1
|
Rakheja I, Bharti V, Sahana S, Das PK, Ranjan G, Kumar A, Jain N, Maiti S. Development of an In Silico Platform (TRIPinRNA) for the Identification of Novel RNA Intramolecular Triple Helices and Their Validation Using Biophysical Techniques. Biochemistry 2024. [PMID: 39668452 DOI: 10.1021/acs.biochem.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
There are surprisingly few RNA intramolecular triple helices known in the human transcriptome. The structure has been most well-studied as a stability-element at the 3' end of lncRNAs such as MALAT1 and NEAT1, but the intrigue remains whether it is indeed as rare as it is understood to be or just waiting for a closer look from a new vantage point. TRIPinRNA, our Python-based in silico platform, allows for a comprehensive sequence-pattern search for potential triplex formation in the human transcriptome─noncoding as well as coding. Using this tool, we report the putative occurrence of homopyrimidine type (canonical) triple helices as well as heteropurine-pyrimidine strand type (noncanonical) triple helices in the human transcriptome and validate the formation of both types of triplexes using biophysical approaches. We find that the occurrence of triplex structures has a strong correlation with local GC content, which might be influencing their formation. By employing a search that encompasses both canonical and noncanonical triplex structures across the human transcriptome, this study enriches the understanding of RNA biology. Lastly, TRIPinRNA can be utilized in finding triplex structures for any organism with an annotated transcriptome.
Collapse
Affiliation(s)
- Isha Rakheja
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Bharti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - S Sahana
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Gyan Ranjan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Institute of Genomics and Integrative Biology (IGIB)-National Chemical Laboratory (NCL) Joint Center, Council of Scientific and Industrial Research-NCL, Pune 411008, India
| |
Collapse
|
2
|
Ylagan M, Xu Q, Kowalski J. TTSBBC: triplex target site biomarkers and barcodes in cancer. Nucleic Acids Res 2024; 52:W547-W555. [PMID: 38661214 PMCID: PMC11223863 DOI: 10.1093/nar/gkae312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
The technology of triplex-forming oligonucleotides (TFOs) provides an approach to manipulate genes at the DNA level. TFOs bind to specific sites on genomic DNA, creating a unique intermolecular triple-helix DNA structure through Hoogsteen hydrogen bonding. This targeting by TFOs is site-specific and the locations TFOs bind are referred to as TFO target sites (TTS). Triplexes have been observed to selectively influence gene expression, homologous recombination, mutations, protein binding, and DNA damage. These sites typically feature a poly-purine sequence in duplex DNA, and the characteristics of these TTS sequences greatly influence the formation of the triplex. We introduce TTSBBC, a novel analysis and visualization platform designed to explore features of TTS sequences to enable users to design and validate TTSs. The web server can be freely accessed at https://kowalski-labapps.dellmed.utexas.edu/TTSBBC/.
Collapse
Affiliation(s)
- Maya Ylagan
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Qi Xu
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| | - Jeanne Kowalski
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX78712, USA
| |
Collapse
|
3
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
4
|
Shi X, Teng H, Sun Z. An updated overview of experimental and computational approaches to identify non-canonical DNA/RNA structures with emphasis on G-quadruplexes and R-loops. Brief Bioinform 2022; 23:bbac441. [PMID: 36208174 PMCID: PMC9677470 DOI: 10.1093/bib/bbac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple types of non-canonical nucleic acid structures play essential roles in DNA recombination and replication, transcription, and genomic instability and have been associated with several human diseases. Thus, an increasing number of experimental and bioinformatics methods have been developed to identify these structures. To date, most reviews have focused on the features of non-canonical DNA/RNA structure formation, experimental approaches to mapping these structures, and the association of these structures with diseases. In addition, two reviews of computational algorithms for the prediction of non-canonical nucleic acid structures have been published. One of these reviews focused only on computational approaches for G4 detection until 2020. The other mainly summarized the computational tools for predicting cruciform, H-DNA and Z-DNA, in which the algorithms discussed were published before 2012. Since then, several experimental and computational methods have been developed. However, a systematic review including the conformation, sequencing mapping methods and computational prediction strategies for these structures has not yet been published. The purpose of this review is to provide an updated overview of conformation, current sequencing technologies and computational identification methods for non-canonical nucleic acid structures, as well as their strengths and weaknesses. We expect that this review will aid in understanding how these structures are characterised and how they contribute to related biological processes and diseases.
Collapse
Affiliation(s)
- Xiaohui Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Ouhai District, Wenzhou 325000, China
| | - Zhongsheng Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The first Affiliated Hospital of WMU; Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Center for Excellence in Biotic Interactions and State Key Laboratory of Integrated Management of Pest Insects and Rodents, University of Chinese Academy of Sciences; Institute of Genomic Medicine, Wenzhou Medical University; IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
5
|
Laugel M, Lecomte E, Ayuso E, Adjali O, Mével M, Penaud-Budloo M. The Diversity of Parvovirus Telomeres. Vet Med Sci 2022. [DOI: 10.5772/intechopen.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parvoviridae are small viruses composed of a 4–6 kb linear single-stranded DNA protected by an icosahedral capsid. The viral genes coding non-structural (NS), capsid, and accessory proteins are flanked by intriguing sequences, namely the telomeres. Telomeres are essential for parvovirus genome replication, encapsidation, and integration. Similar (homotelomeric) or different (heterotelomeric) at the two ends, they all contain imperfect palindromes that fold into hairpin structures. Up to 550 nucleotides in length, they harbor a wide variety of motifs and structures known to be recognized by host cell factors. Our study aims to comprehensively analyze parvovirus ends to better understand the role of these particular sequences in the virus life cycle. Forty Parvoviridae terminal repeats (TR) were publicly available in databases. The folding and specific DNA secondary structures, such as G4 and triplex, were systematically analyzed. A principal component analysis was carried out from the prediction data to determine variables signing parvovirus groups. A special focus will be put on adeno-associated virus (AAV) inverted terminal repeats (ITR), a member of the genus Dependoparvovirus used as vectors for gene therapy. This chapter highlights the diversity of the Parvoviridae telomeres regarding shape and secondary structures, providing information that could be relevant for virus-host interactions studies.
Collapse
|
6
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Edward A. Curtis
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| |
Collapse
|
7
|
Abstract
Most of the transcribed human genome codes for noncoding RNAs (ncRNAs), and long noncoding RNAs (lncRNAs) make for the lion's share of the human ncRNA space. Despite growing interest in lncRNAs, because there are so many of them, and because of their tissue specialization and, often, lower abundance, their catalog remains incomplete and there are multiple ongoing efforts to improve it. Consequently, the number of human lncRNA genes may be lower than 10,000 or higher than 200,000. A key open challenge for lncRNA research, now that so many lncRNA species have been identified, is the characterization of lncRNA function and the interpretation of the roles of genetic and epigenetic alterations at their loci. After all, the most important human genes to catalog and study are those that contribute to important cellular functions-that affect development or cell differentiation and whose dysregulation may play a role in the genesis and progression of human diseases. Multiple efforts have used screens based on RNA-mediated interference (RNAi), antisense oligonucleotide (ASO), and CRISPR screens to identify the consequences of lncRNA dysregulation and predict lncRNA function in select contexts, but these approaches have unresolved scalability and accuracy challenges. Instead-as was the case for better-studied ncRNAs in the past-researchers often focus on characterizing lncRNA interactions and investigating their effects on genes and pathways with known functions. Here, we focus most of our review on computational methods to identify lncRNA interactions and to predict the effects of their alterations and dysregulation on human disease pathways.
Collapse
|
8
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2021; 61:e202109347. [PMID: 34559935 PMCID: PMC9298802 DOI: 10.1002/anie.202109347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.
Collapse
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| |
Collapse
|
9
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
10
|
Abstract
Background:
Although most nucleotides in the genome form canonical double-stranded
B-DNA, many repeated sequences transiently present as non-canonical conformations (non-B
DNA) such as triplexes, quadruplexes, Z-DNA, cruciforms, and slipped/hairpins. Those noncanonical
DNAs (ncDNAs) are not only associated with many genetic events such as replication,
transcription, and recombination, but are also related to the genetic instability that results in the
predisposition to disease. Due to the crucial roles of ncDNAs in cellular and genetic functions,
various computational methods have been implemented to predict sequence motifs that generate
ncDNA.
Objective:
Here, we review strategies for the identification of ncDNA motifs across the whole
genome, which is necessary for further understanding and investigation of the structure and
function of ncDNAs.
Conclusion:
There is a great demand for computational prediction of non-canonical DNAs that
play key functional roles in gene expression and genome biology. In this study, we review the
currently available computational methods for predicting the non-canonical DNAs in the genome.
Current studies not only provide an insight into the computational methods for predicting the
secondary structures of DNA but also increase our understanding of the roles of non-canonical
DNA in the genome.
Collapse
Affiliation(s)
- Nazia Parveen
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Amen Shamim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Seunghee Cho
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| |
Collapse
|
11
|
Hon J, Martínek T, Zendulka J, Lexa M. pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics 2018; 33:3373-3379. [PMID: 29077807 DOI: 10.1093/bioinformatics/btx413] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Motivation G-quadruplexes (G4s) are one of the non-B DNA structures easily observed in vitro and assumed to form in vivo. The latest experiments with G4-specific antibodies and G4-unwinding helicase mutants confirm this conjecture. These four-stranded structures have also been shown to influence a range of molecular processes in cells. As G4s are intensively studied, it is often desirable to screen DNA sequences and pinpoint the precise locations where they might form. Results We describe and have tested a newly developed Bioconductor package for identifying potential quadruplex-forming sequences (PQS). The package is easy-to-use, flexible and customizable. It allows for sequence searches that accommodate possible divergences from the optimal G4 base composition. A novel aspect of our research was the creation and training (parametrization) of an advanced scoring model which resulted in increased precision compared to similar tools. We demonstrate that the algorithm behind the searches has a 96% accuracy on 392 currently known and experimentally observed G4 structures. We also carried out searches against the recent G4-seq data to verify how well we can identify the structures detected by that technology. The correlation with pqsfinder predictions was 0.622, higher than the correlation 0.491 obtained with the second best G4Hunter. Availability and implementation http://bioconductor.org/packages/pqsfinder/ This paper is based on pqsfinder-1.4.1. Contact lexa@fi.muni.cz. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jirí Hon
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Tomáš Martínek
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Jaroslav Zendulka
- IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Matej Lexa
- Department of Information Technology, Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
| |
Collapse
|
12
|
Berselli M, Lavezzo E, Toppo S. NeSSie: a tool for the identification of approximate DNA sequence symmetries. Bioinformatics 2018. [DOI: 10.1093/bioinformatics/bty142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michele Berselli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Singh HN, Rajeswari MR. DNA-triplex Forming Purine Repeat Containing Genes in Acinetobacter baumannii and Their Association with Infection and Adaptation. Front Cell Infect Microbiol 2017; 7:250. [PMID: 28670571 PMCID: PMC5472653 DOI: 10.3389/fcimb.2017.00250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Himanshu N Singh
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
14
|
p53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS One 2016; 11:e0167439. [PMID: 27907175 PMCID: PMC5131957 DOI: 10.1371/journal.pone.0167439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed.
Collapse
|
15
|
Fatthalla MI, Pedersen EB. Unexpected Hydration of a Triple Bond During DNA Synthesis: Conjugating 3-(Pyren-1-ylethynyl)indole to DNA for Triplex Studies. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maha I. Fatthalla
- Department of Physics; Chemistry and Pharmacy University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
- Department of Chemistry; Faculty of Science; Helwan University; 11795 Ain Helwan, Cairo Egypt
| | - Erik B. Pedersen
- Department of Physics; Chemistry and Pharmacy University of Southern Denmark; Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
16
|
Goldsmith G, Rathinavelan T, Yathindra N. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets. PLoS One 2016; 11:e0152102. [PMID: 27010368 PMCID: PMC4807104 DOI: 10.1371/journal.pone.0152102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/08/2016] [Indexed: 12/14/2022] Open
Abstract
Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping), double (overlapping) and multiple pairs of nonisosteric base triplets (NIBTs). It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i) an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii) clarity for the prevalence of antiparallel triplexes and (iii) comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.
Collapse
Affiliation(s)
- Gunaseelan Goldsmith
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
- Manipal University, Manipal, India
| | | | - Narayanarao Yathindra
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronics City Phase I, Bangalore, India
| |
Collapse
|
17
|
Holder IT, Wagner S, Xiong P, Sinn M, Frickey T, Meyer A, Hartig JS. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability. Nucleic Acids Res 2015; 43:10126-42. [PMID: 26450966 PMCID: PMC4666352 DOI: 10.1093/nar/gkv1017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/21/2015] [Indexed: 01/10/2023] Open
Abstract
Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefanie Wagner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Peiwen Xiong
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
18
|
Bartholdy B, Mukhopadhyay R, Lajugie J, Aladjem MI, Bouhassira EE. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun 2015; 6:7051. [PMID: 25987481 PMCID: PMC4479011 DOI: 10.1038/ncomms8051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity.
Collapse
Affiliation(s)
- Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Julien Lajugie
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Eric E. Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
19
|
Lexa M, Kejnovský E, Steflová P, Konvalinová H, Vorlícková M, Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res 2013; 42:968-78. [PMID: 24106085 PMCID: PMC3902901 DOI: 10.1093/nar/gkt893] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTR) form a significant proportion of eukaryotic genomes, especially in plants. They have gag and pol genes and several regulatory regions necessary for transcription and reverse transcription. We searched for potential quadruplex-forming sequences (PQSs) and potential triplex-forming sequences (PTSs) in 18 377 full-length LTR retrotransposons collected from 21 plant species. We found that PQSs were often located in LTRs, both upstream and downstream of promoters from which the whole retrotransposon is transcribed. Upstream-located guanine PQSs were dominant in the minus DNA strand, whereas downstream-located guanine PQSs prevailed in the plus strand, indicating their role both at transcriptional and post-transcriptional levels. Our circular dichroism spectroscopy measurements confirmed that these PQSs readily adopted guanine quadruplex structures-some of them were paralell-stranded, while others were anti-parallel-stranded. The PQS often formed doublets at a mutual distance of up to 400 bp. PTSs were most abundant in 3'UTR (but were also present in 5'UTR). We discuss the potential role of quadruplexes and triplexes as the regulators of various processes participating in LTR retrotransposon life cycle and as potential recombination sites during post-insertional retrotransposon-based genome rearrangements.
Collapse
Affiliation(s)
- Matej Lexa
- Department of Information Technologies, Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic, Laboratory of Genome Dynamics, CEITEC - Central European Institute of Technology, Masaryk University, Zerotinovo nam 9, 60177 Brno, Czech Republic, Department of Plant Developmental Genetics, Institute of Biophysics ASCR, Kralovopolska 135, 61265 Brno, Czech Republic, Laboratory of CD Spectroscopy, CEITEC - Central European Institute of Technology, Masaryk University, Zerotinovo nam 9, 60177 Brno, Czech Republic and Department of CD Spectroscopy of Nucleic Acids, Institute of Biophysics ASCR, Kralovopolska 135, 61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Ananth P, Goldsmith G, Yathindra N. An innate twist between Crick's wobble and Watson-Crick base pairs. RNA (NEW YORK, N.Y.) 2013; 19:1038-1053. [PMID: 23861536 PMCID: PMC3708525 DOI: 10.1261/rna.036905.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-Watson-Crick pairs like the G·U wobble are frequent in RNA duplexes. Their geometric dissimilarity (nonisostericity) with the Watson-Crick base pairs and among themselves imparts structural variations decisive for biological functions. Through a novel circular representation of base pairs, a simple and general metric scheme for quantification of base-pair nonisostericity, in terms of residual twist and radial difference that can also envisage its mechanistic effect, is proposed. The scheme is exemplified by G·U and U·G wobble pairs, and their predicable local effects on helical twist angle are validated by MD simulations. New insights into a possible rationale for contextual occurrence of G·U and other non-WC pairs, as well as the influence of a G·U pair on other non-Watson-Crick pair neighborhood and RNA-protein interactions are obtained from analysis of crystal structure data. A few instances of RNA-protein interactions along the major groove are documented in addition to the well-recognized interaction of the G·U pair along the minor groove. The nonisostericity-mediated influence of wobble pairs for facilitating helical packing through long-range interactions in ribosomal RNAs is also reviewed.
Collapse
|
21
|
Hon J, Martínek T, Rajdl K, Lexa M. Triplex: an R/Bioconductor package for identification and visualization of potential intramolecular triplex patterns in DNA sequences. ACTA ACUST UNITED AC 2013; 29:1900-1. [PMID: 23709494 DOI: 10.1093/bioinformatics/btt299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Upgrade and integration of triplex software into the R/Bioconductor framework. RESULTS We combined a previously published implementation of a triplex DNA search algorithm with visualization to create a versatile R/Bioconductor package 'triplex'. The new package provides functions that can be used to search Bioconductor genomes and other DNA sequence data for occurrence of nucleotide patterns capable of forming intramolecular triplexes (H-DNA). Functions producing 2D and 3D diagrams of the identified triplexes allow instant visualization of the search results. Leveraging the power of Biostrings and GRanges classes, the results get fully integrated into the existing Bioconductor framework, allowing their passage to other Genome visualization and annotation packages, such as GenomeGraphs, rtracklayer or Gviz. AVAILABILITY R package 'triplex' is available from Bioconductor (bioconductor.org). CONTACT lexa@fi.muni.cz SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiří Hon
- Department of Computer Systems, Faculty of Information Technology, Brno Technical University, Božetěchova 2, 61266 Brno, Czech Republic
| | | | | | | |
Collapse
|
22
|
Du X, Wojtowicz D, Bowers AA, Levens D, Benham CJ, Przytycka TM. The genome-wide distribution of non-B DNA motifs is shaped by operon structure and suggests the transcriptional importance of non-B DNA structures in Escherichia coli. Nucleic Acids Res 2013; 41:5965-77. [PMID: 23620297 PMCID: PMC3695496 DOI: 10.1093/nar/gkt308] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although the right-handed double helical B-form DNA is most common under physiological conditions, DNA is dynamic and can adopt a number of alternative structures, such as the four-stranded G-quadruplex, left-handed Z-DNA, cruciform and others. Active transcription necessitates strand separation and can induce such non-canonical forms at susceptible genomic sequences. Therefore, it has been speculated that these non-B DNA motifs can play regulatory roles in gene transcription. Such conjecture has been supported in higher eukaryotes by direct studies of several individual genes, as well as a number of large-scale analyses. However, the role of non-B DNA structures in many lower organisms, in particular proteobacteria, remains poorly understood and incompletely documented. In this study, we performed the first comprehensive study of the occurrence of B DNA-non-B DNA transition-susceptible sites (non-B DNA motifs) within the context of the operon structure of the Escherichia coli genome. We compared the distributions of non-B DNA motifs in the regulatory regions of operons with those from internal regions. We found an enrichment of some non-B DNA motifs in regulatory regions, and we show that this enrichment cannot be simply explained by base composition bias in these regions. We also showed that the distribution of several non-B DNA motifs within intergenic regions separating divergently oriented operons differs from the distribution found between convergent ones. In particular, we found a strong enrichment of cruciforms in the termination region of operons; this enrichment was observed for operons with Rho-dependent, as well as Rho-independent terminators. Finally, a preference for some non-B DNA motifs was observed near transcription factor-binding sites. Overall, the conspicuous enrichment of transition-susceptible sites in these specific regulatory regions suggests that non-B DNA structures may have roles in the transcriptional regulation of specific operons within the E. coli genome.
Collapse
Affiliation(s)
- Xiangjun Du
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | | | | | | | |
Collapse
|
23
|
Preferential binding of hot spot mutant p53 proteins to supercoiled DNA in vitro and in cells. PLoS One 2013; 8:e59567. [PMID: 23555710 PMCID: PMC3608670 DOI: 10.1371/journal.pone.0059567] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/19/2013] [Indexed: 11/21/2022] Open
Abstract
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.
Collapse
|
24
|
Buske FA, Bauer DC, Mattick JS, Bailey TL. Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res 2012; 22:1372-81. [PMID: 22550012 PMCID: PMC3396377 DOI: 10.1101/gr.130237.111] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/20/2012] [Indexed: 11/28/2022]
Abstract
Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand in its major groove. This sequence-specific process offers a potent mechanism for targeting genomic loci of interest that is of great value for biotechnological and gene-therapeutic applications. It is likely that nature has leveraged this addressing system for gene regulation, because computational studies have uncovered an abundance of putative triplex target sites in various genomes, with enrichment particularly in gene promoters. However, to draw a more complete picture of the in vivo role of triplexes, not only the putative targets but also the sequences acting as the third strand and their capability to pair with the predicted target sites need to be studied. Here we present Triplexator, the first computational framework that integrates all aspects of triplex formation, and showcase its potential by discussing research examples for which the different aspects of triplex formation are important. We find that chromatin-associated RNAs have a significantly higher fraction of sequence features able to form triplexes than expected at random, suggesting their involvement in gene regulation. We furthermore identify hundreds of human genes that contain sequence features in their promoter predicted to be able to form a triplex with a target within the same promoter, suggesting the involvement of triplexes in feedback-based gene regulation. With focus on biotechnological applications, we screen mammalian genomes for high-affinity triplex target sites that can be used to target genomic loci specifically and find that triplex formation offers a resolution of ~1300 nt.
Collapse
Affiliation(s)
- Fabian A. Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - Denis C. Bauer
- Division of Mathematics, Informatics, and Statistics, CSIRO, Sydney, 2113 NSW, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - John S. Mattick
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
- Garvan Institute of Medical Research, Sydney, 2010 NSW, Australia
| | - Timothy L. Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|