1
|
Imai T, Feng M, Makiuchi T, Watanabe K, Cheng X, Tachibana H. The octapeptide-repeat surface protein of Entamoeba nuttalli is a novel virulence factor that promotes adherence to host cells. Biochem Biophys Res Commun 2024; 734:150468. [PMID: 39088979 DOI: 10.1016/j.bbrc.2024.150468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis, and its natural host is Macaca species. A unique E. nuttalli specific surface protein (PTORS) containing 42 repeats of octapeptide was identified by comparative genomic analysis of Entamoeba species. We aimed to elucidate the function of this protein. When trophozoites from various E. nuttalli strains were examined by immunofluorescence microscopy and flow cytometry using a PTORS-specific monoclonal antibody, only a limited proportion of trophozoites were stained, indicating that the protein was not commonly expressed in all E. nuttalli trophozoite. The proportion of trophozoites expressing PTORS increased after passage in hamster livers, suggesting that the protein functions in the virulence of trophozoites in the liver tissue. Single-cell analysis revealed that in the cluster including trophozoites with PTORS gene expression, genes of virulence-related proteins were also upregulated. Trophozoites of E. histolytica transfected with PTORS showed enhanced adherence and subsequent phagocytic activity towards human Jurkat cells, independent of the lectin. E. histolytica trophozoites expressing PTORS formed larger liver abscesses in hamsters. These results demonstrate that PTORS is a novel virulence factor in Entamoeba species.
Collapse
Affiliation(s)
- Tatsuya Imai
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Takashi Makiuchi
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Koji Watanabe
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan
| | - Xunjia Cheng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Japan.
| |
Collapse
|
2
|
Srivastava SK, Parker C, O'Brien CN, Tucker MS, Thompson PC, Rosenthal BM, Dubey JP, Khan A, Jenkins MC. Chromosomal scale assembly reveals localized structural variants in avian caecal coccidian parasite Eimeria tenella. Sci Rep 2023; 13:22802. [PMID: 38129566 PMCID: PMC10739835 DOI: 10.1038/s41598-023-50117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Eimeria tenella is a major cause of caecal coccidiosis in commercial poultry chickens worldwide. Here, we report chromosomal scale assembly of Eimeria tenella strain APU2, a strain isolated from commercial broiler chickens in the U.S. We obtained 100× sequencing Oxford Nanopore Technology (ONT) and more than 800× Coverage of Illumina Next-Seq. We created the assembly using the hybrid approach implemented in MaSuRCA, achieving a contiguous 51.34 Mb chromosomal-scale scaffolding enabling identification of structural variations. The AUGUSTUS pipeline predicted 8060 genes, and BUSCO deemed the genomes 99% complete; 6278 (78%) genes were annotated with Pfam domains, and 1395 genes were assigned GO-terms. Comparing E. tenella strains (APU2, US isolate and Houghton, UK isolate) derived Houghton strain of E. tenella revealed 62,905 high stringency differences, of which 45,322 are single nucleotide polymorphisms (SNPs) (0.088%). The rate of transitions/transversions among the SNPs are 1.63 ts/tv. The strains possess conserved gene order but have profound sequence heterogeneity in a several chromosomal segments (chr 2, 11 and 15). Genic and intergenic variation in defined gene families was evaluated between the two strains to possibly identify sequences under selection. The average genic nucleotide diversity of 2.8 with average 2 kb gene length (0.145%) at genic level. We examined population structure using available E. tenella sequences in NCBI, revealing that the two E. tenella isolates from the U.S. (E. tenella APU2 and Wisconsin, "ERR296879") share a common maternal inheritance with the E. tenella Houghton. Our chromosomal level assembly promotes insight into Eimeria biology and evolution, hastening drug discovery and vaccine development.
Collapse
Affiliation(s)
- Subodh K Srivastava
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| | - Carolyn Parker
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Celia N O'Brien
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Matthew S Tucker
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Peter C Thompson
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Benjamin M Rosenthal
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Jitender P Dubey
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Asis Khan
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA
| | - Mark C Jenkins
- USDA-ARS Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, BARC-East Building 1040, 10300 Baltimore Ave., Beltsville, MD, 20705, USA.
| |
Collapse
|
3
|
Genome Assembly and Genome Annotation of Leishmania martiniquensis Isolated from a Leishmaniasis Patient in Thailand. J Parasitol Res 2022; 2022:8768574. [PMID: 35371566 PMCID: PMC8965598 DOI: 10.1155/2022/8768574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is a parasitic disease caused by Leishmania spp. with worldwide distribution. Autochthonous leishmaniasis has been reported to result from the infection by Leishmania martiniquensis in Thailand. This species was isolated in culture and subjected to high-throughput whole-genome sequencing. A total of 30.8 Mb in 36 chromosomes of the whole genome was assembled, annotated, and characterized. The L. martiniquensis under study was shown to segregate into the same clade and thus closely related to the previously identified L. martiniquensis (LU_Lmar_1.0), as determined by phylogenetic analysis of their genomic sequences along with those of representative kinetoplastid species. The total number of open reading frames genomewide predicts 8,209 protein-coding genes, of which 359 are putative virulence factors, including two previously known, e.g., cysteine proteinase C and superoxide dismutase B1. The results obtained from this study will be useful for further annotation and comparison with other Leishmania martiniquensis in the future.
Collapse
|
4
|
Proteomic Profiling and In Silico Characterization of the Secretome of Anisakis simplex Sensu Stricto L3 Larvae. Pathogens 2022; 11:pathogens11020246. [PMID: 35215189 PMCID: PMC8879239 DOI: 10.3390/pathogens11020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex sensu stricto (s.s.) L3 larvae are one of the major etiological factors of human anisakiasis, which is one of the most important foodborne parasitic diseases. Nevertheless, to date, Anisakis secretome proteins, with important functions in nematode pathogenicity and host-parasite interactions, have not been extensively explored. Therefore, the aim of this study was to identify and characterize the excretory-secretory (ES) proteins of A. simplex L3 larvae. ES proteins of A. simplex were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the identified proteins were then analyzed using bioinformatics tools. A total of 158 proteins were detected. Detailed bioinformatic characterization of ES proteins was performed, including Gene Ontology (GO) analysis, identification of enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, protein family classification, secretory pathway prediction, and detection of essential proteins. Furthermore, of all detected ES proteins, 1 was identified as an allergen, which was Ani s 4, and 18 were potential allergens, most of which were homologs of nematode and arthropod allergens. Nine potential pathogenicity-related proteins were predicted, which were predominantly homologs of chaperones. In addition, predicted host-parasite interactions between the Anisakis ES proteins and both human and fish proteins were identified. In conclusion, this study represents the first global analysis of Anisakis ES proteins. The findings provide a better understanding of survival and invasion strategies of A. simplex L3 larvae.
Collapse
|
5
|
Mthethwa NP, Amoah ID, Reddy P, Bux F, Kumari S. A review on application of next-generation sequencing methods for profiling of protozoan parasites in water: Current methodologies, challenges, and perspectives. J Microbiol Methods 2021; 187:106269. [PMID: 34129906 DOI: 10.1016/j.mimet.2021.106269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023]
Abstract
The advancement in metagenomic techniques has provided novel tools for profiling human parasites in environmental matrices, such as water and wastewater. However, application of metagenomic techniques for the profiling of protozoan parasites in environmental matrices is not commonly reported in the literature. The key factors leading to the less common use of metagenomics are the complexity and large eukaryotic genome, the prevalence of small parasite populations in environmental samples compared to bacteria, difficulties in extracting DNA from (oo)cysts, and limited reference databases for parasites. This calls for further research to develop optimized methods specifically looking at protozoan parasites in the environment. This study reviews the current workflow, methods and provide recommendations for the standardization of techniques. The article identifies and summarizes the key methods, advantages, and limitations associated with metagenomic analysis, like sample pre-processing, DNA extraction, sequencing approaches, and analysis methods. The study enhances the understanding and application of standardized protocols for profiling of protozoan parasite community from highly complexe samples and further creates a resourceful comparison among datasets without any biases.
Collapse
Affiliation(s)
- N P Mthethwa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa; Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - I D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - P Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, Durban 4000, South Africa
| | - F Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - S Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
6
|
Byadgi O, Marroni F, Dirks R, Massimo M, Volpatti D, Galeotti M, Beraldo P. Transcriptome Analysis of Amyloodinium ocellatum Tomonts Revealed Basic Information on the Major Potential Virulence Factors. Genes (Basel) 2020; 11:genes11111252. [PMID: 33114415 PMCID: PMC7692099 DOI: 10.3390/genes11111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/16/2022] Open
Abstract
The ectoparasite protozoan Amyloodinium ocellatum (AO) is the etiological agent of amyloodiniosis in European seabass (Dicentrarchus labrax) (ESB). There is a lack of information about basic molecular data on AO biology and its interaction with the host. Therefore, de novo transcriptome sequencing of AO tomonts was performed. AO trophonts were detached from infested ESB gills, and quickly becoming early tomonts were purified by Percoll® density gradient. Tomont total RNA was processed and quality was assessed immediately. cDNA libraries were constructed using TruSeq® Stranded mRNA kit and sequenced using Illumina sequencer. CLC assembly was used to generate the Transcriptome assembly of AO tomonts. Out of 48,188 contigs, 56.12% belong to dinophyceae wherein Symbiodinium microadriaticum had 94.61% similarity among dinophyceae. Functional annotations of contigs indicated that 12,677 had associated GO term, 9005 with KEGG term. The contigs belonging to dinophyceae resulted in the detection of several peptidases. A BLAST search for known virulent factors from the virulence database resulted in hits to Rab proteins, AP120, Ribosomal phosphoprotein, Heat-shock protein70, Casein kinases, Plasmepsin IV, and Brucipain. Hsp70 and casein kinase II alpha were characterized in-silico. Altogether, these results provide a reference database in understanding AO molecular biology, aiding to the development of novel diagnostics and future vaccines.
Collapse
Affiliation(s)
- Omkar Byadgi
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy; (M.M.); (D.V.); (M.G.); (P.B.)
- Correspondence: ; Tel.: +39-0432-558197
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
- IGA Technology Services, Via Jacopo Linussio, 51, 33100 Udine, Italy
| | - Ron Dirks
- Future Genomics Technologies B.V, 2333 Leiden, The Netherlands;
| | - Michela Massimo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy; (M.M.); (D.V.); (M.G.); (P.B.)
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy; (M.M.); (D.V.); (M.G.); (P.B.)
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy; (M.M.); (D.V.); (M.G.); (P.B.)
| | - Paola Beraldo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, 33100 Udine, Italy; (M.M.); (D.V.); (M.G.); (P.B.)
| |
Collapse
|
7
|
Whole genome sequencing of Entamoeba nuttalli reveals mammalian host-related molecular signatures and a novel octapeptide-repeat surface protein. PLoS Negl Trop Dis 2019; 13:e0007923. [PMID: 31805050 PMCID: PMC6917348 DOI: 10.1371/journal.pntd.0007923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/17/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The enteric protozoa Entamoeba histolytica is the causative agent of amebiasis, which is one of the most common parasitic diseases in developed and developing countries. Entamoeba nuttalli is the genetically closest species to E. histolytica in current phylogenetic analyses of Entamoeba species, and is prevalent in wild macaques. Therefore, E. nuttalli may be a key organism in which to investigate molecules required for infection of human or non-human primates. To explore the molecular signatures of host-parasite interactions, we conducted de novo assembly of the E. nuttalli genome, utilizing self-correction of PacBio long reads and polishing corrected reads using Illumina short reads, followed by comparative genomic analysis with two other mammalian and a reptilian Entamoeba species. The final draft assembly of E. nuttalli included 395 contigs with a total length of approximately 23 Mb, and 9,647 predicted genes, of which 6,940 were conserved with E. histolytica. In addition, we found an E. histolytica-specific repeat known as ERE2 in the E. nuttalli genome. GO-term enrichment analysis of mammalian host-related molecules indicated diversification of transmembrane proteins, including AIG1 family and BspA-like proteins that may be involved in the host-parasite interaction. Furthermore, we identified an E. nuttalli-specific protein that contained 42 repeats of an octapeptide ([G,E]KPTDTPS). This protein was shown to be localized on the cell surface using immunofluorescence. Since many repeat-containing proteins in parasites play important roles in interactions with host cells, this unique octapeptide repeat-containing protein may be involved in colonization of E. nuttalli in the intestine of macaques. Overall, our draft assembly provides a valuable resource for studying Entamoeba evolution and host-parasite selection.
Collapse
|
8
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
9
|
Mendes T, Lobo F, Rodrigues T, Rodrigues-Luiz G, daRocha W, Fujiwara R, Teixeira S, Bartholomeu D. Repeat-Enriched Proteins Are Related to Host Cell Invasion and Immune Evasion in Parasitic Protozoa. Mol Biol Evol 2013; 30:951-63. [DOI: 10.1093/molbev/mst001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Toward an open-access global database for mapping, control, and surveillance of neglected tropical diseases. PLoS Negl Trop Dis 2011; 5:e1404. [PMID: 22180793 PMCID: PMC3236728 DOI: 10.1371/journal.pntd.0001404] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 10/11/2011] [Indexed: 01/17/2023] Open
Abstract
Background After many years of general neglect, interest has grown and efforts came under way for the mapping, control, surveillance, and eventual elimination of neglected tropical diseases (NTDs). Disease risk estimates are a key feature to target control interventions, and serve as a benchmark for monitoring and evaluation. What is currently missing is a georeferenced global database for NTDs providing open-access to the available survey data that is constantly updated and can be utilized by researchers and disease control managers to support other relevant stakeholders. We describe the steps taken toward the development of such a database that can be employed for spatial disease risk modeling and control of NTDs. Methodology With an emphasis on schistosomiasis in Africa, we systematically searched the literature (peer-reviewed journals and ‘grey literature’), contacted Ministries of Health and research institutions in schistosomiasis-endemic countries for location-specific prevalence data and survey details (e.g., study population, year of survey and diagnostic techniques). The data were extracted, georeferenced, and stored in a MySQL database with a web interface allowing free database access and data management. Principal Findings At the beginning of 2011, our database contained more than 12,000 georeferenced schistosomiasis survey locations from 35 African countries available under http://www.gntd.org. Currently, the database is expanded to a global repository, including a host of other NTDs, e.g. soil-transmitted helminthiasis and leishmaniasis. Conclusions An open-access, spatially explicit NTD database offers unique opportunities for disease risk modeling, targeting control interventions, disease monitoring, and surveillance. Moreover, it allows for detailed geostatistical analyses of disease distribution in space and time. With an initial focus on schistosomiasis in Africa, we demonstrate the proof-of-concept that the establishment and running of a global NTD database is feasible and should be expanded without delay. There is growing interest in the scientific community, health ministries, and other organizations to control and eventually eliminate neglected tropical diseases (NTDs). Control efforts require reliable maps of NTD distribution estimated from appropriate models and survey data on the number of infected people among those examined at a given location. This kind of data is often available in the literature as part of epidemiological studies. However, an open-access database compiling location-specific survey data does not yet exist. We address this problem through a systematic literature review, along with contacting ministries of health, and research institutions to obtain disease data, including details on diagnostic techniques, demographic characteristics of the surveyed individuals, and geographical coordinates. All data were entered into a database which is freely accessible via the Internet (http://www.gntd.org). In contrast to similar efforts of the Global Atlas of Helminth Infections (GAHI) project, the survey data are not only displayed in form of maps but all information can be browsed, based on different search criteria, and downloaded as Excel files for further analyses. At the beginning of 2011, the database included over 12,000 survey locations for schistosomiasis across Africa, and it is continuously updated to cover other NTDs globally.
Collapse
|
11
|
Ramana J, Gupta D. FaaPred: a SVM-based prediction method for fungal adhesins and adhesin-like proteins. PLoS One 2010; 5:e9695. [PMID: 20300572 PMCID: PMC2837750 DOI: 10.1371/journal.pone.0009695] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 02/20/2010] [Indexed: 11/19/2022] Open
Abstract
Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections.
Collapse
Affiliation(s)
- Jayashree Ramana
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Dinesh Gupta
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|