combination of text mining and induction matrix completion over baseline methods in critical assessment of protein function annotation algorithms and literature-based GO annotation methods. Source codes of TM-IMC and the involved datasets can be freely downloaded from https://zhanglab.ccmb.med.umich.edu/TM-IMC for academic purposes.
Collapse
Affiliation(s)
- Jiansheng Wu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Qin Yin
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Chengxin Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jingjing Geng
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Hongjie Wu
- School
of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haifeng Hu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaoyan Ke
- Child
Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y. Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods. Front Genet 2018; 9:237. [PMID: 30023001 PMCID: PMC6039760 DOI: 10.3389/fgene.2018.00237] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
The analysis of large genomic data is hampered by issues such as a small number of observations and a large number of predictive variables (commonly known as “large P small N”), high dimensionality or highly correlated data structures. Machine learning methods are renowned for dealing with these problems. To date machine learning methods have been applied in Genome-Wide Association Studies for identification of candidate genes, epistasis detection, gene network pathway analyses and genomic prediction of phenotypic values. However, the utility of two machine learning methods, Gradient Boosting Machine (GBM) and Extreme Gradient Boosting Method (XgBoost), in identifying a subset of SNP makers for genomic prediction of breeding values has never been explored before. In this study, using 38,082 SNP markers and body weight phenotypes from 2,093 Brahman cattle (1,097 bulls as a discovery population and 996 cows as a validation population), we examined the efficiency of three machine learning methods, namely Random Forests (RF), GBM and XgBoost, in (a) the identification of top 400, 1,000, and 3,000 ranked SNPs; (b) using the subsets of SNPs to construct genomic relationship matrices (GRMs) for the estimation of genomic breeding values (GEBVs). For comparison purposes, we also calculated the GEBVs from (1) 400, 1,000, and 3,000 SNPs that were randomly selected and evenly spaced across the genome, and (2) from all the SNPs. We found that RF and especially GBM are efficient methods in identifying a subset of SNPs with direct links to candidate genes affecting the growth trait. In comparison to the estimate of prediction accuracy of GEBVs from using all SNPs (0.43), the 3,000 top SNPs identified by RF (0.42) and GBM (0.46) had similar values to those of the whole SNP panel. The performance of the subsets of SNPs from RF and GBM was substantially better than that of evenly spaced subsets across the genome (0.18–0.29). Of the three methods, RF and GBM consistently outperformed the XgBoost in genomic prediction accuracy.
Collapse
Affiliation(s)
- Bo Li
- CSIRO Agriculture and Food, St Lucia, QLD, Australia.,Shandong Technology and Business University, School of Computer Science and Technology, YanTai, China.,Shandong Co-Innovation Centre of Future Intelligent Computing, YanTai, China
| | - Nanxi Zhang
- Centre for Applications in Natural Resource Mathematics, University of Queensland, St Lucia, QLD, Australia
| | - You-Gan Wang
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Yutao Li
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
31
|
Blagus R, Goeman JJ. What (not) to expect when classifying rare events. Brief Bioinform 2018; 19:341-349. [PMID: 27881432 DOI: 10.1093/bib/bbw107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 01/03/2025] Open
Abstract
When building classifiers, it is natural to require that the classifier correctly estimates the event probability (Constraint 1), that it has equal sensitivity and specificity (Constraint 2) or that it has equal positive and negative predictive values (Constraint 3). We prove that in the balanced case, where there is equal proportion of events and non-events, any classifier that satisfies one of these constraints will always satisfy all. Such unbiasedness of events and non-events is much more difficult to achieve in the case of rare events, i.e. the situation in which the proportion of events is (much) smaller than 0.5. Here, we prove that it is impossible to meet all three constraints unless the classifier achieves perfect predictions. Any non-perfect classifier can only satisfy at most one constraint, and satisfying one constraint implies violating the other two constraints in a specific direction. Our results have implications for classifiers optimized using g-means or F1-measure, which tend to satisfy Constraints 2 and 1, respectively. Our results are derived from basic probability theory and illustrated with simulations based on some frequently used classifiers.
Collapse
Affiliation(s)
- Rok Blagus
- Univerza v Ljubljani Medicinska Fakulteta, Institute for Biostatistics and Medical Informatics, Leiden, The Netherlands
| | - Jelle J Goeman
- Leiden University Medical Center, Department of Medical Statistics and Bioinformatics, Leiden, The Netherlands
| |
Collapse
|
32
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 590] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
33
|
Abstract
The increasing number of protein structures with uncharacterized function necessitates the development of in silico prediction methods for functional annotations on proteins. In this chapter, different kinds of computational approaches are briefly introduced to predict DNA-binding residues on surface of DNA-binding proteins, and the merits and limitations of these methods are mainly discussed. This chapter focuses on the structure-based approaches and mainly discusses the framework of machine learning methods in application to DNA-binding prediction task.
Collapse
|
34
|
Liu Q, Gan M, Jiang R. A sequence-based method to predict the impact of regulatory variants using random forest. BMC SYSTEMS BIOLOGY 2017; 11:7. [PMID: 28361702 PMCID: PMC5374684 DOI: 10.1186/s12918-017-0389-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Most disease-associated variants identified by genome-wide association studies (GWAS) exist in noncoding regions. In spite of the common agreement that such variants may disrupt biological functions of their hosting regulatory elements, it remains a great challenge to characterize the risk of a genetic variant within the implicated genome sequence. Therefore, it is essential to develop an effective computational model that is not only capable of predicting the potential risk of a genetic variant but also valid in interpreting how the function of the genome is affected with the occurrence of the variant. Results We developed a method named kmerForest that used a random forest classifier with k-mer counts to predict accessible chromatin regions purely based on DNA sequences. We demonstrated that our method outperforms existing methods in distinguishing known accessible chromatin regions from random genomic sequences. Furthermore, the performance of our method can further be improved with the incorporation of sequence conservation features. Based on this model, we assessed importance of the k-mer features by a series of permutation experiments, and we characterized the risk of a single nucleotide polymorphism (SNP) on the function of the genome using the difference between the importance of the k-mer features affected by the occurrence of the SNP. We conducted a series of experiments and showed that our model can well discriminate between pathogenic and normal SNPs. Particularly, our model correctly prioritized SNPs that are proved to be enriched for the binding sites of FOXA1 in breast cancer cell lines from previous studies. Conclusions We presented a novel method to interpret functional genetic variants purely base on DNA sequences. The proposed k-mer based score offers an effective means of measuring the impact of SNPs on the function of the genome, and thus shedding light on the identification of genetic risk factors underlying complex traits and diseases.
Collapse
Affiliation(s)
- Qiao Liu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mingxin Gan
- Department of Management Science and Engineering, Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
35
|
Dutta S, Madan S, Parikh H, Sundar D. An ensemble micro neural network approach for elucidating interactions between zinc finger proteins and their target DNA. BMC Genomics 2016; 17:1033. [PMID: 28155662 PMCID: PMC5260015 DOI: 10.1186/s12864-016-3323-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The ability to engineer zinc finger proteins binding to a DNA sequence of choice is essential for targeted genome editing to be possible. Experimental techniques and molecular docking have been successful in predicting protein-DNA interactions, however, they are highly time and resource intensive. Here, we present a novel algorithm designed for high throughput prediction of optimal zinc finger protein for 9 bp DNA sequences of choice. In accordance with the principles of information theory, a subset identified by using K-means clustering was used as a representative for the space of all possible 9 bp DNA sequences. The modeling and simulation results assuming synergistic mode of binding obtained from this subset were used to train an ensemble micro neural network. Synergistic mode of binding is the closest to the DNA-protein binding seen in nature, and gives much higher quality predictions, while the time and resources increase exponentially in the trade off. Our algorithm is inspired from an ensemble machine learning approach, and incorporates the predictions made by 100 parallel neural networks, each with a different hidden layer architecture designed to pick up different features from the training dataset to predict optimal zinc finger proteins for any 9 bp target DNA. RESULTS The model gave an accuracy of an average 83% sequence identity for the testing dataset. The BLAST e-value are well within the statistical confidence interval of E-05 for 100% of the testing samples. The geometric mean and median value for the BLAST e-values were found to be 1.70E-12 and 7.00E-12 respectively. For final validation of approach, we compared our predictions against optimal ZFPs reported in literature for a set of experimentally studied DNA sequences. The accuracy, as measured by the average string identity between our predictions and the optimal zinc finger protein reported in literature for a 9 bp DNA target was found to be as high as 81% for DNA targets with a consensus sequence GCNGNNGCN reported in literature. Moreover, the average string identity of our predictions for a catalogue of over 100 9 bp DNA for which the optimal zinc finger protein has been reported in literature was found to be 71%. CONCLUSIONS Validation with experimental data shows that our tool is capable of domain adaptation and thus scales well to datasets other than the training set with high accuracy. As synergistic binding comes the closest to the ideal mode of binding, our algorithm predicts biologically relevant results in sync with the experimental data present in the literature. While there have been disjointed attempts to approach this problem synergistically reported in literature, there is no work covering the whole sample space. Our algorithm allows designing zinc finger proteins for DNA targets of the user's choice, opening up new frontiers in the field of targeted genome editing. This algorithm is also available as an easy to use web server, ZifNN, at http://web.iitd.ac.in/~sundar/ZifNN/ .
Collapse
Affiliation(s)
- Shayoni Dutta
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Spandan Madan
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Harsh Parikh
- Department of Computer Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Indian Institute of Technology Delhi, New Delhi, 110016 India
| |
Collapse
|
36
|
DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues. PLoS One 2016; 11:e0167345. [PMID: 27907159 PMCID: PMC5132331 DOI: 10.1371/journal.pone.0167345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/12/2016] [Indexed: 12/24/2022] Open
Abstract
DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.
Collapse
|
37
|
Chai H, Zhang J, Yang G, Ma Z. An evolution-based DNA-binding residue predictor using a dynamic query-driven learning scheme. MOLECULAR BIOSYSTEMS 2016; 12:3643-3650. [PMID: 27730230 DOI: 10.1039/c6mb00626d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA-binding proteins play a pivotal role in various biological activities. Identification of DNA-binding residues (DBRs) is of great importance for understanding the mechanism of gene regulations and chromatin remodeling. Most traditional computational methods usually construct their predictors on static non-redundant datasets. They excluded many homologous DNA-binding proteins so as to guarantee the generalization capability of their models. However, those ignored samples may potentially provide useful clues when studying protein-DNA interactions, which have not obtained enough attention. In view of this, we propose a novel method, namely DQPred-DBR, to fill the gap of DBR predictions. First, a large-scale extensible sample pool was compiled. Second, evolution-based features in the form of a relative position specific score matrix and covariant evolutionary conservation descriptors were used to encode the feature space. Third, a dynamic query-driven learning scheme was designed to make more use of proteins with known structure and functions. In comparison with a traditional static model, the introduction of dynamic models could obviously improve the prediction performance. Experimental results from the benchmark and independent datasets proved that our DQPred-DBR had promising generalization capability. It was capable of producing decent predictions and outperforms many state-of-the-art methods. For the convenience of academic use, our proposed method was also implemented as a web server at .
Collapse
Affiliation(s)
- H Chai
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, P. R. China.
| | - J Zhang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, P. R. China.
| | - G Yang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, P. R. China. and Office of Informatization Management and Planning, Northeast Normal University, Changchun, 130117, P. R. China
| | - Z Ma
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, P. R. China.
| |
Collapse
|
38
|
A Novel Sequence-Based Feature for the Identification of DNA-Binding Sites in Proteins Using Jensen–Shannon Divergence. ENTROPY 2016. [DOI: 10.3390/e18100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Machine Learning Approach to Automated Quality Identification of Human Induced Pluripotent Stem Cell Colony Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:3091039. [PMID: 27493680 PMCID: PMC4963598 DOI: 10.1155/2016/3091039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022]
Abstract
The focus of this research is on automated identification of the quality of human induced pluripotent stem cell (iPSC) colony images. iPS cell technology is a contemporary method by which the patient's cells are reprogrammed back to stem cells and are differentiated to any cell type wanted. iPS cell technology will be used in future to patient specific drug screening, disease modeling, and tissue repairing, for instance. However, there are technical challenges before iPS cell technology can be used in practice and one of them is quality control of growing iPSC colonies which is currently done manually but is unfeasible solution in large-scale cultures. The monitoring problem returns to image analysis and classification problem. In this paper, we tackle this problem using machine learning methods such as multiclass Support Vector Machines and several baseline methods together with Scaled Invariant Feature Transformation based features. We perform over 80 test arrangements and do a thorough parameter value search. The best accuracy (62.4%) for classification was obtained by using a k-NN classifier showing improved accuracy compared to earlier studies.
Collapse
|
40
|
EL-Manzalawy Y, Abbas M, Malluhi Q, Honavar V. FastRNABindR: Fast and Accurate Prediction of Protein-RNA Interface Residues. PLoS One 2016; 11:e0158445. [PMID: 27383535 PMCID: PMC4934694 DOI: 10.1371/journal.pone.0158445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
A wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses are mediated by RNA-protein interactions. However, experimental determination of the structures of protein-RNA complexes is expensive and technically challenging. Hence, a number of computational tools have been developed for predicting protein-RNA interfaces. Some of the state-of-the-art protein-RNA interface predictors rely on position-specific scoring matrix (PSSM)-based encoding of the protein sequences. The computational efforts needed for generating PSSMs severely limits the practical utility of protein-RNA interface prediction servers. In this work, we experiment with two approaches, random sampling and sequence similarity reduction, for extracting a representative reference database of protein sequences from more than 50 million protein sequences in UniRef100. Our results suggest that random sampled databases produce better PSSM profiles (in terms of the number of hits used to generate the profile and the distance of the generated profile to the corresponding profile generated using the entire UniRef100 data as well as the accuracy of the machine learning classifier trained using these profiles). Based on our results, we developed FastRNABindR, an improved version of RNABindR for predicting protein-RNA interface residues using PSSM profiles generated using 1% of the UniRef100 sequences sampled uniformly at random. To the best of our knowledge, FastRNABindR is the only protein-RNA interface residue prediction online server that requires generation of PSSM profiles for query sequences and accepts hundreds of protein sequences per submission. Our approach for determining the optimal BLAST database for a protein-RNA interface residue classification task has the potential of substantially speeding up, and hence increasing the practical utility of, other amino acid sequence based predictors of protein-protein and protein-DNA interfaces.
Collapse
Affiliation(s)
- Yasser EL-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
- Systems and Computer Engineering, Al-Azhar University, Cairo, Egypt
- * E-mail:
| | - Mostafa Abbas
- KINDI Center for Computing Research, College of Engineering, Qatar University, Duha, Qatar
| | - Qutaibah Malluhi
- KINDI Center for Computing Research, College of Engineering, Qatar University, Duha, Qatar
| | - Vasant Honavar
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
41
|
Zhou J, Xu R, He Y, Lu Q, Wang H, Kong B. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context. Sci Rep 2016; 6:27653. [PMID: 27282833 PMCID: PMC4901350 DOI: 10.1038/srep27653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/18/2016] [Indexed: 02/01/2023] Open
Abstract
Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.
Collapse
Affiliation(s)
- Jiyun Zhou
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,Department of Computing, the Hong Kong Polytechnic University, Hong Kong
| | - Ruifeng Xu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,Shenzhen Engineering Laboratory of Performance Robots at Digital Stage, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China
| | - Yulan He
- School of Engineering and Applied Science, Aston University, UK
| | - Qin Lu
- Department of Computing, the Hong Kong Polytechnic University, Hong Kong
| | - Hongpeng Wang
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Bing Kong
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
42
|
dos Santos-Araujo SN, Alleoni LRF. Concentrations of potentially toxic elements in soils and vegetables from the macroregion of São Paulo, Brazil: availability for plant uptake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:92. [PMID: 26780411 DOI: 10.1007/s10661-016-5100-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
The occurrence and accumulation of heavy metals or so-called potentially toxic elements (PTEs) in soils and plants have driven long-standing concerns about the adverse effects such metals have on the environment and human health. Furthermore, contaminated food products are known to be a leading source of exposure to heavy metals for the general population. It is crucial to accurately assess the concentrations of metals in crops and the bioavailable contents of these elements in the soil. The state of São Paulo is the largest consumer market of horticultural products in Brazil with production focused essentially on urban and industrial areas, which greatly increases the degree of exposure to contaminants. The objective of the authors in this study was to evaluate the soil-plant relationships between concentrations of Cd, Cu, Ni, Pb and Zn in vegetable and garden soils in the state of São Paulo, Brazil. To accomplish this, 200 soil (0-20 cm) and plant samples were collected from 25 species in the production areas. With the exception of Cd, there was positive correlation between pseudototals (USEPA 3051a) and bioavailable contents (extracted with DTPA) of heavy metals. However, the Cd and Pb contents in plants were not significantly correlated with any of the variables studied. All random forest and tree models proved to be good predictors of results generated from a regression model and provided useful information including covariates that were important for specifically forecasting Zn concentration in plants.
Collapse
Affiliation(s)
- Sabrina Novaes dos Santos-Araujo
- College of Agriculture Luiz de Queiroz (ESALQ/USP), University of São Paulo, Av. Pádua Dias, 11, C.P. 9, Piracicaba, SP, 13418-900, Brazil.
| | | |
Collapse
|
43
|
Miao Z, Westhof E. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs. PLoS Comput Biol 2015; 11:e1004639. [PMID: 26681179 PMCID: PMC4683125 DOI: 10.1371/journal.pcbi.1004639] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods.
Collapse
Affiliation(s)
- Zhichao Miao
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| |
Collapse
|
44
|
Wong KC, Li Y, Peng C, Moses AM, Zhang Z. Computational learning on specificity-determining residue-nucleotide interactions. Nucleic Acids Res 2015; 43:10180-9. [PMID: 26527718 PMCID: PMC4666365 DOI: 10.1093/nar/gkv1134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families.
Collapse
Affiliation(s)
- Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yue Li
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Chengbin Peng
- CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, Saudi Arabia
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation. Sci Rep 2015; 5:15479. [PMID: 26482832 PMCID: PMC4611492 DOI: 10.1038/srep15479] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.
Collapse
|
46
|
Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:425810. [PMID: 26543860 PMCID: PMC4620426 DOI: 10.1155/2015/425810] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 11/17/2022]
Abstract
The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR) method, followed by incremental feature selection (IFS). We incorporated features of conjoint triad features and three novel features: binding propensity (BP), nonbinding propensity (NBP), and evolutionary information combined with physicochemical properties (EIPP). The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient). High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.
Collapse
|
47
|
Achawanantakun R, Chen J, Sun Y, Zhang Y. LncRNA-ID: Long non-coding RNA IDentification using balanced random forests. Bioinformatics 2015; 31:3897-905. [PMID: 26315901 DOI: 10.1093/bioinformatics/btv480] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/07/2015] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Long non-coding RNAs (lncRNAs), which are non-coding RNAs of length above 200 nucleotides, play important biological functions such as gene expression regulation. To fully reveal the functions of lncRNAs, a fundamental step is to annotate them in various species. However, as lncRNAs tend to encode one or multiple open reading frames, it is not trivial to distinguish these long non-coding transcripts from protein-coding genes in transcriptomic data. RESULTS In this work, we design a new tool that calculates the coding potential of a transcript using a machine learning model (random forest) based on multiple features including sequence characteristics of putative open reading frames, translation scores based on ribosomal coverage, and conservation against characterized protein families. The experimental results show that our tool competes favorably with existing coding potential computation tools in lncRNA identification. AVAILABILITY AND IMPLEMENTATION The scripts and data can be downloaded at https://github.com/zhangy72/LncRNA-ID.
Collapse
Affiliation(s)
- Rujira Achawanantakun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jiao Chen
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yanni Sun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yuan Zhang
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
48
|
Machado G, Mendoza MR, Corbellini LG. What variables are important in predicting bovine viral diarrhea virus? A random forest approach. Vet Res 2015. [PMID: 26208851 PMCID: PMC4513962 DOI: 10.1186/s13567-015-0219-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes one of the most economically important diseases in cattle, and the virus is found worldwide. A better understanding of the disease associated factors is a crucial step towards the definition of strategies for control and eradication. In this study we trained a random forest (RF) prediction model and performed variable importance analysis to identify factors associated with BVDV occurrence. In addition, we assessed the influence of features selection on RF performance and evaluated its predictive power relative to other popular classifiers and to logistic regression. We found that RF classification model resulted in an average error rate of 32.03% for the negative class (negative for BVDV) and 36.78% for the positive class (positive for BVDV).The RF model presented area under the ROC curve equal to 0.702. Variable importance analysis revealed that important predictors of BVDV occurrence were: a) who inseminates the animals, b) number of neighboring farms that have cattle and c) rectal palpation performed routinely. Our results suggest that the use of machine learning algorithms, especially RF, is a promising methodology for the analysis of cross-sectional studies, presenting a satisfactory predictive power and the ability to identify predictors that represent potential risk factors for BVDV investigation. We examined classical predictors and found some new and hard to control practices that may lead to the spread of this disease within and among farms, mainly regarding poor or neglected reproduction management, which should be considered for disease control and eradication.
Collapse
Affiliation(s)
- Gustavo Machado
- Laboratory of Veterinary Epidemiology, Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil.
| | - Mariana Recamonde Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Av. Ramiro Barcelos, 2350, CEP 99010-115, Porto Alegre, RS, Brazil.
| | - Luis Gustavo Corbellini
- Laboratory of Veterinary Epidemiology, Faculty of Veterinary, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9090, CEP 91540-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
49
|
SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues. PLoS One 2015; 10:e0133260. [PMID: 26176857 PMCID: PMC4503397 DOI: 10.1371/journal.pone.0133260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/25/2015] [Indexed: 11/19/2022] Open
Abstract
Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.
Collapse
|
50
|
Miao Z, Westhof E. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score. Nucleic Acids Res 2015; 43:5340-51. [PMID: 25940624 PMCID: PMC4477668 DOI: 10.1093/nar/gkv446] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/13/2022] Open
Abstract
We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins.
Collapse
Affiliation(s)
- Zhichao Miao
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 Rue Descartes, 67000 Strasbourg, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 Rue Descartes, 67000 Strasbourg, France
| |
Collapse
|