3
|
Ge JY, Shu S, Kwon M, Jovanović B, Murphy K, Gulvady A, Fassl A, Trinh A, Kuang Y, Heavey GA, Luoma A, Paweletz C, Thorner AR, Wucherpfennig KW, Qi J, Brown M, Sicinski P, McDonald TO, Pellman D, Michor F, Polyak K. Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nat Commun 2020; 11:2350. [PMID: 32393766 PMCID: PMC7214447 DOI: 10.1038/s41467-020-16170-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
BET inhibitors are promising therapeutic agents for the treatment of triple-negative breast cancer (TNBC), but the rapid emergence of resistance necessitates investigation of combination therapies and their effects on tumor evolution. Here, we show that palbociclib, a CDK4/6 inhibitor, and paclitaxel, a microtubule inhibitor, synergize with the BET inhibitor JQ1 in TNBC lines. High-complexity DNA barcoding and mathematical modeling indicate a high rate of de novo acquired resistance to these drugs relative to pre-existing resistance. We demonstrate that the combination of JQ1 and palbociclib induces cell division errors, which can increase the chance of developing aneuploidy. Characterizing acquired resistance to combination treatment at a single cell level shows heterogeneous mechanisms including activation of G1-S and senescence pathways. Our results establish a rationale for further investigation of combined BET and CDK4/6 inhibition in TNBC and suggest novel mechanisms of action for these drugs and new vulnerabilities in cells after emergence of resistance.
Collapse
Affiliation(s)
- Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mijung Kwon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 120-750, Korea
| | - Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA
| | - Katherine Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anushree Gulvady
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanan Kuang
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Grace A Heavey
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrienne Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Cloud Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Aaron R Thorner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Qi
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Thomas O McDonald
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Franziska Michor
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Eli and Edythe L. Broad Institute, Cambridge, MA, 02142, USA.
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, 02115, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Bittihn P, Hasty J, Tsimring LS. Suppression of Beneficial Mutations in Dynamic Microbial Populations. PHYSICAL REVIEW LETTERS 2017; 118:028102. [PMID: 28128631 PMCID: PMC5552243 DOI: 10.1103/physrevlett.118.028102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.
Collapse
Affiliation(s)
- Philip Bittihn
- BioCircuits Institute, University of California San Diego, La Jolla, California 92093, USA
- San Diego Center for Systems Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Jeff Hasty
- BioCircuits Institute, University of California San Diego, La Jolla, California 92093, USA
- San Diego Center for Systems Biology, University of California San Diego, La Jolla, California 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
- Molecular Biology Section, Division of Biological Science, University of California San Diego, La Jolla, California 92093, USA
| | - Lev S. Tsimring
- BioCircuits Institute, University of California San Diego, La Jolla, California 92093, USA
- San Diego Center for Systems Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|