1
|
Feng J, Zhang X, Tian T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. Int J Mol Sci 2024; 25:10204. [PMID: 39337687 PMCID: PMC11432143 DOI: 10.3390/ijms251810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in single-cell proteomic technologies have provided unprecedented opportunities to investigate the heterogeneity and noise within complex, multi-signaling networks across diverse cells and cell types. Mathematical modeling has become a powerful interdisciplinary tool that bridges mathematics and experimental biology, providing valuable insights into these intricate cellular processes. In addition, statistical methods have been developed to infer pathway topologies and estimate unknown parameters within dynamic models. This review presents a comprehensive analysis of how mathematical modeling of the MAPK pathway deepens our understanding of its regulatory mechanisms, enhances the prediction of system behavior, and informs experimental research, with a particular focus on recent advances in modeling and inference using single-cell proteomic data.
Collapse
Affiliation(s)
- Jinping Feng
- School of Mathematics and Statistics, Henan University, Kaifeng 475001, China
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne 3800, Australia
| |
Collapse
|
2
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
3
|
Deciphering the Role of Wnt and Rho Signaling Pathway in iPSC-Derived ARVC Cardiomyocytes by In Silico Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22042004. [PMID: 33670616 PMCID: PMC7923182 DOI: 10.3390/ijms22042004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic Right Ventricular cardiomyopathy (ARVC) is an inherited cardiac muscle disease linked to genetic deficiency in components of the desmosomes. The disease is characterized by progressive fibro-fatty replacement of the right ventricle, which acts as a substrate for arrhythmias and sudden cardiac death. The molecular mechanisms underpinning ARVC are largely unknown. Here we propose a mathematical model for investigating the molecular dynamics underlying heart remodeling and the loss of cardiac myocytes identity during ARVC. Our methodology is based on three computational models: firstly, in the context of the Wnt pathway, we examined two different competition mechanisms between β-catenin and Plakoglobin (PG) and their role in the expression of adipogenic program. Secondly, we investigated the role of RhoA-ROCK pathway in ARVC pathogenesis, and thirdly we analyzed the interplay between Wnt and RhoA-ROCK pathways in the context of the ARVC phenotype. We conclude with the following remark: both Wnt/β-catenin and RhoA-ROCK pathways must be inactive for a significant increase of PPARγ expression, suggesting that a crosstalk mechanism might be responsible for mediating ARVC pathogenesis.
Collapse
|
4
|
Kim H, Kim HS, Moon WK. Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol 2019; 385:114814. [PMID: 31715268 DOI: 10.1016/j.taap.2019.114814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The impacts of chronic bisphenol A (BPA) exposure suspected to be a potential risk factor for breast cancer progression are not thoroughly understood in different subtypes of breast cancer cells (BCCs). This study aimed to compare the differentially expressed genes (DEGs) and biological functions in MCF-7 (luminal A), SK-BR3 (HER2-enriched) and MDA-MB-231 (triple-negative) cells exposed to BPA at an environmentally human-relevant low dose (10-8 M) for 30 days, by using the approach of RNA sequencing and online informatics tools. BPA-exposure resulted in 172, 137, and 139 DEGs in MCF-7/BPA, SK-BR3/BPA, and MDA-MB-231/BPA, respectively. The significantly enriched gene ontology terms of DEGs in each cell were different: cellular response to gonadotropin-releasing hormone, negative regulation of fibrinolysis, choline metabolism, glutamate signaling pathways and coagulation pathway in MCF-7/BPA; positive regulation of inflammatory response and VEGF/VEGFR signaling pathways in SK-BR3/BPA; negative regulation of keratinocyte proliferation and HIF signaling pathways in MDA-MB-231/BPA cells. The immune network analysis of DEGs across the breast cancer cells indicated NKT, NK and T cell activation and dendritic cell migration by regulating the expression of immunomodulatory genes. High expression of IL19, CA9 and SPARC identified in MCF-7/BPA, SK-BR3/BPA, and MDA-MB-231/BPA are detrimental gene signatures to predict poor overall survival in luminal A, HER2-enriched and triple-negative breast cancer patients, respectively. These findings indicate chronic BPA exposure has dissimilar impacts on the regulation of gene expression and diverse biological functions, including immune modulation, in different subtypes of BCCs.
Collapse
Affiliation(s)
- Hyelim Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
5
|
Choi H, Magyar CE, Nervina JM, Tetradis S. Different duration of parathyroid hormone exposure distinctively regulates primary response genes Nurr1 and RANKL in osteoblasts. PLoS One 2018; 13:e0208514. [PMID: 30576321 PMCID: PMC6303058 DOI: 10.1371/journal.pone.0208514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Parathyroid hormone (PTH) exerts dual effects, anabolic or catabolic, on bone when administrated intermittently or continuously, via mechanisms that remain largely unknown. PTH binding to cells induces PTH-responsive genes including primary response genes (PRGs). PRGs are rapidly induced without the need for de novo protein synthesis, thereby playing pivotal roles in directing subsequent molecular responses. In this study, to understand the role of PRGs in mediating osteoblastic cellular responses to PTH, we investigated whether various durations of PTH differentially induce PRGs in primary osteoblasts and MC3T3-E1. Nurr1 and RANKL, PRGs known for their anabolic and catabolic roles in bone metabolism respectively, presented distinctive transient vs. sustained induction kinetics. Corroborating their roles, maximum induction of Nurr1 was sufficiently achieved by brief PTH in as little as 30 minutes and continued beyond that, while maximum induction of RANKL was achieved only by prolonged PTH over 4 hours. Our data suggested distinctive regulatory mechanisms for Nurr1 and RANKL: PKA-mediated chromatin rearrangement for transcriptional regulation of both PRGs and ERK-mediated transcriptional regulation for RANKL but not Nurr1. Lastly, we classified PRGs into two groups based on the induction kinetics: The group that required brief PTH for maximum induction included Nur77, cox-2, and Nurr1, all of which are reported to play roles in bone formation. The other group that required prolonged PTH for maximum induction included IL-6 and RANKL, which play roles in bone resorption. Together, our data suggested the crucial role of PRG groups in mediating differential osteoblastic cellular responses to intermittent vs. continuous PTH. Continued research into the regulatory mechanisms of PKA and ERK for PRGs will help us better understand the molecular mechanisms underlying the dual effects of PTH, thereby optimizing the current therapeutic use of PTH for osteoporosis.
Collapse
Affiliation(s)
- Hyewon Choi
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Clara E. Magyar
- Center for Pathology Research Services, Department of Pathology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Jeanne M. Nervina
- College of Dentistry, New York University, New York, New York, United States of America
| | - Sotirios Tetradis
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sarwar M, Sykes PH, Chitcholtan K, Alkaisi MM, Evans JJ. The extracellular topographical environment influences ovarian cancer cell behaviour. Biochem Biophys Res Commun 2018; 508:1188-1194. [PMID: 30558791 DOI: 10.1016/j.bbrc.2018.12.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
The importance of the biophysical cellular environment in cancer development has been increasingly recognised but so far has been only superficially studied. Here we investigated the effect of cell-like substrate topography on ovarian cancer cell behaviour and potential underlying signalling pathways. We observed changes in cell morphology in response to substrate topography, which implies modification of structure-function associations. Differences in focal adhesion signalling and Rho/ROCK activity suggested their involvement in the biomechanically-driven cellular responses. Cell-like topography was also shown to modulate the MAPK pathway and hence potentially regulate cell proliferation. The selective regulation of the cells by the mechanotransduction pathways that we noted has wide ranging implications for understanding cancer development. We established that the physical architecture of cell culture substrate is sufficient to influence cancer cell behaviour, independent of genetic composition or biochemical milieu.
Collapse
Affiliation(s)
- Makhdoom Sarwar
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand.
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand
| | - Maan M Alkaisi
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand; MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| | - John J Evans
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8011, New Zealand; MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
| |
Collapse
|
7
|
Liu BS, Dai XY, Xia HW, Xu HJ, Tang QL, Gong QY, Nie YZ, Bi F. Geranylgeranyl transferase 1 inhibitor GGTI‑298 enhances the anticancer effect of gefitinib. Mol Med Rep 2018; 18:4023-4029. [PMID: 30106149 DOI: 10.3892/mmr.2018.9371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/11/2018] [Indexed: 02/05/2023] Open
Abstract
Dysregulation of epidermal growth factor receptor (EGFR) signaling is responsible for the resistance to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib and erlotinib, and is thereby associated with the progression of tumors in non‑small cell lung cancers (NSCLCs). Immunoblotting results revealed that geranylgeranyl transferase 1 inhibitor (GGTI)‑298, a geranylgeranyl transferase 1 inhibitor with potential antitumor effects, effectively inhibited the phosphorylation of EGFR and its downstream target protein kinase B (AKT). A combination of gefitinib and GGTI‑298 amplified the inhibition of the EGFR‑AKT signaling pathway. In addition, GGTI‑298 treatment produced a synergistic effect on the inhibition of proliferation as indicated by the combination index values of <1 when combined with gefitinib in the NSCLC cell lines HCC827 and A549. These synergistic effects were also observed to induce apoptosis and migration inhibition. Further mechanistic studies demonstrated that GGTI‑298 inhibited the activity of Ras homolog family member A (RhoA), and downregulation of RhoA with small interfering RNA impaired the phosphorylation of EGFR, which suggested that EGFR inhibition by GGTI‑298 may be exerted mainly through RhoA mediation. These results presented a novel, promising therapeutic strategy involving a combination of two drugs for targeting EGFR signaling in lung cancer.
Collapse
Affiliation(s)
- Bi-Sheng Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Yu Dai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Wei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan-Ji Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiu-Lin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qi-Yong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One 2018; 13:e0195126. [PMID: 29596489 PMCID: PMC5875862 DOI: 10.1371/journal.pone.0195126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is a complex biological process, which determines the life span of an organism. Insulin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both pathways share common downstream targets that allow competitive crosstalk between these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging of satellite cells. Biological regulatory networks necessary to recreate aging have not yet been discovered. Here, we established a mathematical in silico model that robustly recapitulates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes following a shift from IGF to Wnt signaling. These findings indicate that this shift might cause age-related diseases.
Collapse
|
9
|
Yamaguchi R, Sakamoto A, Yamamoto T, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Surfactant Protein D Inhibits Interleukin-12p40 Production by Macrophages Through the SIRPα/ROCK/ERK Signaling Pathway. Am J Med Sci 2017. [DOI: 10.1016/j.amjms.2017.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Tong J, Li L, Ballermann B, Wang Z. Phosphorylation and Activation of RhoA by ERK in Response to Epidermal Growth Factor Stimulation. PLoS One 2016; 11:e0147103. [PMID: 26816343 PMCID: PMC4729484 DOI: 10.1371/journal.pone.0147103] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
The small GTPase RhoA has been implicated in various cellular activities, including the formation of stress fibers, cell motility, and cytokinesis. In addition to the canonical GTPase cycle, recent findings have suggested that phosphorylation further contributes to the tight regulation of Rho GTPases. Indeed, RhoA is phosphorylated on serine 188 (188S) by a number of protein kinases. We have recently reported that Rac1 is phosphorylated on threonine 108 (108T) by extracellular signal-regulated kinases (ERK) in response to epidermal growth factor (EGF) stimulation. Here, we provide evidence that RhoA is phosphorylated by ERK on 88S and 100T in response to EGF stimulation. We show that ERK interacts with RhoA and that this interaction is dependent on the ERK docking site (D-site) at the C-terminus of RhoA. EGF stimulation enhanced the activation of the endogenous RhoA. The phosphomimetic mutant, GFP-RhoA S88E/T100E, when transiently expressed in COS-7 cells, displayed higher GTP-binding than wild type RhoA. Moreover, the expression of GFP-RhoA S88E/T100E increased actin stress fiber formation in COS-7 cells, which is consistent with its higher activity. In contrast to Rac1, phosphorylation of RhoA by ERK does not target RhoA to the nucleus. Finally, we show that regardless of the phosphorylation status of RhoA and Rac1, substitution of the RhoA PBR with the Rac1 PBR targets RhoA to the nucleus and substitution of Rac1 PBR with RhoA PBR significantly reduces the nuclear localization of Rac1. In conclusion, ERK phosphorylates RhoA on 88S and 100T in response to EGF, which upregulates RhoA activity.
Collapse
Affiliation(s)
- Junfeng Tong
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Laiji Li
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Barbara Ballermann
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Zhixiang Wang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- * E-mail:
| |
Collapse
|
11
|
Ghantous CM, Kobeissy FH, Soudani N, Rahman FA, Al-Hariri M, Itani HA, Sabra R, Zeidan A. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation. Front Pharmacol 2015; 6:240. [PMID: 26557089 PMCID: PMC4615939 DOI: 10.3389/fphar.2015.00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC remodeling.
Collapse
Affiliation(s)
- Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Nadia Soudani
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Farah A Rahman
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| | - Mustafa Al-Hariri
- Department of Biochemistry and Molecular Genetics, American University of Beirut , Beirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine , Nashville, TN, USA
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, American University of Beirut , Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
12
|
Chen K, He H, Xie Y, Zhao L, Zhao S, Wan X, Yang W, Mo Z. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci Rep 2015; 5:11909. [PMID: 26148871 PMCID: PMC4493643 DOI: 10.1038/srep11909] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Multiple symmetric lipomatosis (MSL) is a rare disease characterized by symmetric and abnormal distribution of subcutaneous adipose tissue (SAT); however, the etiology is largely unknown. We report here that miR-125a-3p and miR-483-5p are upregulated in the SAT of MSL patients, promoting adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. TaqMan microRNA (miR) array analysis revealed that 18 miRs were upregulated in the SAT of MSL patients. Transfection of human adipose-derived mesenchymal stem cells (hADSCs) with the individual agomirs of these 18 miRs showed that miR-125a-3p and miR-483-5p significantly promoted adipogenesis. A dual-luciferase assay showed that RhoA and ERK1 were the targets of miR-125a-3p and miR-483-5p, respectively. Moreover, transfection of hADSCs with mimics of miR-125a-3p and miR-483-5p resulted in a pronounced decrease of ERK1/2 phosphorylation in the nucleus; conversely, transfection of hADSCs with inhibitors of miR-125a-3p and miR-483-5p led to a significant increase of ERK1/2 phosphorylation in the nucleus. Most importantly, we found that miR-125a-3p and miR-483-5p promoted de novo adipose tissue formation in nude mice. These results demonstrated that miR-125a-3p and miR-483-5p coordinately promoted adipogenesis through suppressing the RhoA/ROCK1/ERK1/2 pathway. Our findings may provide novel strategies for the management and treatment of MSL or obesity.
Collapse
Affiliation(s)
- Ke Chen
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Honghui He
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yanhong Xie
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Liling Zhao
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Shaoli Zhao
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
13
|
Abstract
To replicate their genomes in cells and generate new progeny, viruses typically require factors provided by the cells that they have infected. Subversion of the cellular machinery that controls replication of the infected host cell is a common activity of many viruses. Viruses employ different strategies to deregulate cell cycle checkpoint controls and modulate cell proliferation pathways. A number of DNA and RNA viruses encode proteins that target critical cell cycle regulators to achieve cellular conditions that are beneficial for viral replication. Many DNA viruses induce quiescent cells to enter the cell cycle; this is thought to increase pools of deoxynucleotides and thus, facilitate viral replication. In contrast, some viruses can arrest cells in a particular phase of the cell cycle that is favorable for replication of the specific virus. Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly. Although beneficial for the viral life cycle, virus-mediated alterations in normal cell cycle control mechanisms could have detrimental effects on cellular physiology and may ultimately contribute to pathologies associated with the viral infection, including cell transformation and cancer progression and maintenance. In this chapter, we summarize various strategies employed by DNA and RNA viruses to modulate the replication cycle of the virus-infected cell. When known, we describe how these virus-associated effects influence replication of the virus and contribute to diseases associated with infection by that specific virus.
Collapse
Affiliation(s)
- Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania USA
| | - Mariana C. Gadaleta
- Dept of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, USA
| |
Collapse
|
14
|
A functional genome-wide in vivo screen identifies new regulators of signalling pathways during early Xenopus embryogenesis. PLoS One 2013; 8:e79469. [PMID: 24244509 PMCID: PMC3828355 DOI: 10.1371/journal.pone.0079469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.
Collapse
|
15
|
Wu SJ, Chen WY, Chou CH, Wu CT. Prototype of integrated pseudo-dynamic crosstalk network for cancer molecular mechanism. Math Biosci 2013; 243:81-98. [DOI: 10.1016/j.mbs.2013.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/30/2022]
|
16
|
Influenza A virus NS1 induces G0/G1 cell cycle arrest by inhibiting the expression and activity of RhoA protein. J Virol 2013; 87:3039-52. [PMID: 23283961 DOI: 10.1128/jvi.03176-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus is an important pathogenic virus known to induce host cell cycle arrest in G(0)/G(1) phase and create beneficial conditions for viral replication. However, how the virus achieves arrest remains unclear. We investigated the mechanisms underlying this process and found that the nonstructural protein 1 (NS1) is required. Based on this finding, we generated a viable influenza A virus (H1N1) lacking the entire NS1 gene to study the function of this protein in cell cycle regulation. In addition to some cell cycle regulators that were changed, the concentration and activity of RhoA protein, which is thought to be pivotal for G(1)/S phase transition, were also decreased with overexpressing NS1. And in the meantime, the phosphorylation level of cell cycle regulator pRb, downstream of RhoA kinase, was decreased in an NS1-dependent manner. These findings indicate that the NS1 protein induces G(0)/G(1) cell cycle arrest mainly through interfering with the RhoA/pRb signaling cascade, thus providing favorable conditions for viral protein accumulation and replication. We further investigated the NS1 protein of avian influenza virus (H5N1) and found that it can also decrease the expression and activity of RhoA, suggesting that the H5N1 virus may affect the cell cycle through the same mechanism. The NS1/RhoA/pRb cascade, which can induce the G(0)/G(1) cell cycle arrest identified here, provides a unified explanation for the seemingly different NS1 functions involved in viral replication events. Our findings shed light on the mechanism of influenza virus replication and open new avenues for understanding the interaction between pathogens and hosts.
Collapse
|
17
|
Abstract
Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals, activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon changes in the rate of reactions and the topology of the network.
Collapse
|
18
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1176] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
19
|
Chan FK, Chung SS, Ng IO, Chung SK. The RhoA GTPase-Activating Protein DLC2 Modulates RhoA Activity and Hyperalgesia to Noxious Thermal and Inflammatory Stimuli. Neurosignals 2012; 20:112-26. [DOI: 10.1159/000331240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/26/2011] [Indexed: 01/09/2023] Open
|
20
|
Simulating EGFR-ERK signaling control by scaffold proteins KSR and MP1 reveals differential ligand-sensitivity co-regulated by Cbl-CIN85 and endophilin. PLoS One 2011; 6:e22933. [PMID: 21829671 PMCID: PMC3148240 DOI: 10.1371/journal.pone.0022933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
ERK activation is enhanced by the scaffolding proteins KSR and MP1, localized near the cell membrane and late endosomes respectively, but little is known about their dynamic interplay. We develop here a mathematical model with ordinary differential equations to describe the dynamic activation of EGFR-ERK signaling under a conventional pathway without scaffolds, a KSR-scaffolded pathway, and an MP1-scaffolded pathway, and their impacts were examined under the influence of the endosomal regulators, Cbl-CIN85 and Endophilin A1. This new integrated model, validated against experimental results and computational constraints, shows that changes of ERK activation and EGFR endocytosis in response to EGF concentrations (i.e ligand sensitivity) depend on these scaffold proteins and regulators. The KSR-scaffolded and the conventional pathways act synergistically and are sensitive to EGF stimulation. When the KSR level is high, the sensitivity of ERK activation from this combined pathway remains low when Cbl-CIN85 level is low. But, such sensitivity can be increased with increasing levels of Endophilin if Cbl-CIN85 level becomes high. However, reduced KSR levels already present high sensitivity independent of Endophilin levels. In contrast, ERK activation by MP1 is additive to that of KSR but it shows little ligand-sensitivity under high levels of EGF. This can be partly reversed by increasing level of Endophilin while keeping Cbl-CIN85 level low. Further analyses showed that high levels of KSR affect ligand-sensitivity of EGFR endocytosis whereas MP1 ensures the robustness of endosomal ERK activation. These simulations constitute a multi-dimensional exploration of how EGF-dependent EGFR endocytosis and ERK activation are dynamically affected by scaffolds KSR and MP1, co-regulated by Cbl-CIN85 and Endophilin A1. Together, these results provide a detailed and quantitative demonstration of how regulators and scaffolds can collaborate to fine-tune the ligand-dependent sensitivity of EGFR endocytosis and ERK activation which could underlie differences during normal physiology, disease states and drug responses.
Collapse
|
21
|
Naruo Y, Nagashima T, Ushikoshi-Nakayama R, Saeki Y, Nakakuki T, Naka T, Tanaka H, Tsai SF, Okada-Hatakeyama M. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity. BMC SYSTEMS BIOLOGY 2011; 5:29. [PMID: 21333004 PMCID: PMC3224393 DOI: 10.1186/1752-0509-5-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/18/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) signaling plays an important role in the regulation of cell proliferation, survival, metastasis, and invasion in various tumors. Earlier studies showed that the EGFR is frequently overexpressed in non-small-cell lung cancer (NSCLC) and EGFR mutations at specific amino acid residues in the kinase domain induce altered responsiveness to gefitinib, a small molecule EGFR tyrosine kinase inhibitor. However, the mechanism underlying the drug response modulated by EGFR mutation is still largely unknown. To elucidate drug response in EGFR signal transduction pathway in which complex dynamics of multiple molecules involved, a systematic approach is necessary. In this paper, we performed experimental and computational analyses to clarify the underlying mechanism of EGFR signaling and cell-specific gefitinib responsiveness in three H1299-derived NSCLC cell lines; H1299 wild type (H1299WT), H1299 with an overexpressed wild type EGFR (H1299EGFR-WT), and H1299 with an overexpressed mutant EGFR L858R (H1299L858R; gefitinib sensitive mutant). RESULTS We predicted and experimentally verified that Mig6, which is a known negative regulator of EGFR and specifically expressed in H1299L858R cells, synergized with gefitinib to suppress cellular growth. Computational analyses indicated that this inhibitory effect is amplified at the phosphorylation/dephosphorylation steps of MEK and ERK. CONCLUSIONS Thus, we showed that L858R receptor mutation in combination with expression of its negative regulator, Mig6, alters signaling outcomes and results in variable drug sensitivity.
Collapse
Affiliation(s)
- Yoshimi Naruo
- Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology (RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao L, Yan K, Winkel L, de Graauw M, Verbeek FJ. Pattern Recognition in High-Content Cytomics Screens for Target Discovery - Case Studies in Endocytosis. PATTERN RECOGNITION IN BIOINFORMATICS 2011. [DOI: 10.1007/978-3-642-24855-9_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
23
|
Islam MR, Jimenez T, Pelham C, Rodova M, Puri S, Magenheimer BS, Maser RL, Widmann C, Calvet JP. MAP/ERK kinase kinase 1 (MEKK1) mediates transcriptional repression by interacting with polycystic kidney disease-1 (PKD1) promoter-bound p53 tumor suppressor protein. J Biol Chem 2010; 285:38818-31. [PMID: 20923779 DOI: 10.1074/jbc.m110.145284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades regulate a wide variety of cellular processes that ultimately depend on changes in gene expression. We have found a novel mechanism whereby one of the key MAP3 kinases, Mekk1, regulates transcriptional activity through an interaction with p53. The tumor suppressor protein p53 down-regulates a number of genes, including the gene most frequently mutated in autosomal dominant polycystic kidney disease (PKD1). We have discovered that Mekk1 translocates to the nucleus and acts as a co-repressor with p53 to down-regulate PKD1 transcriptional activity. This repression does not require Mekk1 kinase activity, excluding the need for an Mekk1 phosphorylation cascade. However, this PKD1 repression can also be induced by the stress-pathway stimuli, including TNFα, suggesting that Mekk1 activation induces both JNK-dependent and JNK-independent pathways that target the PKD1 gene. An Mekk1-p53 interaction at the PKD1 promoter suggests a new mechanism by which abnormally elevated stress-pathway stimuli might directly down-regulate the PKD1 gene, possibly causing haploinsufficiency and cyst formation.
Collapse
Affiliation(s)
- M Rafiq Islam
- Department of Chemistry/Physics, Northwest Missouri State University, Maryville, Missouri 64468, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zou X, Xiang X, Chen Y, Peng T, Luo X, Pan Z. Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization. J Theor Biol 2010; 265:691-703. [PMID: 20553733 DOI: 10.1016/j.jtbi.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 12/25/2022]
Abstract
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. As one part of their survival strategies, many viruses have evolved mechanisms to counteract the host type I interferon (IFN-alpha/beta) responses. In this study, we attempt to investigate virus- and double-strand RNA (dsRNA)-triggered type I IFN signaling pathways and understand the inhibition of IFN-alpha/beta induction by viral proteins using mathematical modeling and quantitative analysis. Based on available literature and our experimental data, we develop a mathematical model of virus- and dsRNA-triggered signaling pathways leading to type I IFN gene expression during the primary response, and use the genetic algorithm to optimize all rate constants in the model. The consistency between numerical simulation results and biological experimental data demonstrates that our model is reasonable. Further, we use the model to predict the following phenomena: (1) the dose-dependent inhibition by classical swine fever virus (CSFV) N(pro) or E(rns) protein is observed at a low dose and can reach a saturation above a certain dose, not an increase; (2) E(rns) and N(pro) have no synergic inhibitory effects on IFN-beta induction; (3) the different characters in an important transcription factor, phosphorylated IRF3 (IRF3p), are exhibited because N(pro) or E(rns) counteracted dsRNA- and virus-triggered IFN-beta induction by targeting the different molecules in the signaling pathways and (4) N(pro) inhibits the IFN-beta expression not only by interacting with IFR3 but also by affecting its complex with MITA. Our approaches help to gain insight into system properties and rational therapy design, as well as to generate hypotheses for further research.
Collapse
Affiliation(s)
- Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
25
|
Fauré A, Thieffry D. Logical modelling of cell cycle control in eukaryotes: a comparative study. MOLECULAR BIOSYSTEMS 2009; 5:1569-81. [PMID: 19763341 DOI: 10.1039/b907562n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamical modelling is at the core of the systems biology paradigm. However, the development of comprehensive quantitative models is complicated by the daunting complexity of regulatory networks controlling crucial biological processes such as cell division, the paucity of currently available quantitative data, as well as the limited reproducibility of large-scale experiments. In this context, qualitative modelling approaches offer a useful alternative or complementary framework to build and analyse simplified, but still rigorous dynamical models. This point is illustrated here by analysing recent logical models of the molecular network controlling mitosis in different organisms, from yeasts to mammals. After a short introduction covering cell cycle and logical modelling, we compare the assumptions and properties underlying these different models. Next, leaning on their transposition into a common logical framework, we compare their functional structure in terms of regulatory circuits. Finally, we discuss assets and prospects of qualitative approaches for the modelling of the cell cycle.
Collapse
Affiliation(s)
- Adrien Fauré
- Aix-Marseille University & INSERM U928-TAGC, Marseille, France.
| | | |
Collapse
|
26
|
Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 2009; 5:290. [PMID: 19638971 PMCID: PMC2724977 DOI: 10.1038/msb.2009.47] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/15/2009] [Indexed: 12/28/2022] Open
Abstract
In past years, comprehensive representations of cell signalling pathways have been developed by manual curation from literature, which requires huge effort and would benefit from information stored in databases and from automatic retrieval and integration methods. Once a reconstruction of the network of interactions is achieved, analysis of its structural features and its dynamic behaviour can take place. Mathematical modelling techniques are used to simulate the complex behaviour of cell signalling networks, which ultimately sheds light on the mechanisms leading to complex diseases or helps in the identification of drug targets. A variety of databases containing information on cell signalling pathways have been developed in conjunction with methodologies to access and analyse the data. In principle, the scenario is prepared to make the most of this information for the analysis of the dynamics of signalling pathways. However, are the knowledge repositories of signalling pathways ready to realize the systems biology promise? In this article we aim to initiate this discussion and to provide some insights on this issue.
Collapse
|