1
|
da Silva Duarte V, Treu L, Campanaro S, Fioravante Guerra A, Giacomini A, Mas A, Corich V, Lemos Junior WJF. Investigating biological mechanisms of colour changes in sustainable food systems: The role of Starmerella bacillaris in white wine colouration using a combination of genomic and biostatistics strategies. Food Res Int 2024; 193:114862. [PMID: 39160049 DOI: 10.1016/j.foodres.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
This study explores the biological mechanisms behind colour changes in white wine fermentation using different strains of Starmerella bacillaris. We combined food engineering, genomics, machine learning, and physicochemical analyses to examine interactions between S. bacillaris and Saccharomyces cerevisiae. Significant differences in total polyphenol content were observed, with S. bacillaris fermentation yielding 6 % higher polyphenol content compared to S. cerevisiae EC1118. Genomic analysis identified 12 genes in S. bacillaris with high variant counts that could impact phenotypic properties related to wine color. Notably, SNP analysis revealed numerous missense and synonymous variants, as well as stop-gained and start-lost variants between PAS13 and FRI751, suggesting changes in metabolic pathways affecting pigment production. Besides that, high upstream gene variants in SSK1 and HIP1R indicated potential regulatory changes influencing gene expression. Fermentation trials revealed FRI751 consistently showed high antioxidant activity and polyphenol content (Total Polyphenol: 299.33 ± 3.51 mg GAE/L, DPPH: 1.09 ± 0.01 mmol TE/L, FRAP: 0.95 ± 0.02 mmol TE/L). PAS13 exhibited a balanced profile, while EC1118 had lower values, indicating moderate antioxidant activity. The Weibull model effectively captured nitrogen consumption dynamics, with EC1118 serving as a reliable benchmark. The scale parameter delta for EC1118 was 23.04 ± 2.63, indicating moderate variability in event times. These findings highlight S. bacillaris as a valuable component in sustainable winemaking, offering an alternative to chemical additives for maintaining wine quality and enhancing colours profiles. This study provides insights into the biotechnological and fermented food systems applications of yeast strains in improving food sustainability and supply chain, opening new avenues in food engineering and microbiology.
Collapse
Affiliation(s)
- Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Laura Treu
- Department Department of Biology, University of Padova, Padova, Italy
| | - Stefano Campanaro
- Department Department of Biology, University of Padova, Padova, Italy.
| | - André Fioravante Guerra
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Valença, Rio de Janeiro, Brazil
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
| | - Albert Mas
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Grup de Biotecnologia Enològica, Facultat d'Enologia, Tarragona, Catalonia, Spain
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy; Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy; Department of Land, Environment, Agriculture and Forestry - TeSAF Legnaro, Padova, Italy.
| | | |
Collapse
|
2
|
Itaconic acid production is regulated by LaeA in Aspergillus pseudoterreus. Metab Eng Commun 2022; 15:e00203. [PMID: 36065328 PMCID: PMC9440423 DOI: 10.1016/j.mec.2022.e00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity. The Itaconic acid biosynthetic gene cluster is regulated by laeA. LaeA is required for production of itaconic acid. Overexpression of laeA attenuates genes involved in phosphate acquisition. Global regulator engineering increases robustness of itaconic acid production.
Collapse
|
3
|
Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine S, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 2019; 20:976. [PMID: 31830917 PMCID: PMC6909477 DOI: 10.1186/s12864-019-6358-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. RESULTS Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. CONCLUSIONS This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.
Collapse
Affiliation(s)
- Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Present address: Colorado State University, College of Agricultural Sciences, 301 University Ave, Fort Collins, CO, 80523, USA.
| | - Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Horticultural Crops Research, USDA ARS, Corvallis, OR, USA
| | - Lisa M Bramer
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mary Lipton
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel Purvine
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie Nicora
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
4
|
Okamura Y, Treu L, Campanaro S, Yamashita S, Nakai S, Takahashi H, Watanabe K, Angelidaki I, Aki T, Matsumura Y, Nakashimada Y. Complete genome sequence of Nitratireductor sp. strain OM-1: A lipid-producing bacterium with potential use in wastewater treatment. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 24:e00366. [PMID: 31467863 PMCID: PMC6712368 DOI: 10.1016/j.btre.2019.e00366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022]
Abstract
Reducing CO2 emissions is necessary to alleviate rising global temperature. Renewable sources of energy are becoming an increasingly important substitute for fossil fuels. An important step in this direction is the isolation of novel, technologically relevant microorganisms. Nitratireductor sp. strain OM-1 can convert volatile short-chain fatty acids in wastewater into 2-butenoic acid and its ester and can accumulate intracellularly esterified compounds up to 50% of its dried cell weight under nitrogen-depleted conditions. It is believed that a novel fatty acid biosynthesis pathway including an esterifying enzyme is encoded in its genome. In this study, we report the whole-genome sequence (4.8 Mb) of OM-1, which comprises a chromosome (3,977,827 bp) and a megaplasmid (857,937 bp). This sequence information provides insight into the genome organization and biochemical pathways of OM-1. In addition, we identified lipid biosynthesis pathways in OM-1, paving the way to a better understanding of its biochemical characterization.
Collapse
Affiliation(s)
- Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
- CREST, JST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58b, 35131, Padova, Italy
| | - Sena Yamashita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Shota Nakai
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Hirokazu Takahashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
- CREST, JST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Kenshi Watanabe
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
- CREST, JST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yukihiko Matsumura
- Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
- CREST, JST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
- CREST, JST, Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
5
|
Lemos Junior WJF, da Silva Duarte V, Treu L, Campanaro S, Nadai C, Giacomini A, Corich V. Whole genome comparison of two Starmerella bacillaris strains with other wine yeasts uncovers genes involved in modulating important winemaking traits. FEMS Yeast Res 2018; 18:5046425. [DOI: 10.1093/femsyr/foy069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wilson Josè Fernandes Lemos Junior
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Vinicius da Silva Duarte
- Department of Microbiology, Universidade Federal de Viçosa, Av. PH Rolfs s/n, Campus Universitário, 36570 000, Viçosa, Brazil
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58b, 35121, Padova, Italy
| | - Chiara Nadai
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, Legnaro, 35020, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Via XXVIII Aprile 14, Conegliano, 31015, Italy
| |
Collapse
|
6
|
Nichio BTL, Marchaukoski JN, Raittz RT. New Tools in Orthology Analysis: A Brief Review of Promising Perspectives. Front Genet 2017; 8:165. [PMID: 29163633 PMCID: PMC5674930 DOI: 10.3389/fgene.2017.00165] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/16/2017] [Indexed: 11/23/2022] Open
Abstract
Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques) and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST "all-against-all" methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm); or proteinOrtho (which improves the accuracy of ortholog groups); or ReMark (tackling the integration of the pipeline to turn the entry process automatic); or OrthAgogue (using algorithms developed to minimize processing time); and proteinOrtho (developed for dealing with large amounts of biological data). We made a comparison among the main features of four tool and tested them using four for prokaryotic genomas. We hope that our review can be useful for researchers and will help them in selecting the most appropriate tool for their work in the field of orthology.
Collapse
Affiliation(s)
| | | | - Roberto Tadeu Raittz
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
7
|
Tulpan D, Leger S. The Plant Orthology Browser: An Orthology and Gene-Order Visualizer for Plant Comparative Genomics. THE PLANT GENOME 2017; 10. [PMID: 28464063 DOI: 10.3835/plantgenome2016.08.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Worldwide genome sequencing efforts for plants with medium and large genomes require identification and visualization of orthologous genes, while their syntenic conservation becomes the pinnacle of any comparative and functional genomics study. Using gene models for 20 fully sequenced plant genomes, including model organisms and staple crops such as Coss., (L.) Heynh., (L.) Beauv., turnip ( L.), barley ( L.), rice ( L.), sorghum [ (L.) Moench], wheat ( L.), red wild einkorn ( Tumanian ex Gandilyan), and maize ( L.), we computationally predicted 1,021,611 orthologs using stringent sequence similarity criteria. For each pair of plant species, we determined sets of conserved synteny blocks using strand orientation and physical mapping. Gene ontology (GO) annotations are added for each gene. Plant Orthology Browser (POB) includes three interconnected modules: (i) a gene-order visualization module implementing an interactive environment for exploration of gene order between any pair of chromosomes in two plant species, (ii) a synteny visualization module providing unique interactive dot plot representations of orthologous genes between a pair of chromosomes in two distinct plant species, and (iii) a search module that interconnects all modules via free-text search capability with online as-you-type suggestions and highlighting that allows exploration of the underlining information without constraint of interface-dependent search fields. The POB is a web-based orthology and annotation visualization tool, which currently supports 20 completely sequenced plant species with considerably large genomes and offers intuitive and highly interactive pairwise comparison and visualization of genomic traits via gene orthology.
Collapse
|
8
|
Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C. A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Front Microbiol 2016; 7:233. [PMID: 26973612 PMCID: PMC4771724 DOI: 10.3389/fmicb.2016.00233] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/15/2016] [Indexed: 01/22/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are a diverse group of soil fungi (Glomeromycota) that form the most ancient mutualistic association termed AM symbiosis with a majority of land plants, improving their nutrition uptake and resistance to stresses. In contrast to their great ecological implications, the knowledge of the molecular biological mechanisms involved is still scant, partly due to the limited genomic resources available. Here, we describe the gene repertoire of a new AM fungus Gigaspora rosea (Diversisporales). Among the 86332 non-redundant virtual transcripts assembled, 15346 presented similarities with proteins in the Refseq database and 10175 were assigned with GO terms. KOG and Interpro domain annotations clearly showed an enrichment of genes involved in signal transduction in G. rosea. KEGG pathway analysis indicates that most primary metabolic processes are active in G. rosea. However, as for Rhizophagus irregularis, several metabolic genes were not found, including the fatty acid synthase (FAS) gene. This finding supports the hypothesis that AM fungi depend on the lipids produced by their hosts. Furthermore, the presence of a large number of transporters and 100s of secreted proteins, together with the reduced number of plant cell wall degrading enzymes could be interpreted as an evolutionary adaptation to its mutualistic obligate biotrophy. The detection of meiosis-related genes suggests that G. rosea might use a cryptic sexual process. Lastly, a phylogeny of basal fungi clearly shows Glomeromycota as a sister clade to Mucoromycotina, not only to the Mucorales or Mortierellales. The characterization of the gene repertoire from an AM fungal species belonging to the order of Diversisporales and its comparison with the gene sets of R. irregularis (Glomerales) and Gigaspora margarita (Diversisporales), reveal that AM fungi share several features linked to mutualistic obligate biotrophy. This work contributes to lay the foundation for forthcoming studies into the genomics of Diversisporales, and also illuminates the utility of comparing gene repertoires of species from Diversisporales and other clades of Glomeromycota to gain more insights into the genetics and evolution of this fungal group.
Collapse
Affiliation(s)
- Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Hélène San Clemente
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Sébastien Roy
- AGRONUTRITION Laboratoire de BiotechnologiesToulouse, France
| | - Guillaume Bécard
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Christophe Roux
- CNRS, Laboratoire de Recherche en Sciences Végétales, UMR, Université Paul Sabatier – Université de ToulouseCastanet Tolosan, France
| |
Collapse
|
9
|
Henson MW, Santo Domingo JW, Kourtev PS, Jensen RV, Dunn JA, Learman DR. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment. PeerJ 2015; 3:e1395. [PMID: 26587353 PMCID: PMC4647564 DOI: 10.7717/peerj.1395] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates' phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.
Collapse
Affiliation(s)
- Michael W Henson
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Jorge W Santo Domingo
- National Risk Management Research Laboratory, Environmental Protection Agency , Cincinnati, OH , USA
| | - Peter S Kourtev
- Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech) , Blacksburg, VA , United States
| | - James A Dunn
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| | - Deric R Learman
- Institute for Great Lakes Research and Department of Biology, Central Michigan University , Mount Pleasant, MI , United States
| |
Collapse
|
10
|
Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2015. [PMID: 25964301 DOI: 10.1093/narlgkv487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that is useful for genome wide comparisons and visualization of orthologous clusters. OrthoVenn provides coverage of vertebrates, metazoa, protists, fungi, plants and bacteria for the comparison of orthologous clusters and also supports uploading of customized protein sequences from user-defined species. An interactive Venn diagram, summary counts, and functional summaries of the disjunction and intersection of clusters shared between species are displayed as part of the OrthoVenn result. OrthoVenn also includes in-depth views of the clusters using various sequence analysis tools. Furthermore, OrthoVenn identifies orthologous clusters of single copy genes and allows for a customized search of clusters of specific genes through key words or BLAST. OrthoVenn is an efficient and user-friendly web server freely accessible at http://probes.pw.usda.gov/OrthoVenn or http://aegilops.wheat.ucdavis.edu/OrthoVenn.
Collapse
Affiliation(s)
- Yi Wang
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA Department of Plant Sciences, University of California, Davis, CA 95616, USA Bioengineering College, Campus A, Chongqing University, Chongqing 400030, China
| | | | - Guoping Chen
- Bioengineering College, Campus A, Chongqing University, Chongqing 400030, China
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| |
Collapse
|
11
|
Wang Y, Coleman-Derr D, Chen G, Gu YQ. OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2015; 43:W78-84. [PMID: 25964301 PMCID: PMC4489293 DOI: 10.1093/nar/gkv487] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/02/2015] [Indexed: 01/19/2023] Open
Abstract
Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that is useful for genome wide comparisons and visualization of orthologous clusters. OrthoVenn provides coverage of vertebrates, metazoa, protists, fungi, plants and bacteria for the comparison of orthologous clusters and also supports uploading of customized protein sequences from user-defined species. An interactive Venn diagram, summary counts, and functional summaries of the disjunction and intersection of clusters shared between species are displayed as part of the OrthoVenn result. OrthoVenn also includes in-depth views of the clusters using various sequence analysis tools. Furthermore, OrthoVenn identifies orthologous clusters of single copy genes and allows for a customized search of clusters of specific genes through key words or BLAST. OrthoVenn is an efficient and user-friendly web server freely accessible at http://probes.pw.usda.gov/OrthoVenn or http://aegilops.wheat.ucdavis.edu/OrthoVenn.
Collapse
Affiliation(s)
- Yi Wang
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA Department of Plant Sciences, University of California, Davis, CA 95616, USA Bioengineering College, Campus A, Chongqing University, Chongqing 400030, China
| | | | - Guoping Chen
- Bioengineering College, Campus A, Chongqing University, Chongqing 400030, China
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA
| |
Collapse
|
12
|
Chen X, Zhao X, Liu X, Warren A, Zhao F, Miao M. Phylogenomics of non-model ciliates based on transcriptomic analyses. Protein Cell 2015; 6:373-385. [PMID: 25833385 PMCID: PMC4417680 DOI: 10.1007/s13238-015-0147-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/21/2015] [Indexed: 01/19/2023] Open
Abstract
Ciliates are one of the oldest living eukaryotic unicellular organisms, widely distributed in the waters around the world. As a typical marine oligotrich ciliate, Strombidium sulcatum plays an important role in marine food webs and energy flow. Here we report the first deep sequencing and analyses of RNA-Seq data from Strombidium sulcatum. We generated 42,640 unigenes with an N50 of 1,451 bp after de novo assembly and removing rRNA, mitochondrial and bacteria contaminants. We employed SPOCS to detect orthologs from S. sulcatum and 17 other ciliates, and then carried out the phylogenomic reconstruction using 127 single copy orthologs. In phylogenomic analyses, concatenated trees have similar topological structures with concordance tree on the class level. Together with phylogenetic networks analysis, it aroused more doubts about the placement of Protocruzia, Mesodinium and Myrionecta. While epiplasmic proteins are known to be related to morphological characteristics, we found the potential relationship between gene expression of epiplasmic proteins and morphological characteristics. This work supports the use of high throughput approaches for phylogenomic analysis as well as correlation analysis between expression level of target genes and morphological characteristics.
Collapse
Affiliation(s)
- Xiao Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaolu Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Xiaohui Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Miao Miao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
13
|
Wilkins MJ, Kennedy DW, Castelle CJ, Field EK, Stepanauskas R, Fredrickson JK, Konopka AE. Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer. MICROBIOLOGY-SGM 2013; 160:362-372. [PMID: 24324032 DOI: 10.1099/mic.0.073965-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide range of both intra- and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion.
Collapse
|