1
|
Zablocki LI, Bugnon LA, Gerard M, Di Persia L, Stegmayer G, Milone DH. Comprehensive benchmarking of large language models for RNA secondary structure prediction. Brief Bioinform 2025; 26:bbaf137. [PMID: 40205851 PMCID: PMC11982019 DOI: 10.1093/bib/bbaf137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 04/11/2025] Open
Abstract
In recent years, inspired by the success of large language models (LLMs) for DNA and proteins, several LLMs for RNA have also been developed. These models take massive RNA datasets as inputs and learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector. This is done under the hypothesis that obtaining high-quality RNA representations can enhance data-costly downstream tasks, such as the fundamental RNA secondary structure prediction problem. However, existing RNA-LLM have not been evaluated for this task in a unified experimental setup. Since they are pretrained models, assessment of their generalization capabilities on new structures is a crucial aspect. Nonetheless, this has been just partially addressed in literature. In this work we present a comprehensive experimental and comparative analysis of pretrained RNA-LLM that have been recently proposed. We evaluate the use of these representations for the secondary structure prediction task with a common deep learning architecture. The RNA-LLM were assessed with increasing generalization difficulty on benchmark datasets. Results showed that two LLMs clearly outperform the other models, and revealed significant challenges for generalization in low-homology scenarios. Moreover, in this study we provide curated benchmark datasets of increasing complexity and a unified experimental setup for this scientific endeavor. Source code and curated benchmark datasets with increasing complexity are available in the repository: https://github.com/sinc-lab/rna-llm-folding/.
Collapse
Affiliation(s)
- Luciano I Zablocki
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| | - Leandro A Bugnon
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| | - Matias Gerard
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| | - Leandro Di Persia
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| | - Georgina Stegmayer
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| | - Diego H Milone
- Research Institute for Signals, Systems and Computational Intelligence, sinc (i), FICH-UNL/CONICET, Ruta Nacional Nº 168, km 472.4, Santa Fe (3000), Argentina
| |
Collapse
|
2
|
Tang M, Hwang K, Kang SH. StemP: A Fast and Deterministic Stem-Graph Approach for RNA Secondary Structure Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3278-3291. [PMID: 37028040 DOI: 10.1109/tcbb.2023.3253049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We propose a new deterministic methodology to predict the secondary structure of RNA sequences. What information of stem is important for structure prediction, and is it enough ? The proposed simple deterministic algorithm uses minimum stem length, Stem-Loop score, and co-existence of stems, to give good structure predictions for short RNA and tRNA sequences. The main idea is to consider all possible stem with certain stem loop energy and strength to predict RNA secondary structure. We use graph notation, where stems are represented as vertexes, and co-existence between stems as edges. This full Stem-graph presents all possible folding structure, and we pick sub-graph(s) which give the best matching energy for structure prediction. Stem-Loop score adds structure information and speeds up the computation. The proposed method can predict secondary structure even with pseudo knots. One of the strengths of this approach is the simplicity and flexibility of the algorithm, and it gives a deterministic answer. Numerical experiments are done on various sequences from Protein Data Bank and the Gutell Lab using a laptop and results take only a few seconds.
Collapse
|
3
|
Sato K, Hamada M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief Bioinform 2023; 24:bbad186. [PMID: 37232359 PMCID: PMC10359090 DOI: 10.1093/bib/bbad186] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences, the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures; however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA-protein interactions, has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine learning are also introducing technical innovations in the analysis of RNA-small molecule interactions for RNA-targeted drug discovery and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and will also discuss potential future avenues in the field of RNA informatics.
Collapse
Affiliation(s)
- Kengo Sato
- School of System Design and Technology, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
4
|
Hollar A, Bursey H, Jabbari H. Pseudoknots in RNA Structure Prediction. Curr Protoc 2023; 3:e661. [PMID: 36779804 DOI: 10.1002/cpz1.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
RNA molecules play active roles in the cell and are important for numerous applications in biotechnology and medicine. The function of an RNA molecule stems from its structure. RNA structure determination is time consuming, challenging, and expensive using experimental methods. Thus, much research has been directed at RNA structure prediction through computational means. Many of these methods focus primarily on the secondary structure of the molecule, ignoring the possibility of pseudoknotted structures. However, pseudoknots are known to play functional roles in many RNA molecules or in their method of interaction with other molecules. Improving the accuracy and efficiency of computational methods that predict pseudoknots is an ongoing challenge for single RNA molecules, RNA-RNA interactions, and RNA-protein interactions. To improve the accuracy of prediction, many methods focus on specific applications while restricting the length and the class of the pseudoknotted structures they can identify. In recent years, computational methods for structure prediction have begun to catch up with the impressive developments seen in biotechnology. Here, we provide a non-comprehensive overview of available pseudoknot prediction methods and their best-use cases. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew Hollar
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hunter Bursey
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, Canada
| |
Collapse
|
5
|
Gray M, Chester S, Jabbari H. KnotAli: informed energy minimization through the use of evolutionary information. BMC Bioinformatics 2022; 23:159. [PMID: 35505276 PMCID: PMC9063079 DOI: 10.1186/s12859-022-04673-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Improving the prediction of structures, especially those containing pseudoknots (structures with crossing base pairs) is an ongoing challenge. Homology-based methods utilize structural similarities within a family to predict the structure. However, their prediction is limited to the consensus structure, and by the quality of the alignment. Minimum free energy (MFE) based methods, on the other hand, do not rely on familial information and can predict structures of novel RNA molecules. Their prediction normally suffers from inaccuracies due to their underlying energy parameters. RESULTS We present a new method for prediction of RNA pseudoknotted secondary structures that combines the strengths of MFE prediction and alignment-based methods. KnotAli takes a multiple RNA sequence alignment as input and uses covariation and thermodynamic energy minimization to predict possibly pseudoknotted secondary structures for each individual sequence in the alignment. We compared KnotAli's performance to that of three other alignment-based programs, two that can handle pseudoknotted structures and one control, on a large data set of 3034 RNA sequences with varying lengths and levels of sequence conservation from 10 families with pseudoknotted and pseudoknot-free reference structures. We produced sequence alignments for each family using two well-known sequence aligners (MUSCLE and MAFFT). CONCLUSIONS We found KnotAli's performance to be superior in 6 of the 10 families for MUSCLE and 7 of the 10 for MAFFT. While both KnotAli and Cacofold use background noise correction strategies, we found KnotAli's predictions to be less dependent on the alignment quality. KnotAli can be found online at the Zenodo image: https://doi.org/10.5281/zenodo.5794719.
Collapse
Affiliation(s)
- Mateo Gray
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Sean Chester
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, Canada. .,Institute on Aging and Lifelong Health, University of Victoria, Victoria, Canada.
| |
Collapse
|
6
|
Akiyama M, Sakakibara Y. Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning. NAR Genom Bioinform 2022; 4:lqac012. [PMID: 35211670 PMCID: PMC8862729 DOI: 10.1093/nargab/lqac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/08/2022] [Accepted: 02/05/2022] [Indexed: 01/17/2023] Open
Abstract
Effective embedding is actively conducted by applying deep learning to biomolecular information. Obtaining better embeddings enhances the quality of downstream analyses, such as DNA sequence motif detection and protein function prediction. In this study, we adopt a pre-training algorithm for the effective embedding of RNA bases to acquire semantically rich representations and apply this algorithm to two fundamental RNA sequence problems: structural alignment and clustering. By using the pre-training algorithm to embed the four bases of RNA in a position-dependent manner using a large number of RNA sequences from various RNA families, a context-sensitive embedding representation is obtained. As a result, not only base information but also secondary structure and context information of RNA sequences are embedded for each base. We call this ‘informative base embedding’ and use it to achieve accuracies superior to those of existing state-of-the-art methods on RNA structural alignment and RNA family clustering tasks. Furthermore, upon performing RNA sequence alignment by combining this informative base embedding with a simple Needleman–Wunsch alignment algorithm, we succeed in calculating structural alignments with a time complexity of O(n2) instead of the O(n6) time complexity of the naive implementation of Sankoff-style algorithm for input RNA sequence of length n.
Collapse
Affiliation(s)
- Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 223-8522, Japan
| | | |
Collapse
|
7
|
Tagashira M, Asai K. ConsAlifold: considering RNA structural alignments improves prediction accuracy of RNA consensus secondary structures. Bioinformatics 2022; 38:710-719. [PMID: 34694364 DOI: 10.1093/bioinformatics/btab738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION By detecting homology among RNAs, the probabilistic consideration of RNA structural alignments has improved the prediction accuracy of significant RNA prediction problems. Predicting an RNA consensus secondary structure from an RNA sequence alignment is a fundamental research objective because in the detection of conserved base-pairings among RNA homologs, predicting an RNA consensus secondary structure is more convenient than predicting an RNA structural alignment. RESULTS We developed and implemented ConsAlifold, a dynamic programming-based method that predicts the consensus secondary structure of an RNA sequence alignment. ConsAlifold considers RNA structural alignments. ConsAlifold achieves moderate running time and the best prediction accuracy of RNA consensus secondary structures among available prediction methods. AVAILABILITY AND IMPLEMENTATION ConsAlifold, data and Python scripts for generating both figures and tables are freely available at https://github.com/heartsh/consalifold. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Masaki Tagashira
- Department of Computational Biology and Medical Sciences, University of Tokyo, Chiba 277-8561, Japan.,Artificial Intelligence Research Center, AIST, Tokyo 135-0064, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, University of Tokyo, Chiba 277-8561, Japan.,Artificial Intelligence Research Center, AIST, Tokyo 135-0064, Japan
| |
Collapse
|
8
|
Li S, Zhang H, Zhang L, Liu K, Liu B, Mathews DH, Huang L. LinearTurboFold: Linear-time global prediction of conserved structures for RNA homologs with applications to SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118:e2116269118. [PMID: 34887342 PMCID: PMC8719904 DOI: 10.1073/pnas.2116269118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single-sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurboFold's purely in silico prediction not only is close to experimentally guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' untranslated regions (UTRs) (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies undiscovered conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, small interfering RNAs (siRNAs), CRISPR-Cas13 guide RNAs, and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies and will be a useful tool in fighting the current and future pandemics.
Collapse
Affiliation(s)
- Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - He Zhang
- Baidu Research, Sunnyvale, CA 94089
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - Liang Zhang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
- Baidu Research, Sunnyvale, CA 94089
| | - Kaibo Liu
- Baidu Research, Sunnyvale, CA 94089
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | | | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, Rochester, NY 14642;
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331;
- Baidu Research, Sunnyvale, CA 94089
| |
Collapse
|
9
|
Li S, Zhang H, Zhang L, Liu K, Liu B, Mathews DH, Huang L. LinearTurboFold: Linear-Time Global Prediction of Conserved Structures for RNA Homologs with Applications to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.23.393488. [PMID: 34816262 PMCID: PMC8609897 DOI: 10.1101/2020.11.23.393488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in SARS-CoV-2 genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length, and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt ) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurbo-Fold's purely in silico prediction not only is close to experimentally-guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5' and 3' UTRs (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies novel conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, siRNAs, CRISPR-Cas13 guide RNAs and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies, and will be a useful tool in fighting the current and future pandemics. SIGNIFICANCE STATEMENT Conserved RNA structures are critical for designing diagnostic and therapeutic tools for many diseases including COVID-19. However, existing algorithms are much too slow to model the global structures of full-length RNA viral genomes. We present LinearTurboFold, a linear-time algorithm that is orders of magnitude faster, making it the first method to simultaneously fold and align whole genomes of SARS-CoV-2 variants, the longest known RNA virus (∼30 kilobases). Our work enables unprecedented global structural analysis and captures long-range interactions that are out of reach for existing algorithms but crucial for RNA functions. LinearTurboFold is a general technique for full-length genome studies and can help fight the current and future pandemics.
Collapse
Affiliation(s)
- Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR
| | - He Zhang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR
- Baidu Research, Sunnyvale, CA
| | - Liang Zhang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR
- Baidu Research, Sunnyvale, CA
| | - Kaibo Liu
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR
- Baidu Research, Sunnyvale, CA
| | | | - David H. Mathews
- Department of Biochemistry & Biophysics, Center for RNA Biology, and Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR
- Baidu Research, Sunnyvale, CA
| |
Collapse
|
10
|
Kashiwagi S, Sato K, Sakakibara Y. A Max-Margin Model for Predicting Residue-Base Contacts in Protein-RNA Interactions. Life (Basel) 2021; 11:1135. [PMID: 34833011 PMCID: PMC8624843 DOI: 10.3390/life11111135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Protein-RNA interactions (PRIs) are essential for many biological processes, so understanding aspects of the sequences and structures involved in PRIs is important for unraveling such processes. Because of the expensive and time-consuming techniques required for experimental determination of complex protein-RNA structures, various computational methods have been developed to predict PRIs. However, most of these methods focus on predicting only RNA-binding regions in proteins or only protein-binding motifs in RNA. Methods for predicting entire residue-base contacts in PRIs have not yet achieved sufficient accuracy. Furthermore, some of these methods require the identification of 3D structures or homologous sequences, which are not available for all protein and RNA sequences. Here, we propose a prediction method for predicting residue-base contacts between proteins and RNAs using only sequence information and structural information predicted from sequences. The method can be applied to any protein-RNA pair, even when rich information such as its 3D structure, is not available. In this method, residue-base contact prediction is formalized as an integer programming problem. We predict a residue-base contact map that maximizes a scoring function based on sequence-based features such as k-mers of sequences and the predicted secondary structure. The scoring function is trained using a max-margin framework from known PRIs with 3D structures. To verify our method, we conducted several computational experiments. The results suggest that our method, which is based on only sequence information, is comparable with RNA-binding residue prediction methods based on known binding data.
Collapse
Affiliation(s)
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan; (S.K.); (Y.S.)
| | | |
Collapse
|
11
|
Li Y, Zhang Q, Liu Z, Wang C, Han S, Ma Q, Du W. Deep forest ensemble learning for classification of alignments of non-coding RNA sequences based on multi-view structure representations. Brief Bioinform 2020; 22:6046058. [PMID: 33367506 PMCID: PMC8294561 DOI: 10.1093/bib/bbaa354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in multiple biological processes. However, only a few ncRNAs’ functions have been well studied. Given the significance of ncRNAs classification for understanding ncRNAs’ functions, more and more computational methods have been introduced to improve the classification automatically and accurately. In this paper, based on a convolutional neural network and a deep forest algorithm, multi-grained cascade forest (GcForest), we propose a novel deep fusion learning framework, GcForest fusion method (GCFM), to classify alignments of ncRNA sequences for accurate clustering of ncRNAs. GCFM integrates a multi-view structure feature representation including sequence-structure alignment encoding, structure image representation and shape alignment encoding of structural subunits, enabling us to capture the potential specificity between ncRNAs. For the classification of pairwise alignment of two ncRNA sequences, the F-value of GCFM improves 6% than an existing alignment-based method. Furthermore, the clustering of ncRNA families is carried out based on the classification matrix generated from GCFM. Results suggest better performance (with 20% accuracy improved) than existing ncRNA clustering methods (RNAclust, Ensembleclust and CNNclust). Additionally, we apply GCFM to construct a phylogenetic tree of ncRNA and predict the probability of interactions between RNAs. Most ncRNAs are located correctly in the phylogenetic tree, and the prediction accuracy of RNA interaction is 90.63%. A web server (http://bmbl.sdstate.edu/gcfm/) is developed to maximize its availability, and the source code and related data are available at the same URL.
Collapse
Affiliation(s)
- Ying Li
- College of Computer Science and Technology, Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Qi Zhang
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zhaoqian Liu
- School of Mathematics, Shandong University, and now she is a visiting scholar at Ohio State University
| | | | - Siyu Han
- Department of Computer Science, Faculty of Engineering, University of Bristol
| | - Qin Ma
- Department of Biomedical Informatics, Ohio State University
| | - Wei Du
- College of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Wright ES. RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency. RNA (NEW YORK, N.Y.) 2020; 26:531-540. [PMID: 32005745 PMCID: PMC7161358 DOI: 10.1261/rna.073015.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 05/05/2023]
Abstract
The importance of noncoding RNA sequences has become increasingly clear over the past decade. New RNA families are often detected and analyzed using comparative methods based on multiple sequence alignments. Accordingly, a number of programs have been developed for aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for these tasks remain unclear because existing benchmarks contain too few sequences belonging to only a small number of RNA families. RNAconTest (RNA consistency test) is a new benchmarking approach relying on the observation that secondary structure is often conserved across highly divergent RNA sequences from the same family. RNAconTest scores multiple sequence alignments based on the level of consistency among known secondary structures belonging to reference sequences in their output alignment. Similarly, consensus secondary structure predictions are scored according to their agreement with one or more known structures in a family. Comparing the performance of 10 popular alignment programs using RNAconTest revealed that DAFS, DECIPHER, LocARNA, and MAFFT created the most structurally consistent alignments. The best consensus secondary structure predictions were generated by DAFS and LocARNA (via RNAalifold). Many of the methods specific to noncoding RNAs exhibited poor scalability as the number or length of input sequences increased, and several programs displayed substantial declines in score as more sequences were aligned. Overall, RNAconTest provides a means of testing and improving tools for comparative RNA analysis, as well as highlighting the best available approaches. RNAconTest is available from the DECIPHER website (http://DECIPHER.codes/Downloads.html).
Collapse
Affiliation(s)
- Erik S Wright
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
13
|
Aoki G, Sakakibara Y. Convolutional neural networks for classification of alignments of non-coding RNA sequences. Bioinformatics 2019; 34:i237-i244. [PMID: 29949978 PMCID: PMC6022636 DOI: 10.1093/bioinformatics/bty228] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motivation The convolutional neural network (CNN) has been applied to the classification problem of DNA sequences, with the additional purpose of motif discovery. The training of CNNs with distributed representations of four nucleotides has successfully derived position weight matrices on the learned kernels that corresponded to sequence motifs such as protein-binding sites. Results We propose a novel application of CNNs to classification of pairwise alignments of sequences for accurate clustering of sequences and show the benefits of the CNN method of inputting pairwise alignments for clustering of non-coding RNA (ncRNA) sequences and for motif discovery. Classification of a pairwise alignment of two sequences into positive and negative classes corresponds to the clustering of the input sequences. After we combined the distributed representation of RNA nucleotides with the secondary-structure information specific to ncRNAs and furthermore with mapping profiles of next-generation sequence reads, the training of CNNs for classification of alignments of RNA sequences yielded accurate clustering in terms of ncRNA families and outperformed the existing clustering methods for ncRNA sequences. Several interesting sequence motifs and secondary-structure motifs known for the snoRNA family and specific to microRNA and tRNA families were identified. Availability and implementation The source code of our CNN software in the deep-learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/cnn/, and the dataset used for performance evaluation in this work is available at the same URL.
Collapse
Affiliation(s)
- Genta Aoki
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | | |
Collapse
|
14
|
Akiyama M, Sato K, Sakakibara Y. A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model. J Bioinform Comput Biol 2019; 16:1840025. [PMID: 30616476 DOI: 10.1142/s0219720018400255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A popular approach for predicting RNA secondary structure is the thermodynamic nearest-neighbor model that finds a thermodynamically most stable secondary structure with minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning-based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning-based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such a model has been reported. In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning-based weighted approach. Our fine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the [Formula: see text] regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed. The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold .
Collapse
Affiliation(s)
- Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama 223–8522, Japan
| |
Collapse
|
15
|
Kato Y, Gorodkin J, Havgaard JH. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots. BMC Genomics 2017; 18:935. [PMID: 29197323 PMCID: PMC5712110 DOI: 10.1186/s12864-017-4309-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Structured non-coding RNAs play many different roles in the cells, but the annotation of these RNAs is lacking even within the human genome. The currently available computational tools are either too computationally heavy for use in full genomic screens or rely on pre-aligned sequences. Methods Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes without alignment. Results Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4309-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan. .,Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark.
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Jakob Hull Havgaard
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark.
| |
Collapse
|
16
|
Löwes B, Chauve C, Ponty Y, Giegerich R. The BRaliBase dent-a tale of benchmark design and interpretation. Brief Bioinform 2017; 18:306-311. [PMID: 26984616 PMCID: PMC5444242 DOI: 10.1093/bib/bbw022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Indexed: 11/25/2022] Open
Abstract
BRaliBase is a widely used benchmark for assessing the accuracy of RNA secondary structure alignment methods. In most case studies based on the BRaliBase benchmark, one can observe a puzzling drop in accuracy in the 40–60% sequence identity range, the so-called ‘BRaliBase Dent’. In this article, we show this dent is owing to a bias in the composition of the BRaliBase benchmark, namely the inclusion of a disproportionate number of transfer RNAs, which exhibit a conserved secondary structure. Our analysis, aside of its interest regarding the specific case of the BRaliBase benchmark, also raises important questions regarding the design and use of benchmarks in computational biology.
Collapse
Affiliation(s)
- Benedikt Löwes
- Division of Cardiology, University of Nebraska Medical Center, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Yann Ponty
- LIX, CNRS/Inria AMIB, Ecole Polytechnique, Palaiseau, France
| | - Robert Giegerich
- Institute for Bioinformatics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
17
|
Abstract
In order to carry out biological functions, RNA molecules must fold into specific three-dimensional (3D) structures. Current experimental methods to determine RNA 3D structures are expensive and time consuming. With the recent advances in computational biology, RNA structure prediction is becoming increasingly reliable. This chapter describes a recently developed RNA structure prediction software, Vfold, a virtual bond-based RNA folding model. The main features of Vfold are the physics-based loop free energy calculations for various RNA structure motifs and a template-based assembly method for RNA 3D structure prediction. For illustration, we use the yybP-ykoY Orphan riboswitch as an example to show the implementation of the Vfold model in RNA structure prediction from the sequence.
Collapse
Affiliation(s)
- Chenhan Zhao
- Department of Physics, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Xiaojun Xu
- Department of Physics, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics, Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Tsuchiya M, Amano K, Abe M, Seki M, Hase S, Sato K, Sakakibara Y. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing. Bioinformatics 2016; 32:i369-i377. [PMID: 27307639 PMCID: PMC4908357 DOI: 10.1093/bioinformatics/btw273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. RESULTS We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. AVAILABILITY AND IMPLEMENTATION The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. CONTACT yasu@bio.keio.ac.jp SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mariko Tsuchiya
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Kojiro Amano
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Masaya Abe
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Misato Seki
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama 161-0031, Japan
| |
Collapse
|
19
|
Hua L, Song Y, Kim N, Laing C, Wang JTL, Schlick T. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. PLoS One 2016; 11:e0147097. [PMID: 26789998 PMCID: PMC4720362 DOI: 10.1371/journal.pone.0147097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.
Collapse
Affiliation(s)
- Lei Hua
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Yang Song
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Namhee Kim
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Christian Laing
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Jason T. L. Wang
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail: (JW); (TS)
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail: (JW); (TS)
| |
Collapse
|
20
|
Kumozaki S, Sato K, Sakakibara Y. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:1267-1274. [PMID: 26671799 DOI: 10.1109/tcbb.2015.2430317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recently, glycomics has been actively studied and various technologies for glycomics have been rapidly developed. Currently, tandem mass spectrometry (MS/MS) is one of the key experimental tools for identification of structures of oligosaccharides. MS/MS can observe MS/MS peaks of fragmented glycan ions including cross-ring ions resulting from internal cleavages, which provide valuable information to infer glycan structures. Thus, the aim of de novo sequencing of glycans is to find the most probable assignments of observed MS/MS peaks to glycan substructures without databases. However, there are few satisfiable algorithms for glycan de novo sequencing from MS/MS spectra. We present a machine learning based approach to de novo sequencing of glycans from MS/MS spectrum. First, we build a suitable model for the fragmentation of glycans including cross-ring ions, and implement a solver that employs Lagrangian relaxation with a dynamic programming technique. Then, to optimize scores for the algorithm, we introduce a machine learning technique called structured support vector machines that enable us to learn parameters including scores for cross-ring ions from training data, i.e., known glycan mass spectra. Furthermore, we implement additional constraints for core structures of well-known glycan types including N-linked glycans and O-linked glycans. This enables us to predict more accurate glycan structures if the glycan type of given spectra is known. Computational experiments show that our algorithm performs accurate de novo sequencing of glycans. The implementation of our algorithm and the datasets are available at http://glyfon.dna.bio.keio.ac.jp/.
Collapse
|
21
|
Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M, Marz M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA (NEW YORK, N.Y.) 2015; 21:1219-32. [PMID: 25964384 PMCID: PMC4478341 DOI: 10.1261/rna.049338.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/07/2015] [Indexed: 05/02/2023]
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus with a plus-strand RNA genome of ∼9.600 nt. Due to error-prone replication by its RNA-dependent RNA polymerase (RdRp) residing in nonstructural protein 5B (NS5B), HCV isolates are grouped into seven genotypes with several subtypes. By using whole-genome sequences of 106 HCV isolates and secondary structure alignments of the plus-strand genome and its minus-strand replication intermediate, we established refined secondary structures of the 5' untranslated region (UTR), the cis-acting replication element (CRE) in NS5B, and the 3' UTR. We propose an alternative structure in the 5' UTR, conserved secondary structures of 5B stem-loop (SL)1 and 5BSL2, and four possible structures of the X-tail at the very 3' end of the HCV genome. We predict several previously unknown long-range interactions, most importantly a possible circularization interaction between distinct elements in the 5' and 3' UTR, reminiscent of the cyclization elements of the related flaviviruses. Based on analogy to these viruses, we propose that the 5'-3' UTR base-pairing in the HCV genome might play an important role in viral RNA replication. These results may have important implications for our understanding of the nature of the cis-acting RNA elements in the HCV genome and their possible role in regulating the mutually exclusive processes of viral RNA translation and replication.
Collapse
Affiliation(s)
- Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
22
|
Song Y, Hua L, Shapiro BA, Wang JTL. Effective alignment of RNA pseudoknot structures using partition function posterior log-odds scores. BMC Bioinformatics 2015; 16:39. [PMID: 25727492 PMCID: PMC4339682 DOI: 10.1186/s12859-015-0464-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background RNA pseudoknots play important roles in many biological processes. Previous methods for comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little work has been done to align two known RNA secondary structures with pseudoknots taking into account both sequence and structure information of the two RNAs. Results In this article we present a novel method for aligning two known RNA secondary structures with pseudoknots. We adopt the partition function methodology to calculate the posterior log-odds scores of the alignments between bases or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the maximum expected accuracy. We present a heuristic to achieve this goal. The performance of our method is investigated and compared with existing tools for RNA structure alignment. An extension of the method to multiple alignment of pseudoknot structures is also discussed. Conclusions The method described here has been implemented in a tool named RKalign, which is freely accessible on the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, we anticipate a tool like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0464-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Abstract
It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.
Collapse
|
24
|
Jabbari H, Condon A. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures. BMC Bioinformatics 2014; 15:147. [PMID: 24884954 PMCID: PMC4064103 DOI: 10.1186/1471-2105-15-147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in this work are freely available at http://www.cs.ubc.ca/~hjabbari/software.php.
Collapse
Affiliation(s)
- Hosna Jabbari
- Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, Canada.
| | | |
Collapse
|
25
|
Speeding up simultaneous alignment and folding of RNA sequences. OPEN COMPUTER SCIENCE 2014. [DOI: 10.2478/s13537-014-0217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn the paper, we describe and develop more effective solutions of two important problems in bioinformatics. The first problem is the multiple sequence alignment problem and the second problem is RNA secondary structure prediction (folding) problem. Each of these problems should be solved with better results if we know the solution of the other one, but usually we only have sequences and we know neither the alignment nor the secondary structure. Precise algorithms solving both of these problems simultaneously are computationally pretentious according to the big length of RNA sequences. In this paper, we have described the method of speeding up the Sankoff’s simultaneous alignment and folding algorithm using the Carrillo-Lipman approach to cut off those computations, that can never lead to an optimal solution.
Collapse
|