1
|
Zschernack V, Pinto G, Friker LL, Klein R, Goschzik T, Dörner E, Waha A, Vokuhl C, Vatter H, Pietsch T. Pitfalls in the evaluation of CDKN2A copy number status in meningioma. J Neurooncol 2025:10.1007/s11060-025-05029-6. [PMID: 40227557 DOI: 10.1007/s11060-025-05029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
PURPOSE Meningiomas are the most common primary intracranial tumors, with anaplastic variants linked to a poor prognosis. CDKN2A deletions are key markers of malignancy and were integrated into the 2021 WHO classification for anaplastic meningiomas. Both p16 and MTAP immunohistochemistry (IHC) are employed to assess CDKN2A loss, though each marker has limitations in accuracy to varying degrees. METHODS This study analyzed the concordance between molecular methods - DNA methylation profiling, molecular inversion probe (MIP) analysis, targeted next-generation sequencing (NGS), and fluorescence in situ hybridization (FISH) - and protein expression of p16 and MTAP in nine anaplastic meningiomas. RESULTS We showed that while p16 loss correlated well, MTAP protein was still expressed in three cases despite homozygous CDKN2A deletions. In those three cases the MTAP gene was hemizygously deleted. Additionally, a FISH probe encompassing both genes generated misleading results. CONCLUSION Our results suggest that MTAP IHC can be unreliable as a sole surrogate for CDKN2A loss in anaplastic meningioma. Quantitative copy-number analysis via high-resolution chromosomal arrays enables precise determination of CDKN2A deletions. Given the therapeutic implications of WHO grading, accurate molecular testing is critical. We conclude that negative p16/MTAP IHC in high-grade meningiomas should prompt molecular analysis for CDKN2A deletions, and MTAP IHC should not be solely relied upon for classification.
Collapse
Affiliation(s)
- Valentina Zschernack
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany.
- Institute of Neuropathology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Giuseppe Pinto
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
- University of Bologna, Bologna, Italy
| | - Lea L Friker
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| | - Rebecca Klein
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| | - Tobias Goschzik
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| | - Evelyn Dörner
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| | - Andreas Waha
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Gharaee N, Wegrzyn-Woltosz J, Jiang J, Akhade VS, Bridgers J, Stubbins RJ, Hiwase D, Kutyna MM, Chan O, Komrokji R, Padron E, Deng Y, Cole G, Umlandt P, Fuller M, Kim A, Karsan A. Haploinsufficiency of miR-143 and miR-145 reveal targetable dependencies in resistant del(5q) myelodysplastic neoplasm. Leukemia 2025; 39:917-928. [PMID: 40000845 PMCID: PMC11976265 DOI: 10.1038/s41375-025-02537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Myelodysplastic neoplasms (MDS) are stem cell disorders characterized by ineffective hematopoiesis and risk of transformation to acute myeloid leukemia (AML). Chromosomal alterations are frequent in MDS, with interstitial deletion of chromosome 5q (del(5q)) being the most common. Lenalidomide is the current first-line treatment for del(5q) MDS and its efficacy relies on degradation of CK1α which is encoded by the CSNK1A1 gene located in the commonly deleted region (CDR) of chromosome 5q. However, lenalidomide-resistance is common, often secondary to loss-of-function mutations in TP53 or RUNX1. The CDR in del(5q) harbors several genes, including noncoding miRNAs, the loss of which contribute to disease phenotypes. miR-143 and miR-145 are located within the del(5q) CDR, but precise understanding of their role in human hematopoiesis and in the pathogenesis of del(5q) MDS is lacking. Here we provide evidence that deficiency of miR-143 and miR-145 plays a role in clonal expansion of del(5q) MDS. We show that insulin-like growth factor 1 receptor (IGF-1R) is a direct target of both miR-143 and miR-145. Our data demonstrate that IGF-1R inhibition reduces proliferation and viability of del(5q) cells in vitro and in vivo, and that lenalidomide-resistant del(5q) MDS cells depleted of either TP53 or RUNX1 are sensitive to IGF-1R inhibition. Resistant del(5q) MDS-L cells, as well as primary MDS marrow cells, are also sensitive to targeting of IGF-1R-related dependencies in del(5q) MDS, which include the Abl and MAPK signaling pathways. This work thus provides potential new therapeutic avenues for lenalidomide-resistant del(5q) MDS.
Collapse
Affiliation(s)
- Nadia Gharaee
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanna Wegrzyn-Woltosz
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jihong Jiang
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vijay Suresh Akhade
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Joshua Bridgers
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ryan J Stubbins
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Leukemia/BMT Program of BC, BC Cancer and Vancouver Coastal Health, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Devendra Hiwase
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Monika M Kutyna
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | | | | | - Yu Deng
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gary Cole
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Patricia Umlandt
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Megan Fuller
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ada Kim
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada.
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Hung FH, Peng HP, Hung CF, Hsieh LL, Yang AS, Wang YA. Performance evaluation of predictive models for detecting MMR gene mutations associated with Lynch syndrome in cancer patients in a Chinese cohort in Taiwan. Int J Cancer 2024; 155:2201-2210. [PMID: 39032036 DOI: 10.1002/ijc.35106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Identifying Lynch syndrome significantly impacts cancer risk management, treatment, and prognosis. Validation of mutation risk predictive models for mismatch repair (MMR) genes is crucial for guiding genetic counseling and testing, particularly in the understudied Asian population. We evaluated the performance of four MMR mutation risk predictive models in a Chinese cohort of 604 patients with colorectal cancer (CRC), endometrial cancer (EC), or ovarian cancer (OC) in Taiwan. All patients underwent germline genetic testing and 36 (6.0%) carried a mutation in the MMR genes (MLH1, MSH2, MSH6, and PMS2). All models demonstrated good performance, with area under the receiver operating characteristic curves comparable to Western cohorts: PREMM5 0.80 (95% confidence interval [CI], 0.73-0.88), MMRPro 0.88 (95% CI, 0.82-0.94), MMRPredict 0.82 (95% CI, 0.74-0.90), and Myriad 0.76 (95% CI, 0.67-0.84). Notably, MMRPro exhibited exceptional performance across all subgroups regardless of family history (FH+ 0.88, FH- 0.83), cancer type (CRC 0.84, EC 0.85, OC 1.00), or sex (male 0.83, female 0.90). PREMM5 and MMRPredict had good accuracy in the FH+ subgroup (0.85 and 0.82, respectively) and in CRC patients (0.76 and 0.82, respectively). Using the ratio of observed and predicted mutation rates, MMRPro and PREMM5 had good overall fit, while MMRPredict and Myriad overestimated mutation rates. Risk threshold settings in different models led to different positive predictive values. We suggest a lower threshold (5%) for recommending genetic testing when using MMRPro, and a higher threshold (20%) when using PREMM5 and MMRPredict. Our findings have important implications for personalized mutation risk assessment and counseling on genetic testing.
Collapse
Affiliation(s)
- Fei-Hung Hung
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Hung-Pin Peng
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Fang Hung
- Department of Research, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - Ling-Ling Hsieh
- Department of Internal Medicine, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yong Alison Wang
- Department of Internal Medicine, Koo Foundation Sun-Yat Sen Cancer Center, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Tanaka H, Fukawa Y, Yamamoto K, Tanimoto K, Takemoto A, Mori T, Hasumi H, Kinoshita M, Kanazawa T, Furukawa A, Kimura K, Sato H, Hirakawa A, Fukuda S, Waseda Y, Yoshida S, Campbell SC, Fujii Y. Prognostic Impact and Genomic Backgrounds of Renal Parenchymal Infiltration or Micronodular Spread in Nonmetastatic Clear Cell Renal Cell Carcinoma. Mod Pathol 2024; 37:100590. [PMID: 39142537 DOI: 10.1016/j.modpat.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
A subset of clear cell renal cell carcinomas (ccRCCs) exhibits various growth patterns that infiltrate the normal renal parenchyma; however, our understanding of its association with cancer aggressiveness is incomplete. Here, we show that the morphology of the tumor interface with normal renal parenchyma is robustly associated with cancer recurrence after surgery, even when compared with the TNM staging system or the World Health Organization/International Society of Urological Pathology (WHO/ISUP) nuclear grade in nonmetastatic ccRCC. Hematoxylin and eosin-stained slides of whole tissue sections from surgical specimens were analyzed using a cohort of 331 patients with nonmetastatic ccRCC treated with radical nephrectomy. The patients were classified into 10 subgroups based on our classification algorithms for assessing the tumor interface with normal renal parenchyma. Among the 10 subgroups, 4 subgroups consisting of 40 patients (12%) were identified to have aggressive forms of nonmetastatic ccRCC associated with poor prognosis and unified as renal parenchymal infiltration or micronodular spread (RPI/MNS) phenotypes. Multivariable analyses showed that RPI/MNS phenotypes were robustly associated with shorter disease-free survival, independently of existing pathological factors including the TNM staging system and WHO/ISUP nuclear grade. The hazard ratio was highest for RPI/MNS (4.62), followed by WHO/ISUP grades 3 to 4 (2.11) and ≥pT3a stage (2.05). In addition, we conducted genomic analyses using next-generation sequencing of infiltrative lesions in 18 patients with RPI/MNS and tumor lesions in 33 patients without RPI/MNS. Results showed that alterations in SETD2 and TSC1 might be associated with RPI/MNS phenotypes, whereas alterations in PBRM1 might be associated with non-RPI/MNS phenotypes. These data suggest that RPI/MNS may be associated with aggressive genomic backgrounds of ccRCC, although more comprehensive analyses with a larger sample size are required. Future studies may further elucidate the clinical implications of RPI/MNS, particularly for deciding the indication of adjuvant treatment after nephrectomy.
Collapse
Affiliation(s)
- Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yuki Fukawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takemoto
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Mayumi Kinoshita
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Takumi Kanazawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Asuka Furukawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Kimura
- Department of Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Sato
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Fukuda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuma Waseda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Steven C Campbell
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Hida T, Idogawa M, Kato J, Kiniwa Y, Horimoto K, Sato S, Sawada M, Tange S, Okura M, Okuyama R, Tokino T, Uhara H. Genetic Characteristics of Cutaneous, Acral, and Mucosal Melanoma in Japan. Cancer Med 2024; 13:e70360. [PMID: 39564955 PMCID: PMC11577301 DOI: 10.1002/cam4.70360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/08/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Acral and mucosal melanomas are more prevalent in Asians than in Caucasians, unlike cutaneous melanomas, which are predominant in Caucasians. Recent studies have suggested that non-Caucasian cutaneous melanomas responded less to immune checkpoint inhibitors, highlighting the need for genetic profiling across ethnicities. This study aimed to elucidate the genetic characteristics of Japanese melanomas, which is an under-researched topic. METHODS Single-nucleotide variants, indels, and copy number alterations in 104 Japanese melanoma patients (37 cutaneous, 52 acral, and 15 mucosal) were analyzed using custom panel sequencing. RESULTS Driver events were detected in 94% of the cases. Among cutaneous melanoma cases, 76% had BRAF mutations, and 8% had NRAS mutations. In acral melanoma, BRAF (9%), NRAS (17%), KRAS (8%), KIT (19%), and NF1 (7%) mutations were detected. Major driver mutations in mucosal melanoma were detected in NRAS, KRAS, NF1, PTEN, GNAQ, and KIT. The median tumor mutational burden across all melanoma types was 4.6 mutations/Mb, with no significant difference between the cutaneous and acral/mucosal types. Of the 21 patients with both primary and metastatic lesions, 11 showed distinct mutations in each. Potentially actionable mutations were detected in 58 patients in addition to BRAF V600E/K mutations in 31. CONCLUSIONS This study highlights distinct genetic abnormalities and actionable alterations in Japanese melanoma patients. This suggests a lower tumor mutational burden in East Asian cutaneous melanoma, which may affect the efficacy of immune checkpoint inhibitors. The heterogeneity of driver mutations across and within individuals highlights the need for personalized treatment approaches.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Masashi Idogawa
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Junji Kato
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Kohei Horimoto
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Sayuri Sato
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Masahide Sawada
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Shoichiro Tange
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Masae Okura
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| | - Ryuhei Okuyama
- Department of DermatologyShinshu University School of MedicineNaganoJapan
| | - Takashi Tokino
- Department of Medical Genome SciencesCancer Research Institute, Sapporo Medical University School of MedicineSapporoJapan
| | - Hisashi Uhara
- Department of DermatologySapporo Medical University School of MedicineSapporoJapan
| |
Collapse
|
6
|
Chang YC, Tsai HJ, Huang TY, Su NW, Su YW, Chang YF, Chen CGS, Lin J, Chang MC, Chen SJ, Chen HC, Lim KH, Chang KC, Kuo SH. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol 2024; 103:2917-2930. [PMID: 38671297 DOI: 10.1007/s00277-024-05698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024]
Abstract
The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - To-Yu Huang
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | | | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Sung-Hsin Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Huang CY, Tan KT, Huang SF, Lu YJ, Wang YH, Chen SJ, Tse KP. Study of sex-biased differences in genomic profiles in East Asian hepatocellular carcinoma. Discov Oncol 2024; 15:276. [PMID: 38981878 PMCID: PMC11233483 DOI: 10.1007/s12672-024-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a notable sex disparity in incidence and tumor aggressiveness. Revealing differences in genetic landscapes between male and female HCCs may expand the understanding of sexual disparities mechanisms and assist the development of precision medicine. Although reports on the sex disparity of HCC are accumulated, studies focusing on sex-related biomarkers among Asian populations remain limited. Here, we conducted a comprehensive genomic profiling analysis to explore differences between male and female patients within a cohort of 195 Taiwanese HCC patients. We did not detect any sex-biased genomic alterations. However, when our investigation extended to the TCGA dataset, we found higher frequencies of gene copy gains in CCNE2 and mutations in CTNNB1 and TP53 among male patients. Besides, we further evaluated the associations between genomic alterations and patients' prognosis by sex. The results showed that female patients harboring tumors with STAT3 gain and alterations in the JAK-STAT pathway displayed a poor prognosis. These two factors remained independently associated with unfavorable prognosis even after adjusting for the patient's age and stage characteristics (Hazard ratio = 10.434, 95% CI 3.331-32.677, P < 0.001; Hazard ratio = 2.547, 95% CI 1.195-5.432, P = 0.016, respectively). In summary, this study provides valuable insights into understanding sex disparity in HCC in the East Asian population. Validation through larger cohorts and extensive sequencing efforts is warranted.
Collapse
Affiliation(s)
| | - Kien-Thiam Tan
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Anbogen Therapeutics, Inc., Taipei, Taiwan
| | - Shiu-Feng Huang
- Core Pathology Lab, Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | - Yeh-Han Wang
- ACT Genomics Co., Ltd., Taipei, Taiwan
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | | | - Ka-Po Tse
- ACT Genomics Co., Ltd., Taipei, Taiwan.
| |
Collapse
|
8
|
Isoda B, Kandori S, Sazuka T, Kojima T, Nitta S, Shiga M, Nagumo Y, Fujimoto A, Arai T, Sato H, Mathis BJ, Wu CL, Jan YH, Ichikawa T, Nishiyama H. TNFSF9 Is Associated with Favorable Tumor Immune Microenvironment in Patients with Renal Cell Carcinoma Who Are Treated with the Combination Therapy of Nivolumab and Ipilimumab. Int J Mol Sci 2024; 25:7444. [PMID: 39000552 PMCID: PMC11242552 DOI: 10.3390/ijms25137444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Combination therapy of nivolumab and ipilimumab (NIVO + IPI) for metastatic renal cell carcinoma (mRCC) has shown efficacy, but approximately 20% of patients experience disease progression in the early stages of treatment. No useful biomarkers have been reported to date. Therefore, it is desirable to identify biomarkers to predict treatment responses in advance. We examined the tumor microenvironment (TME)-related gene expression in mRCC patients treated with NIVO + IPI, between the response and non-response groups, using tumor tissues, before administering NIVO + IPI. In TME-related genes, TNFSF9 expression was identified as a candidate for the predictive biomarker. Its expression discriminated between the response and non-response groups with 88.89% sensitivity and 87.50% specificity (AUC = 0.9444). We further analyzed the roles of TNFSF9 in TME using bioinformatics from The Cancer Genome Atlas (TCGA) cohort. An adaptive immune response was activated in the TNFSF9-high-expression tumors. Indeed, T follicular helper cells, plasma B cells, and tumor-infiltrating CD8+ T cells were increased in the tumors, which indicates the promotion of humoral immunity due to enhanced T-B interactions. However, as the number of regulatory T cells (Treg) increased in the tumors, the percentage of dysfunctional T cells also increased. This suggests that not only PD-1 but also CTLA-4 inhibition may have suppressed Treg activation and improved the therapeutic effect in the TNFSF9 high-expression tumors. Therefore, TNFSF9 may predict the therapeutic efficacy of NIVO + IPI for mRCC and allow more appropriate patient selection.
Collapse
Affiliation(s)
- Bunpei Isoda
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Shuya Kandori
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Tomokazu Sazuka
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center, Nagoya 464-8681, Aichi, Japan;
| | - Satoshi Nitta
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Masanobu Shiga
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Yoshiyuki Nagumo
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| | - Ayumi Fujimoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Takayuki Arai
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Hiroaki Sato
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Affiliated Hospital, Tsukuba 305-8576, Ibaraki, Japan;
| | - Chia-Ling Wu
- ACT Genomics, Co., Ltd., Taipei 114, Taiwan; (C.-L.W.); (Y.-H.J.)
| | - Yi-Hua Jan
- ACT Genomics, Co., Ltd., Taipei 114, Taiwan; (C.-L.W.); (Y.-H.J.)
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba 263-8522, Chiba, Japan; (T.S.); (A.F.); (T.A.); (H.S.); (T.I.)
| | - Hiroyuki Nishiyama
- Department of Urology, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (B.I.); (S.N.); (M.S.); (Y.N.); (H.N.)
| |
Collapse
|
9
|
Yeh JT, Peng HP, Hung FH, Hung CF, Hsieh LL, Yang AS, Wang YA. Mismatch Repair (MMR) Gene Mutation Carriers Have Favorable Outcome in Colorectal and Endometrial Cancer: A Prospective Cohort Study. Cancers (Basel) 2024; 16:2342. [PMID: 39001404 PMCID: PMC11240388 DOI: 10.3390/cancers16132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Germline (Lynch syndrome, LS) and somatic deficiencies of mismatch repair proteins (MMRd) are linked to colorectal and endometrial cancer; however, their prognostic impact in Asian populations remains unclear. This prospective cohort study aimed to determine the prevalence and outcome of germline and somatic MMRd in cancer patients suspected of LS. Patients with colorectal or endometrial cancer suspected of LS were enrolled and underwent gene sequencing for germline MMRd (gMMRd) and immunohistochemistry staining of MMR proteins in a subset of the pathological samples (pMMRd). Among the 451 enrolled patients, 36 patients were gMMRd (+). Compared with gMMRd (-) patients, the 10-year relapse-free survival in gMMRd (+) patients was significantly higher (100% vs. 77.9%; p = 0.006), whereas the 10-year overall survival was similar (100% vs. 90.9%; p = 0.12). Among the 102 gMMRd (-) patients with available pMMR status, 13.7% were pMMRd (+). The 5-year relapse-free survival was 62.9% in gMMRd (-) pMMRd (+) patients and 35.0% in gMMRd (-) pMMRd (-) patients, both lower than gMMRd (+) patients (100%; p < 0.001). This study showed that having LS confers a favorable outcome in colorectal and endometrial cancer patients and highlights the importance of germline genetic testing following the detection of somatic MMRd.
Collapse
Affiliation(s)
- Jiunn-Tyng Yeh
- Department of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 11259, Taiwan
| | - Hung-Pin Peng
- Biomedical Translation Research Center, Academia Sinica, Taipei 11571, Taiwan
| | - Fei-Hung Hung
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei 11013, Taiwan
| | - Chen-Fang Hung
- Department of Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 11259, Taiwan
| | - Ling-Ling Hsieh
- Department of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 11259, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei 11571, Taiwan
| | - Yong Alison Wang
- Department of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 11259, Taiwan
- National Yang Ming Chiao Tung University School of Medicine, Taipei 112304, Taiwan
| |
Collapse
|
10
|
Chen S, Tse K, Lu Y, Chen S, Tian Y, Tan KT, Li C. Comprehensive genomic profiling and therapeutic implications for Taiwanese patients with treatment-naïve breast cancer. Cancer Med 2024; 13:e7384. [PMID: 38895905 PMCID: PMC11187859 DOI: 10.1002/cam4.7384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/29/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous disease categorized based on molecular characteristics, including hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression levels. The emergence of profiling technology has revealed multiple driver genomic alterations within each breast cancer subtype, serving as biomarkers to predict treatment outcomes. This study aimed to explore the genomic landscape of breast cancer in the Taiwanese population through comprehensive genomic profiling (CGP) and identify diagnostic and predictive biomarkers. METHODS Targeted next-generation sequencing-based CGP was performed on 116 archived Taiwanese breast cancer specimens, assessing genomic alterations (GAs), including single nucleotide variants, copy number variants, fusion genes, tumor mutation burden (TMB), and microsatellite instability (MSI) status. Predictive variants for FDA-approved therapies were evaluated within each subtype. RESULTS In the cohort, frequent mutations included PIK3CA (39.7%), TP53 (36.2%), KMT2C (9.5%), GATA3 (8.6%), and SF3B1 (6.9%). All subtypes had low TMB, with no MSI-H tumors. Among HR + HER2- patients, 42% (27/65) harbored activating PIK3CA mutations, implying potential sensitivity to PI3K inhibitors and resistance to endocrine therapies. HR + HER2- patients exhibited intrinsic hormonal resistance via FGFR1 gene gain/amplification (15%), exclusive of PI3K/AKT pathway alterations. Aberrations in the PI3K/AKT/mTOR and FGFR pathways were implicated in chemoresistance, with a 52.9% involvement in triple-negative breast cancer. In HER2+ tumors, 50% harbored GAs potentially conferring resistance to anti-HER2 therapies, including PIK3CA mutations (32%), MAP3K1 (2.9%), NF1 (2.9%), and copy number gain/amplification of FGFR1 (18%), FGFR3 (2.9%), EGFR (2.9%), and AKT2 (2.9%). CONCLUSION This study presents CGP findings for treatment-naïve Taiwanese breast cancer, emphasizing its value in routine breast cancer management, disease classification, and treatment selection.
Collapse
Affiliation(s)
- Shang‐Hung Chen
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
- Department of OncologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | | | | | | | - Yu‐Feng Tian
- Division of Colorectal Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Health and NutritionChia‐Nan University of Pharmacy and ScienceTainanTaiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd.TaipeiTaiwan
- Anbogen Therapeutics, Inc.TaipeiTaiwan
| | - Chien‐Feng Li
- National Institute of Cancer Research, National Health Research InstitutesTainanTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
- Institute of Precision MedicineNational Sun Yat‐Sen UniversityKaohsiungTaiwan
- Department of Clinical Pathology and Laboratory MedicineChi Mei Medical CenterTainanTaiwan
- Trans‐omic Laboratory for Precision MedicineChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
11
|
Liang SK, Wei PF, Hsieh MS, Wu CL, Shih JY. Next-generation sequencing reveals genetic heterogeneity and resistance mechanisms in patients with EGFR-mutated non-small cell lung cancer treated with afatinib. ERJ Open Res 2024; 10:00676-2023. [PMID: 38500795 PMCID: PMC10945387 DOI: 10.1183/23120541.00676-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 03/20/2024] Open
Abstract
Background Afatinib, an irreversible ErbB family inhibitor, is widely used as first-line treatment in advanced lung adenocarcinoma patients harbouring mutant epidermal growth factor receptor (EGFR). With the advancements in next-generation sequencing (NGS), comprehensive research into the clinical impact of co-occurring genetic mutations and the molecular mechanisms of acquired resistance is required for afatinib users. Materials From January 2010 to December 2019, we enrolled patients with advanced lung adenocarcinoma with EGFR mutations using afatinib as first-line treatment, and we retrospectively collected pre- and post-afatinib treatment specimens from these patients for NGS testing. Results Of the 362 enrolled patients, 73 samples (68.9%) from 56 patients successfully returned complete NGS reports. In pre-afatinib treatment specimens, the most frequent co-occurring alterations were TP53, MUC16, USH2A, SNYE1, RECQL4 and FAT1; however, they were not related to progression-free survival. Small cell lung cancer transformation, EGFR p.T790M, amplification of MET, ERBB2, KRAS, EGFR, cell cycle-regulated genes and MDM2, and PTEN alterations were identified as acquired resistance mechanisms. EGFR p.T790M (p=0.0304) and APC alterations (p=0.0311) in post-afatinib specimens were significantly associated with longer overall survival, while MET amplification was significantly associated with poor overall survival (p=0.0324). The co-occurrence of TP53 alterations was significantly associated with shorter overall survival (p=0.0298). Conclusions Our results show that the frequent co-occurring alterations in advanced EGFR-mutated lung adenocarcinoma did not influence the effectiveness of afatinib. EGFR p.T790M is not only the major resistance mechanism to afatinib but also related to favourable survival outcomes. MET amplification and TP53 mutations were associated with poorer overall survival.
Collapse
Affiliation(s)
- Sheng-Kai Liang
- Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Pin-Fei Wei
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chia-Ling Wu
- Medical Informatics, ACT Genomics Co., Ltd, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Grants JM, May C, Bridgers J, Huang S, Gillis S, Meissner B, Boyle M, Ben-Neriah S, Hung S, Duns G, Hilton L, Gerrie AS, Marra M, Kridel R, Sabatini PJB, Steidl C, Scott DW, Karsan A. Chronic Lymphocytic Leukemia IGHV Somatic Hypermutation Detection by Targeted Capture Next-Generation Sequencing. Clin Chem 2024; 70:273-284. [PMID: 38175592 DOI: 10.1093/clinchem/hvad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/13/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Somatic hypermutation (SHM) status of the immunoglobulin heavy variable (IGHV) gene plays a crucial role in determining the prognosis and treatment of patients with chronic lymphocytic leukemia (CLL). A common approach for determining SHM status is multiplex polymerase chain reaction and Sanger sequencing of the immunoglobin heavy locus; however, this technique is low throughput, is vulnerable to failure, and does not allow multiplexing with other diagnostic assays. METHODS Here we designed and validated a DNA targeted capture approach to detect immunoglobulin heavy variable somatic hypermutation (IGHV SHM) status as a submodule of a larger next-generation sequencing (NGS) panel that also includes probes for ATM, BIRC3, CHD2, KLHL6, MYD88, NOTCH1, NOTCH2, POT1, SF3B1, TP53, and XPO1. The assay takes as input FASTQ files and outputs a report containing IGHV SHM status and V allele usage following European Research Initiative on CLL guidelines. RESULTS We validated the approach on 35 CLL patient samples, 34 of which were characterized using Sanger sequencing. The NGS panel identified the IGHV SHM status of 34 of 35 CLL patients. We showed 100% sensitivity and specificity among the 33 CLL samples with both NGS and Sanger sequencing calls. Furthermore, we demonstrated that this panel can be combined with additional targeted capture panels to detect prognostically important CLL single nucleotide variants, insertions/deletions, and copy number variants (TP53 copy number loss). CONCLUSIONS A targeted capture approach to IGHV SHM detection can be integrated into broader sequencing panels, allowing broad CLL prognostication in a single molecular assay.
Collapse
Affiliation(s)
- Jennifer M Grants
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Christina May
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Josh Bridgers
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Shujun Huang
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Sierra Gillis
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Barbara Meissner
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | | | - Stacy Hung
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | - Gerben Duns
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | - Laura Hilton
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | - Alina S Gerrie
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
| | - Marco Marra
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter J B Sabatini
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer Centre, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Maitre E, Macro M, Troussard X. Hairy cell leukaemia with unusual BRAF mutations. J Cell Mol Med 2023; 27:2626-2630. [PMID: 37530550 PMCID: PMC10468650 DOI: 10.1111/jcmm.17890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Hairy cell leukaemia (HCL) diagnosis is based on the morphologic detection of circulating abnormal hairy cells in the peripheral blood and/or bone marrow, an HCL immunological score of 3 or 4 based on the expression of the CD11c, CD25, CD103 and CD123 and also the presence of a BRAF V600E activating mutation in the B-raf proto-oncogene (BRAF gene) (7q34). When using new generation sequencing of 21 targeted genes in 124 HCL patients, we identified a cohort of 6/124 (2%) patients with unusual BRAF mutations: two patients presented non-V600 mutations (BRAF F595L, BRAF W604L respectively) and four other patients silent BRAF mutations. When using droplet digital PCR (ddPCR) three of the four patients with concomitant BRAF V600E and silent mutation were negative. The respective role of these mutations in the occurrence of HCL or its progression remains to be clarified, but BRAF sequencing is necessary in case of negative BRAF V600E by ddPCR.
Collapse
Affiliation(s)
- Elsa Maitre
- Laboratoire d'HématologieCHU Caen NormandieCaenFrance
| | - Margaret Macro
- Institut bas Normand d'HématologieCHU Caen NormandieCaenFrance
| | - Xavier Troussard
- Laboratoire d'HématologieCHU Caen NormandieCaenFrance
- Institut bas Normand d'HématologieCHU Caen NormandieCaenFrance
| |
Collapse
|
14
|
Kondo T, Kanai M, Matsubara J, Yamaguchi D, Ura T, Kou T, Itani T, Nomura M, Funakoshi T, Yokoyama A, Doi K, Tamaoki M, Yoshimura M, Uza N, Yamada T, Masui T, Minamiguchi S, Matsumoto S, Ishikawa H, Muto M. Association between homologous recombination gene variants and efficacy of oxaliplatin-based chemotherapy in advanced pancreatic cancer: prospective multicenter observational study. Med Oncol 2023; 40:144. [PMID: 37039943 DOI: 10.1007/s12032-023-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Next-generation sequencing (NGS)-based gene profiling can identify patients with pancreatic cancer with homologous recombinant repair gene pathogenic variants (HRRv). Several retrospective studies have reported a positive association between HRRv and the efficacy of platinum-based chemotherapy. However, this association remains to be validated in a prospective study. This multicenter, prospective, observational study included patients with histologically confirmed unresectable or recurrent pancreatic cancer who required systemic chemotherapy. Patients who were oxaliplatin-naïve patients were eligible. The HRRv status was measured using a College of American Pathologists-accredited NGS panel. One-year overall survival rate (1yr-OS%) was calculated after initiation of oxaliplatin-based chemotherapy and was set as the primary endpoint. Forty patients were enrolled between August 2018 and March 2020. The NGS success rate was 95% (38/40). HRRv was detected in 11 patients (27.5%). Oxaliplatin-based chemotherapy was administered to 9 of 11 patients with HRRv (81.8%) and 15 of 29 patients with non-HRRv (51.7%). The 1yr-OS% after initiation of oxaliplatin-based chemotherapy was 44.4% [95% confidence interval (CI) 13.7-71.9] and 57.1% (95% CI 28.4-78.0) in HRRv-positive and -negative cohorts, respectively. These data suggested that HRRv status alone could not be a potential predictive marker of oxaliplatin-based chemotherapy in patients with advanced pancreatic cancer. These results were in line with the results of a recent phase II study reporting the limited efficacy of poly(adenosine diphosphate-ribose) polymerase inhibitor in patients with pancreatic cancer who harbored HRRv other than BRCA. Future studies investigating patients with biallelic HRRv in the first-line setting are warranted.Trial registration UMIN000033655.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masashi Kanai
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Junichi Matsubara
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Daisuke Yamaguchi
- Department of Medical Oncology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Takashi Ura
- Department of Clinical Oncology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tadayuki Kou
- Department of Gastroenterology and Hepatology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toshinao Itani
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Hyogo, Japan
| | - Motoo Nomura
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Taro Funakoshi
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akira Yokoyama
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Keitaro Doi
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Tamaoki
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Hokkaido, Japan
| | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shigemi Matsumoto
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Manabu Muto
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
15
|
Perani A, Bourthoumieu S, Rizzo D, Chauzeix J, Dauriat B, Turlure P, Girault S, Veyrune L, Roubinet M, Feuillard J, Yardin C, Gachard N. Hereditary predisposition to malignant myeloid hemopathies: Caution in use of saliva and guideline based on our experience. Front Oncol 2023; 13:1120829. [PMID: 36923434 PMCID: PMC10008954 DOI: 10.3389/fonc.2023.1120829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Background Predisposition to myeloid malignancies is a field at the border of hematology and genetics. Knowledge in this domain has so rapidly increased that WHO defined in 2016 the new "Myeloid Neoplasms with Germline Predisposition" category of tumors. High throughput sequencing is frequently performed in tumors either for diagnosis or prognosis, but this approach may identify potential germline variants that have to be confirmed on non-infiltrated tissues. Method In this study, we systematically compared NGS data from genetic analysis performed on all sample types (bone marrow, blood, saliva, skin fibroblasts and hair follicles) in 29 patients, and 44 of their relatives (blood and saliva). Results We showed that saliva was usable for relatives, but only for 24% (7/29) of our patients. Most of patients' saliva were either "non-contributive" (14/29 i.e., 48% because clearly or probably infiltrated) or "inconclusive" (8/29 corresponding to 28%). Conclusion The recommendations for the use of saliva we present here focus on the importance of collecting saliva during remission when possible. Moreover, we propose hair follicles as an alternative to skin biopsy, that remains the gold standard especially in case of allogenic hematopoietic stem cells transplantation. Technological progresses have revolutionized the diagnosis of predisposition to solid or hematological malignancies, and it is very likely that new techniques will help to manage the familial predisposition in the future.
Collapse
Affiliation(s)
- Alexandre Perani
- Laboratoire de Cytogénétique et Génétique Médicale, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Sylvie Bourthoumieu
- Laboratoire de Cytogénétique et Génétique Médicale, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - David Rizzo
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Jasmine Chauzeix
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Benjamin Dauriat
- Laboratoire de Cytogénétique et Génétique Médicale, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Pascal Turlure
- Service d’Hématologie Clinique, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Stéphane Girault
- Service d’Hématologie Clinique, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Léa Veyrune
- Laboratoire de Cytogénétique et Génétique Médicale, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Maxime Roubinet
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Jean Feuillard
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Catherine Yardin
- Laboratoire de Cytogénétique et Génétique Médicale, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| | - Nathalie Gachard
- Laboratoire d’Hématologie, Centre Hospitalier Universitaire CHU de Limoges, Limoges, France
| |
Collapse
|
16
|
Ali RH, Alateeqi M, Jama H, Alrumaidhi N, Alqallaf A, Mohammed EM, Almurshed M, Bahzad S. Evaluation of the Oncomine Comprehensive Assay v3 panel for the detection of 1p/19q codeletion in oligodendroglial tumours. J Clin Pathol 2023; 76:103-110. [PMID: 34489310 DOI: 10.1136/jclinpath-2021-207876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023]
Abstract
AIMS Accurate assessment of 1p/19q codeletion status in diffuse gliomas is of paramount importance for diagnostic, prognostic and predictive purposes. While targeted next generation sequencing (NGS) has been widely implemented for glioma molecular profiling, its role in detecting structural chromosomal variants is less well established, requiring supplementary informatic tools for robust detection. Herein, we evaluated a commercially available amplicon-based targeted NGS panel (Oncomine Comprehensive Assay v3) for the detection of 1p/19q losses in glioma tissues using an Ion Torrent platform and the standard built-in NGS data analysis pipeline solely. METHODS Using as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard. RESULTS The software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion. CONCLUSIONS This commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, Kuwait University, Jabriya, Kuwait .,Cytogenetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Noor Alrumaidhi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Ali Alqallaf
- Cytogenetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | | | | | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| |
Collapse
|
17
|
Ferrando L, Vingiani A, Garuti A, Vernieri C, Belfiore A, Agnelli L, Dagrada G, Ivanoiu D, Bonizzi G, Munzone E, Lippolis L, Dameri M, Ravera F, Colleoni M, Viale G, Magnani L, Ballestrero A, Zoppoli G, Pruneri G. ESR1 gene amplification and MAP3K mutations are selected during adjuvant endocrine therapies in relapsing Hormone Receptor-positive, HER2-negative breast cancer (HR+ HER2- BC). PLoS Genet 2023; 19:e1010563. [PMID: 36595552 PMCID: PMC9839248 DOI: 10.1371/journal.pgen.1010563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/13/2023] [Accepted: 12/08/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Previous studies have provided a comprehensive picture of genomic alterations in primary and metastatic Hormone Receptor (HR)-positive, Human Epidermal growth factor Receptor 2 (HER2)-negative breast cancer (HR+ HER2- BC). However, the evolution of the genomic landscape of HR+ HER2- BC during adjuvant endocrine therapies (ETs) remains poorly investigated. METHODS AND FINDINGS We performed a genomic characterization of surgically resected HR+ HER2- BC patients relapsing during or at the completion of adjuvant ET. Using a customized panel, we comprehensively evaluated gene mutations and copy number variation (CNV) in paired primary and metastatic specimens. After retrieval and quality/quantity check of tumor specimens from an original cohort of 204 cases, 74 matched tumor samples were successfully evaluated for DNA mutations and CNV analysis. Along with previously reported genomic alterations, including PIK3CA, TP53, CDH1, GATA3 and ESR1 mutations/deletions, we found that ESR1 gene amplification (confirmed by FISH) and MAP3K mutations were enriched in metastatic lesions as compared to matched primary tumors. These alterations were exclusively found in patients treated with adjuvant aromatase inhibitors or LHRH analogs plus tamoxifen, but not in patients treated with tamoxifen alone. Patients with tumors bearing MAP3K mutations in metastatic lesions had significantly worse distant relapse-free survival (hazard ratio [HR] 3.4, 95% CI 1.52-7.70, p value 0.003) and worse overall survival (HR 5.2, 95% CI 2.10-12.8, p-value < 0.001) independently of other clinically relevant patient- and tumor-related variables. CONCLUSIONS ESR1 amplification and activating MAP3K mutations are potential drivers of acquired resistance to adjuvant ETs employing estrogen deprivation in HR+ HER2- BC. MAP3K mutations are associated with worse prognosis in patients with metastatic disease.
Collapse
Affiliation(s)
| | - Andrea Vingiani
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anna Garuti
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudio Vernieri
- Department of Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Antonino Belfiore
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Agnelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianpaolo Dagrada
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diana Ivanoiu
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Giuseppina Bonizzi
- Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luana Lippolis
- Division of Pathology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Dameri
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Francesco Ravera
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Marco Colleoni
- Division of Medical Senology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Viale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Pathology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Gabriele Zoppoli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine (DiMI), University of Genoa, Genova, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Lin PH, Tseng LM, Lee YH, Chen ST, Yeh DC, Dai MS, Liu LC, Wang MY, Lo C, Chang S, Tan KT, Chen SJ, Kuo SH, Huang CS. Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders. J Formos Med Assoc 2022; 121:2538-2547. [PMID: 35752529 DOI: 10.1016/j.jfma.2022.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND The prognosis of triple-negative breast cancer (TNBC) is worse and a major proportion of TNBC expresses epidermal growth factor receptor (EGFR). Afatinib can inhibit EGFR signal pathway; however, its treatment effect for TNBC is unknown. Thus, we aimed to assess the efficacy and biomarkers of afatinib in combination with paclitaxel in a neoadjuvant setting. METHODS Patients with stage II to III TNBC were enrolled. They received 40 mg of afatinib daily for 14 days, followed by daily afatinib and weekly paclitaxel (80 mg/m2) every 21 days for four to six cycles. To explore the mechanisms of responsiveness and non-responsiveness, 409 cancer-associated genes were sequenced. RESULTS Twenty-one patients were enrolled and one patient achieved a complete clinical response; however, a 2 mm residual tumor was noted in the surgical specimen. Overall, 33.0% patients were responders. Fifteen patients received molecular testing. No activated mutation of EGFR or Her2 were found. Activated PI3K or JAK2 pathway were trended to associate with non-responder (p = 0.057). Mutation of homologous recombination (HR) genes were correlated with non-responsiveness (p = 0.005). Seven patients did not have altered PI3K, JAK2 or HR pathway; six (85.7%) of them were responder. Patients with the amplified DAXX gene was associated with a favorable trend of response (p = 0.109). CONCLUSION Adding afatinib to neoadjuvant paclitaxel generated a modest effect in TNBC. Exploratory molecular analysis suggested that activated PI3K, JAK2 pathways and mutation of HR genes were associated with therapeutic non-responsiveness, and amplification of DAXX genes was associated with responsiveness to afatinib in combination with paclitaxel.
Collapse
Affiliation(s)
- Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Dah-Cherng Yeh
- Department of Surgery, Chung Kang Branch, Cheng Ching Hospital, Taichung, Taiwan
| | - Ming-Shen Dai
- Hematology and Oncology, Department of Internal Medicine, Tri-service General Hospital, Taipei, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao Lo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Sung-Hsin Kuo
- Department of Medical Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Surgery, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Kumar AA, Loeys B, Van De Beek G, Peeters N, Wuyts W, Van Laer L, Vandeweyer G, Alaerts M. varAmpliCNV: analyzing variance of amplicons to detect CNVs in targeted NGS data. Bioinformatics 2022; 39:6849518. [PMID: 36440912 PMCID: PMC9805572 DOI: 10.1093/bioinformatics/btac756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
MOTIVATION Computational identification of copy number variants (CNVs) in sequencing data is a challenging task. Existing CNV-detection methods account for various sources of variation and perform different normalization strategies. However, their applicability and predictions are restricted to specific enrichment protocols. Here, we introduce a novel tool named varAmpliCNV, specifically designed for CNV-detection in amplicon-based targeted resequencing data (Haloplex™ enrichment protocol) in the absence of matched controls. VarAmpliCNV utilizes principal component analysis (PCA) and/or metric dimensional scaling (MDS) to control variances of amplicon associated read counts enabling effective detection of CNV signals. RESULTS Performance of VarAmpliCNV was compared against three existing methods (ConVaDING, ONCOCNV and DECoN) on data of 167 samples run with an aortic aneurysm gene panel (n = 30), including 9 positive control samples. Additionally, we validated the performance on a large deafness gene panel (n = 145) run on 138 samples, containing 4 positive controls. VarAmpliCNV achieved higher sensitivity (100%) and specificity (99.78%) in comparison to competing methods. In addition, unsupervised clustering of CNV segments and visualization plots of amplicons spanning these regions are included as a downstream strategy to filter out false positives. AVAILABILITY AND IMPLEMENTATION The tool is freely available through galaxy toolshed and at: https://hub.docker.com/r/cmgantwerpen/varamplicnv. Supplementary Data File S1: https://tinyurl.com/2yzswyhh; Supplementary Data File S2: https://tinyurl.com/ycyf2fb4. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ajay Anand Kumar
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium,Biomedical Informatics, Antwerp University Hospital, Antwerp (Wilrijk) 2610, Belgium,Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, United Kingdom
| | - Bart Loeys
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium
| | - Gerarda Van De Beek
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium
| | - Nils Peeters
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium
| | - Wim Wuyts
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp (Edegem) 2650, Belgium
| | | | | |
Collapse
|
20
|
Barresi V, Simbolo M, Ciaparrone C, Pedron S, Mafficini A, Scarpa A. pRB immunostaining in the differential diagnosis between pleomorphic xanthoastrocytoma and glioblastoma with giant cells. Histopathology 2022; 81:661-669. [PMID: 35945679 PMCID: PMC9804328 DOI: 10.1111/his.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023]
Abstract
AIMS Pleomorphic xanthoastrocytoma (PXA) is a rare circumscribed glioma, characterized by frequent BRAF p. V600E mutation, and classified as grade 2 or 3. Owing to overlapping clinical-pathological features, the histological distinction from glioblastoma (GBM) with giant cells (GCs) is challenging. Based on the high frequency of TP53 and RB1 alterations in the latter, this study aimed to assess the value of BRAF, p53, and pRB immunostainings in the differential diagnosis. METHODS AND RESULTS In 37 GBMs with ≥30% GCs and in eight PXAs, we assessed the alterations of 409 cancer-related genes and immunostainings for BRAF, p53, and pRB. GBMs with GCs were TP53-mutated in 30 cases, RB1-altered in 11, and BRAF-mutated in none. PXAs were BRAF-mutated in six cases, TP53-mutated in three, and RB1-altered in none. pRb immunostaining was lost in 25 GBMs (11 RB1-altered and 14 RB1-unaltered), retained in all PXAs and six GBMs, and inconclusive in six GBMs. pRb loss had 100% specificity and 80.6% sensitivity for GBM with GCs. P53 immunostaining was observed in 22 TP53-mutated GBMs and in one TP53-mutated PXA. It showed 87.5% specificity and 60% sensitivity to identify GBM with GCs. BRAF immunostaining corresponded to BRAF mutation status and it had 100% specificity and 75% sensitivity for detecting PXA. CONCLUSION This study shows for the first time that loss of pRB immunostaining is sensitive and specific for distinguishing GBM with GCs from PXA in routine practice. Thus, it could complement an immunohistochemical panel that includes BRAF and p53 immunostainings for the differential diagnosis.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
| | - Michele Simbolo
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
| | - Chiara Ciaparrone
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
| | - Serena Pedron
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
| | - Andrea Mafficini
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthUniversity of VeronaVeronaItaly,ARC‐NET Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
| |
Collapse
|
21
|
Jan YH, Tan KT, Chen SJ, Yip TTC, Lu CT, Lam AKY. Comprehensive assessment of actionable genomic alterations in primary colorectal carcinoma using targeted next-generation sequencing. Br J Cancer 2022; 127:1304-1311. [PMID: 35842545 PMCID: PMC9519871 DOI: 10.1038/s41416-022-01913-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The clinical utility of comprehensive genomic profiling (CGP) for guiding treatment has gradually become the standard-of-care procedure for colorectal carcinoma (CRC). Here, we comprehensively assess emerging targeted therapy biomarkers using CGP in primary CRC. METHODS A total of 575 primary CRCs were sequenced by ACTOnco® assay for genomic alterations, tumour mutational burden (TMB), and microsatellite instability (MSI). RESULTS Eighteen percent of patients were detected as MSI-High (MSI-H), and the remaining cases were classified as microsatellite stable (MSS). Driver mutation prevalence in MSS CRCs were APC (74%), TP53 (67%), KRAS (47%), PIK3CA (21%) and BRAF (13%). The median TMBs for MSI-H and MSS patients were 37.8 mutations per mega base (mut/Mb) and 3.9 mut/Mb, respectively. Forty-seven percent of MSI-H CRC harboured at least one loss-of-function mutations in genes that may hamper immune checkpoint blockade. Among MSS RAS/RAF wild-type CRCs, 59% had at least one actionable mutation that may compromise the efficacy of anti-EGFR therapy. For late-stage CRC, 51% of patients are eligible for standard care actionability and the remaining 49% could be enrolled in clinical trials with investigational drugs. CONCLUSIONS This study highlights the essential role of CGP for identifying rational targeted therapy options in CRC.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Cancer Genomics, ACT Genomics, Co. Ltd., Taipei City, Taiwan
| | - Kien Thiam Tan
- Cancer Genomics, ACT Genomics, Co. Ltd., Taipei City, Taiwan
| | - Shu-Jen Chen
- Cancer Genomics, ACT Genomics, Co. Ltd., Taipei City, Taiwan
| | | | - Cu Tai Lu
- Department of Surgery, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Dentistry, Menzies Health Institute Queensland, Gold Coast campus, Griffith University, Gold Coast, QLD, 4222, Australia.
- Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia.
| |
Collapse
|
22
|
Simbolo M, Centonze G, Giudice L, Grillo F, Maisonneuve P, Gkountakos A, Ciaparrone C, Cattaneo L, Sabella G, Giugno R, Bossi P, Spaggiari P, Del Gobbo A, Ferrero S, Mastracci L, Fabbri A, Filugelli M, Garzone G, Prinzi N, Pusceddu S, Testi A, Monti V, Rolli L, Mangogna A, Bercich L, Benvenuti MR, Bria E, Pilotto S, Berruti A, Pastorino U, Capella C, Infante M, Milella M, Scarpa A, Milione M. Combined Large Cell Neuroendocrine Carcinomas of the Lung: Integrative Molecular Analysis Identifies Subtypes with Potential Therapeutic Implications. Cancers (Basel) 2022; 14:4653. [PMID: 36230576 PMCID: PMC9562868 DOI: 10.3390/cancers14194653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Combined large cell neuroendocrine carcinoma (CoLCNEC) is given by the association of LCNEC with adeno or squamous or any non-neuroendocrine carcinoma. Molecular bases of CoLCNEC pathogenesis are scant and no standardized therapies are defined. METHODS 44 CoLCNECs: 26 with adenocarcinoma (CoADC), 7 with squamous cell carcinoma (CoSQC), 3 with small cell carcinoma (CoSCLC), 4 with atypical carcinoid (CoAC) and 4 napsin-A positive LCNEC (NapA+), were assessed for alterations in 409 genes and transcriptomic profiling of 20,815 genes. RESULTS Genes altered included TP53 (n = 30), RB1 (n = 14) and KRAS (n = 13). Targetable alterations included six KRAS G12C mutations and ALK-EML4 fusion gene. Comparison of CoLCNEC transcriptomes with 86 lung cancers of pure histology (8 AC, 19 ADC, 19 LCNEC, 11 SCLC and 29 SQC) identified CoLCNEC as a separate entity of neuroendocrine tumours with three different molecular profiles, two of which showed a non-neuroendocrine lineage. Hypomethylation, activation of MAPK signalling and association to immunotherapy signature specifically characterized each of three CoLCNEC molecular clusters. Prognostic stratification was also provided. CONCLUSIONS CoLCNECs are an independent histologic category. Our findings support the extension of routine evaluation of KRAS mutations, fusion genes and immune-related markers to offer new perspectives in the therapeutic management of CoLCNEC.
Collapse
Affiliation(s)
- Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Giovanni Centonze
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Luca Giudice
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Federica Grillo
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, 20132 Milan, Italy
| | - Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Chiara Ciaparrone
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Laura Cattaneo
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giovanna Sabella
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Paola Bossi
- Pathology Department, Humanitas Clinical and Research Center, Humanitas Milan ENETS Center of Excellence, 20089 Milan, Italy
| | - Paola Spaggiari
- Pathology Department, Humanitas Clinical and Research Center, Humanitas Milan ENETS Center of Excellence, 20089 Milan, Italy
| | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Mastracci
- Unit of Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Fabbri
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Martina Filugelli
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Giovanna Garzone
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Adele Testi
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Valentina Monti
- 2nd Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Luigi Rolli
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, 34137 Trieste, Italy
| | - Luisa Bercich
- Department of Pathology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Mauro Roberto Benvenuti
- Thoracic Surgery Unit, Department of Medical and Surgical Specialties Radiological Sciences and Public Health, Medical Oncology, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Emilio Bria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Pilotto
- Department of Medicine, Section of Oncology, University of Verona, 37134 Verona, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, ASST Spedali Civili of Brescia, Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Ugo Pastorino
- Thoracic Surgery Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Carlo Capella
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Maurizio Infante
- Thoracic Surgery, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Michele Milella
- Department of Medicine, Section of Oncology, University of Verona, 37134 Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy
| | - Massimo Milione
- 1st Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| |
Collapse
|
23
|
Wong D, Lee TH, Lum A, Tao VL, Yip S. Integrated proteomic analysis of low-grade gliomas reveals contributions of 1p-19q co-deletion to oligodendroglioma. Acta Neuropathol Commun 2022; 10:70. [PMID: 35526077 PMCID: PMC9080204 DOI: 10.1186/s40478-022-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Diffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemispheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malignant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that are useful for the proteomic classification of LGG subtypes.
Collapse
|
24
|
Lebedeva A, Shaykhutdinova Y, Seriak D, Ignatova E, Rozhavskaya E, Vardhan D, Manicka S, Sharova M, Grigoreva T, Baranova A, Mileyko V, Ivanov M. Incidental germline findings during molecular profiling of tumor tissues for precision oncology: molecular survey and methodological obstacles. J Transl Med 2022; 20:29. [PMID: 35033101 PMCID: PMC8760669 DOI: 10.1186/s12967-022-03230-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background A fraction of patients referred for complex molecular profiling of biopsied tumors may harbor germline variants in genes associated with the development of hereditary cancer syndromes (HCS). Neither the bioinformatic analysis nor the reporting of such incidental germline findings are standardized. Methods Data from Next-Generation Sequencing (NGS) of biopsied tumor samples referred for complex molecular profiling were analyzed for germline variants in HCS-associated genes. Analysis of variant origin was performed employing bioinformatic algorithms followed by manual curation. When possible, the origin of the variant was validated by Sanger sequencing of the sample of normal tissue. The variants’ pathogenicity was assessed according to ACMG/AMP. Results Tumors were sampled from 183 patients (Males: 75 [41.0%]; Females: 108 [59.0%]; mean [SD] age, 57.7 [13.3] years) and analysed by targeted NGS. The most common tumor types were colorectal (19%), pancreatic (13%), and lung cancer (10%). A total of 56 sequence variants in genes associated with HCS were detected in 40 patients. Of them, 17 variants found in 14 patients were predicted to be of germline origin, with 6 variants interpreted as pathogenic (PV) or likely pathogenic (LPV), and 9 as variants of uncertain significance (VUS). For the 41 out of 42 (97%) missense variants in HCS-associated genes, the results of computational prediction of variant origin were concordant with that of experimental examination. We estimate that Sanger sequencing of a sample of normal tissue would be required for ~ 1–7% of the total assessed cases with PV or LPV, when necessity to follow with genetic counselling referral in ~ 2–15% of total assessed cases (PV, LPV or VUS found in HCS genes). Conclusion Incidental findings of pathogenic germline variants are common in data from cancer patients referred for complex molecular profiling. We propose an algorithm for the management of patients with newly detected variants in genes associated with HCS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- Atlas Oncodiagnostics, LLC, Moscow, Russia. .,Sechenov University, Moscow, Russia.
| | | | | | - Ekaterina Ignatova
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Department of chemotherapy №2, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Oncogenetics, Institute of Higher and Additional Professional Education, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Sofia Manicka
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | | | - Ancha Baranova
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | - Maxim Ivanov
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
25
|
Ammendola S, Simbolo M, Ciaparrone C, Rizzo PC, Caffo M, Pinna G, Sala F, Scarpa A, Barresi V. Intraventricular Meningiomas: Clinical-Pathological and Genetic Features of a Monocentric Series. Curr Oncol 2022; 29:178-185. [PMID: 35049691 PMCID: PMC8775267 DOI: 10.3390/curroncol29010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Intraventricular meningiomas (IVMs) are rare (0.5-5%) and usually low-grade (90% grade I) brain neoplasms. Their recurrence rate is lower than that of extra-axial meningiomas, but their surgical resection can be burdened with life-threatening complications, which represent the major cause of the reported 4% mortality. The aim of this study is to characterize the molecular portrait of IVMs to identify potential therapeutic targets. For this, we explored mutations and copy number variations (CNV) of 409 cancer-related genes and tumor mutational burden (TMB) of six cases, using next-generation sequencing. Five IVMs were grade I and one was grade II; none recurred, in spite of partial surgical resection in one case. NF2 mutation was the only recurring alteration and was present in three of the six IVMs, in association with SMARCB1 mutation in one case. None of the cases was hypermutated (TMB > 10 mutations/Mb). NF2-mutant progressing or recurring IVMs could potentially be treated with targeted therapies applied to other NF2-mutant tumors, as an alternative to surgery or radiosurgery, while in view of their low TMB they are unlikely candidates to immune check-point inhibition.
Collapse
Affiliation(s)
- Serena Ammendola
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Michele Simbolo
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Chiara Ciaparrone
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Paola Chiara Rizzo
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy;
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37126 Verona, Italy;
| | - Aldo Scarpa
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Valeria Barresi
- Dipartimento di Diagnostica e Sanità Pubblica, Università degli Studi di Verona, 371234 Verona, Italy; (S.A.); (M.S.); (C.C.); (P.C.R.); (A.S.)
| |
Collapse
|
26
|
Identification of Copy Number Alterations from Next-Generation Sequencing Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:55-74. [DOI: 10.1007/978-3-030-91836-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Barresi V, Simbolo M, Mafficini A, Martini M, Calicchia M, Piredda ML, Ciaparrone C, Bonizzato G, Ammendola S, Caffo M, Pinna G, Sala F, Lawlor RT, Ghimenton C, Scarpa A. IDH-wild type glioblastomas featuring at least 30% giant cells are characterized by frequent RB1 and NF1 alterations and hypermutation. Acta Neuropathol Commun 2021; 9:200. [PMID: 34952640 PMCID: PMC8709962 DOI: 10.1186/s40478-021-01304-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Giant cell glioblastoma (GC-GBM) is a rare variant of IDH-wt GBM histologically characterized by the presence of numerous multinucleated giant cells and molecularly considered a hybrid between IDH-wt and IDH-mutant GBM. The lack of an objective definition, specifying the percentage of giant cells required for this diagnosis, may account for the absence of a definite molecular profile of this variant. This study aimed to clarify the molecular landscape of GC-GBM, exploring the mutations and copy number variations of 458 cancer-related genes, tumor mutational burden (TMB), and microsatellite instability (MSI) in 39 GBMs dichotomized into having 30-49% (15 cases) or ≥ 50% (24 cases) GCs. The type and prevalence of the genetic alterations in this series was not associated with the GCs content (< 50% or ≥ 50%). Most cases (82% and 51.2%) had impairment in TP53/MDM2 and PTEN/PI3K pathways, but a high proportion also featured TERT promoter mutations (61.5%) and RB1 (25.6%) or NF1 (25.6%) alterations. EGFR amplification was detected in 18% cases in association with a shorter overall survival (P = 0.004). Sixteen (41%) cases had a TMB > 10 mut/Mb, including two (5%) that harbored MSI and one with a POLE mutation. The frequency of RB1 and NF1 alterations and TMB counts were significantly higher compared to 567 IDH wild type (P < 0.0001; P = 0.0003; P < 0.0001) and 26 IDH-mutant (P < 0.0001; P = 0.0227; P < 0.0001) GBMs in the TCGA PanCancer Atlas cohort. These findings demonstrate that the molecular landscape of GBMs with at least 30% giant cells is dominated by the impairment of TP53/MDM2 and PTEN/PI3K pathways, and additionally characterized by frequent RB1 alterations and hypermutation and by EGFR amplification in more aggressive cases. The high frequency of hypermutated cases suggests that GC-GBMs might be candidates for immune check-point inhibitors clinical trials.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Maurizio Martini
- Unit of Anatomic Pathology, Catholic University of Sacred Hearth, Rome, Italy
| | - Martina Calicchia
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Maria Liliana Piredda
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Chiara Ciaparrone
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Giada Bonizzato
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Ammendola
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, Messina, Italy
| | - Giampietro Pinna
- Department of Neurosciences, Unit of Neurosurgery, Hospital Trust of Verona, Verona, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, Verona, Italy
| | - Rita Teresa Lawlor
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Ghimenton
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
28
|
Liu J, Zhang Y, Li S, Sun F, Wang G, Wei D, Yang T, Gu S. Androgen deprivation‑induced OPHN1 amplification promotes castration‑resistant prostate cancer. Oncol Rep 2021; 47:3. [PMID: 34738630 PMCID: PMC8600397 DOI: 10.3892/or.2021.8214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Androgen deprivation therapy (ADT) is used to treat prostate cancer (PCa). However, ADT may increase the expression of androgen receptor (AR) through the amplification of chromosome X. The gene oligophrenin 1 (OPHN1) is located in the same region as the AR gene, which could be amplified by ADT. Thus, the role of OPHN1 in PCa pathology was investigated. The expression status of OPHN1 in PCa was searched in The Cancer Genome Atlas (TCGA) database. Androgen-sensitive cells LNCaP and 22RV1 were cultured under ADT conditions, and then the expression of OPHN1 was evaluated by northern blotting. The expression of OPHN1 was enhanced or knocked down in LNCaP and 22RV1 cells by transfection. Subsequently, the LNCaP and 22RV1 cells were cultured under ADT, and the viability rate, apoptosis, and migration of cells were assessed by MTT, flow cytometry, and Transwell assay respectively. The expression of OPHN1 was also enhanced or knocked down in androgen-insensitive PC3 cells, and then the effects of OPHN1 on the viability, apoptosis, and migration of PC3 cells were assessed. A mouse xenograft model was created by injecting LNCaP cells with OPHN1 overexpression subcutaneously, and the tumor growth rates were monitored. In TCGA database, amplification of the OPHN1 gene was observed in the PCa tumors. ADT increased the expression of OPHN1 in LNCaP and 22RV1 cells (P<0.05). OPHN1 could promote resistance of LNCaP and 22RV1 cells to ADT by promoting cell survival and preventing their apoptosis (P<0.05). In addition, OPHN1 contributed to cell viability (P<0.05) and enhanced the migration ability in LNCaP, 22RV1 and PC3 cells (P<0.05). In the mouse model, the PCa xenograft with OPHN1 overexpression had a higher growth rate and was more resistant to the ADT condition (P<0.05). In summary, ADT induced the overexpression of OPHN1 in PCa, which facilitated PCa cell survival and promoted PCa progression.
Collapse
Affiliation(s)
- Junjiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yunxia Zhang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shoubin Li
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fuzhen Sun
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gang Wang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Dong Wei
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Tao Yang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shouyi Gu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
29
|
Mikhaylenko DS, Matveev VB, Filippova MG, Anoshkin KI, Kozlov NA, Khachaturyan AV, Semyanikhina AV, Nifatov SD, Tanas AS, Nemtsova MV, Zaletayev DV. Comprehensive Molecular Genetic Diagnostics of Birt-Hogg-Dube Syndrome in a Russian Patient with Renal Cancer and Lung Cysts: A Case Report. Case Rep Oncol 2021; 14:963-971. [PMID: 34703430 PMCID: PMC8490858 DOI: 10.1159/000516763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
We report a case of Birt-Hogg-Dube syndrome (BHDS), a rare hereditary syndrome, the main visible sign of which is the development of multiple skin fibrofolliculomas. In our case, there was a manifestation of BHDS consisting in the absence of fibrofolliculomas and presence of other characteristic features of this syndrome: lung cysts and renal cancer. The 26-year-old woman was admitted to a clinic for diagnosis and treatment of a neoplasm of the left kidney and had a history of renal cell cancer (RCC) of the right kidney and spontaneous pneumothorax. Multiple tumors of the left kidney and lung cysts were observed upon clinical and laboratory testing. Tumors of the left kidney were resected and diagnosed by a pathologist as chromophobe RCC. Sequencing of FLCN exons 4–14 from blood DNA revealed the heterozygous germline nonsense mutation c.1429C>T (p.R477*), confirming the diagnosis of BHDS. Several somatic variants were detected by tumor DNA sequencing using the Comprehensive Cancer Panel and Ion S5 platform. Medical-genetic counseling was conducted, and follow-up management was outlined. To our knowledge, this case report is the first comprehensive clinical and genetic examination of a patient with BHDS in Russia. The p.R477* mutation has been described by other authors in patients with fibrofolliculomas and lung cysts, but not in those with RCC, while RCC was the first manifestation of BHDS in our case. The case report may help geneticists, oncologists, and other specialists to better understand the clinical and genetic heterogeneity of BHDS in various populations.
Collapse
Affiliation(s)
- Dmitry S Mikhaylenko
- Department of Oncogenetics, Research Centre for Medical Genetics, Moscow, Russian Federation.,Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vsevolod B Matveev
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Margarita G Filippova
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Kirill I Anoshkin
- Department of Oncogenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Nikolay A Kozlov
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Alexander V Khachaturyan
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Alexandra V Semyanikhina
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Sergey D Nifatov
- Department of Oncological Urology, N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Alexander S Tanas
- Department of Oncogenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Dmitry V Zaletayev
- Department of Oncogenetics, Research Centre for Medical Genetics, Moscow, Russian Federation.,Laboratory of Medical Genetics, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
30
|
GATA2 deficiency phenotype associated with tandem duplication GATA2 and over-expression of GATA2-AS1. Blood Adv 2021; 5:5631-5635. [PMID: 34638133 PMCID: PMC8714714 DOI: 10.1182/bloodadvances.2021005217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/01/2022] Open
Abstract
Typical features of GATA2 deficiency were associated with a de novo tandem duplication of GATA2 and increased expression of GATA2-AS1. The duplication contained a maternally inherited deletion copy number polymorphism esv2725896/nsv513733.
A 3-year-old girl of nonconsanguineous healthy parents presented with cervical and mediastinal lymphadenopathy due to Mycobacterium fortuitum infection. Routine blood analysis showed normal hemoglobin, neutrophils, and platelets but profound mononuclear cell deficiency (monocytes < 0.1 × 109/L; B cells 78/μL; NK cells 48/μL). A 548 902-bp region containing GATA2 was sequenced by targeted capture and deep sequencing. This revealed a de novo 187-kb duplication of the entire GATA2 locus, containing a maternally inherited copy number variation deletion of 25 kb (GRCh37: esv2725896 and nsv513733). Many GATA2-associated phenotypes have been attributed to amino acid substitution, frameshift/deletion, loss of intronic enhancer function, or aberrant splicing. Gene deletion has been described, but other structural variation has not been reported in the germline configuration. In this case, duplication of the GATA2 locus was paradoxically associated with skewed diminished expression of GATA2 messenger RNA and loss of GATA2 protein. Chimeric RNA fusion transcripts were not detected. A possible mechanism involves increased transcription of the anti-sense long noncoding RNA GATA2-AS1 (RP11-472.220), which was increased several fold. This case further highlights that evaluation of the allele count is essential in any case of suspected GATA2-related syndrome.
Collapse
|
31
|
Lau TTY, May CM, Sefid Dashti ZJ, Swanson L, Starks ER, Parker JDK, Moore RA, Tucker T, Bosdet I, Young SS, Santos JL, Compton K, Heidary N, Hoang L, Schrader KA, Sun S, Kwon JS, Tinker AV, Karsan A. Use of Treatment-Focused Tumor Sequencing to Screen for Germline Cancer Predisposition. J Mol Diagn 2021; 23:1145-1158. [PMID: 34197922 DOI: 10.1016/j.jmoldx.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
Next-generation sequencing assays are capable of identifying cancer patients eligible for targeted therapies and can also detect germline variants associated with increased cancer susceptibility. However, these capabilities have yet to be routinely harmonized in a single assay because of challenges with accurately identifying germline variants from tumor-only data. We have developed the Oncology and Hereditary Cancer Program targeted capture panel, which uses tumor tissue to simultaneously screen for both clinically actionable solid tumor variants and germline variants across 45 genes. Validation using 14 tumor specimens, composed of patient samples and cell lines analyzed in triplicate, demonstrated high coverage with sensitive and specific identification of single-nucleotide variants and small insertions and deletions. Average coverage across all targets remained >2000× in 198 additional patient tumor samples. Analysis of 55 formalin-fixed, paraffin-embedded tumor samples for the detection of known germline variants within a subset of cancer-predisposition genes, including one multiexon deletion, yielded a 100% detection rate, demonstrating that germline variants can be reliably detected in tumor samples using a single panel. Combining targetable somatic and actionable germline variants into a single tumor tissue assay represents a streamlined approach that can inform treatment for patients with advanced cancers as well as identify those with potential germline variants who are eligible for confirmatory testing, but would not otherwise have been identified.
Collapse
Affiliation(s)
- Tammy T Y Lau
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Christina M May
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Zahra J Sefid Dashti
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Lucas Swanson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Elizabeth R Starks
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Jeremy D K Parker
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia
| | - Tracy Tucker
- Cancer Genetics and Genomics Laboratory, BC Cancer, Vancouver, British Columbia; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ian Bosdet
- Cancer Genetics and Genomics Laboratory, BC Cancer, Vancouver, British Columbia; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sean S Young
- Cancer Genetics and Genomics Laboratory, BC Cancer, Vancouver, British Columbia; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer L Santos
- Hereditary Cancer Program, BC Cancer, Vancouver, British Columbia; Department of Gynecologic Oncology, BC Cancer, Vancouver, British Columbia
| | - Katie Compton
- Hereditary Cancer Program, BC Cancer, Vancouver, British Columbia
| | - Nili Heidary
- Hereditary Cancer Program, BC Cancer, Vancouver, British Columbia
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sophie Sun
- Hereditary Cancer Program, BC Cancer, Vancouver, British Columbia
| | - Janice S Kwon
- Departments of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna V Tinker
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Bohers E, Viailly PJ, Jardin F. cfDNA Sequencing: Technological Approaches and Bioinformatic Issues. Pharmaceuticals (Basel) 2021; 14:ph14060596. [PMID: 34205827 PMCID: PMC8234829 DOI: 10.3390/ph14060596] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the era of precision medicine, it is crucial to identify molecular alterations that will guide the therapeutic management of patients. In this context, circulating tumoral DNA (ctDNA) released by the tumor in body fluids, like blood, and carrying its molecular characteristics is becoming a powerful biomarker for non-invasive detection and monitoring of cancer. Major recent technological advances, especially in terms of sequencing, have made possible its analysis, the challenge still being its reliable early detection. Different parameters, from the pre-analytical phase to the choice of sequencing technology and bioinformatic tools can influence the sensitivity of ctDNA detection.
Collapse
|
33
|
Guo Y, Wang S, Yuan X. HBOS-CNV: A New Approach to Detect Copy Number Variations From Next-Generation Sequencing Data. Front Genet 2021; 12:642473. [PMID: 34163521 PMCID: PMC8215577 DOI: 10.3389/fgene.2021.642473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Copy number variation (CNV) is a genomic mutation that plays an important role in tumor evolution and tumor genesis. Accurate detection of CNVs from next-generation sequencing (NGS) data is still a challenging task due to artifacts such as uneven mapped reads and unbalanced amplitudes of gains and losses. This study proposes a new approach called HBOS-CNV to detect CNVs from NGS data. The central point of HBOS-CNV is that it uses a new statistic, the histogram-based outlier score (HBOS), to evaluate the fluctuation of genome bins to determine those of changed copy numbers. In comparison with existing statistics in the evaluation of CNVs, HBOS is a non-linearly transformed value from the observed read depth (RD) value of each genome bin, having the potential ability to relieve the effects resulted from the above artifacts. In the calculation of HBOS values, a dynamic width histogram is utilized to depict the density of bins on the genome being analyzed, which can reduce the effects of noises partially contributed by mapping and sequencing errors. The evaluation of genome bins using such a new statistic can lead to less extremely significant CNVs having a high probability of detection. We evaluated this method using a large number of simulation datasets and compared it with four existing methods (CNVnator, CNV-IFTV, CNV-LOF, and iCopyDav). The results demonstrated that our proposed method outperforms the others in terms of sensitivity, precision, and F1-measure. Furthermore, we applied the proposed method to a set of real sequencing samples from the 1000 Genomes Project and determined a number of CNVs with biological meanings. Thus, the proposed method can be regarded as a routine approach in the field of genome mutation analysis for cancer samples.
Collapse
Affiliation(s)
- Yang Guo
- The School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Shuzhen Wang
- The School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Xiguo Yuan
- The School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
34
|
Patel K, Bhat FA, Patil S, Routray S, Mohanty N, Nair B, Sidransky D, Ganesh MS, Ray JG, Gowda H, Chatterjee A. Whole-Exome Sequencing Analysis of Oral Squamous Cell Carcinoma Delineated by Tobacco Usage Habits. Front Oncol 2021; 11:660696. [PMID: 34136393 PMCID: PMC8200776 DOI: 10.3389/fonc.2021.660696] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the oral cavity in India. Cigarette smoking and chewing tobacco are known risk factors associated with OSCC. However, genomic alterations in OSCC with varied tobacco consumption history are not well-characterized. In this study, we carried out whole-exome sequencing to characterize the mutational landscape of OSCC tumors from subjects with different tobacco consumption habits. We identified several frequently mutated genes, including TP53, NOTCH1, CASP8, RYR2, LRP2, CDKN2A, and ATM. TP53 and HRAS exhibited mutually exclusive mutation patterns. We identified recurrent amplifications in the 1q31, 7q35, 14q11, 22q11, and 22q13 regions and observed amplification of EGFR in 25% of samples with tobacco consumption history. We observed genomic alterations in several genes associated with PTK6 signaling. We observed alterations in clinically actionable targets including ERBB4, HRAS, EGFR, NOTCH1, NOTCH4, and NOTCH3. We observed enrichment of signature 29 in 40% of OSCC samples from tobacco chewers. Signature 15 associated with defective DNA mismatch repair was enriched in 80% of OSCC samples. NOTCH1 was mutated in 36% of samples and harbored truncating as well as missense variants. We observed copy number alterations in 67% of OSCC samples. Several genes associated with non-receptor tyrosine kinase signaling were affected in OSCC. These molecules can serve as potential candidates for therapeutic targeting in OSCC.
Collapse
Affiliation(s)
- Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Firdous Ahmad Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samapika Routray
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Neeta Mohanty
- Department of Oral Pathology & Microbiology, Institute of Dental Sciences, Siksha' O' Anusandhan University, Bhubaneswar, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jay Gopal Ray
- Department of Oral Pathology, Dr. R. Ahmed Dental College & Hospital, Kolkata, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
35
|
Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021; 21:499. [PMID: 33947352 PMCID: PMC8097933 DOI: 10.1186/s12885-021-08233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic alterations for epithelial ovarian cancer are insufficiently characterized. Previous studies are limited regarding included histologies, gene numbers, copy number variant (CNV) detection, and interpretation of pathway alteration patterns of individual patients. METHODS We sequenced 410 genes to analyze mutations and CNV of 82 ovarian carcinomas, including high-grade serous (n = 37), endometrioid (n = 22) and clear cell (n = 23) histologies. Eligibility for targeted therapy was determined for each patient by a pathway-based approach. The analysis covered DNA repair, receptor tyrosine kinase, PI3K/AKT/MTOR, RAS/MAPK, cell cycle, and hedgehog pathways, and included 14 drug targets. RESULTS Postulated PARP, MTOR, and CDK4/6 inhibition sensitivity were most common. BRCA1/2 alterations, PTEN loss, and gain of PIK3CA and CCND1 were characteristic for high-grade serous carcinomas. Mutations of ARID1A, PIK3CA, and KRAS, and ERBB2 gain were enriched in the other histologies. PTEN mutations and high tumor mutational burden were characteristic for endometrioid carcinomas. Drug target downstream alterations impaired actionability in all histologies, and many alterations would not have been discovered by key gene mutational analysis. Individual patients often had more than one actionable drug target. CONCLUSIONS Genetic alterations in ovarian carcinomas are complex and differ among histologies. Our results aid the personalization of therapy and biomarker analysis for clinical studies, and indicate a high potential for combinations of targeted therapies.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Endometrioid/therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Cycle/genetics
- DNA Copy Number Variations
- DNA Mutational Analysis/methods
- DNA Repair/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Precision Medicine
- Retrospective Studies
Collapse
Affiliation(s)
- Nina Lapke
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
- ACT Genomics, Co. Ltd., Units 803 - 807, 8F, Building 15W, No.15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok. NT, Hong Kong, Hong Kong
| | - Chien-Hung Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hua-Chien Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hsiao-Yun Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Shu-Jen Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| |
Collapse
|
36
|
Kamp EJCA, Dinjens WNM, Doukas M, Bruno MJ, de Jonge PJF, Peppelenbosch MP, de Vries AC. Optimal tissue sampling during ERCP and emerging molecular techniques for the differentiation of benign and malignant biliary strictures. Therap Adv Gastroenterol 2021; 14:17562848211002023. [PMID: 33948111 PMCID: PMC8053835 DOI: 10.1177/17562848211002023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 02/04/2023] Open
Abstract
Patients with cholangiocarcinoma have poor survival since the majority of patients are diagnosed at a stage precluding surgical resection, due to locally irresectable tumors and/or metastases. Optimization of diagnostic strategies, with a principal role for tissue diagnosis, is essential to detect cancers at an earlier stage amenable to curative treatment. Current barriers for a tissue diagnosis include both insufficient tissue sampling and a difficult cyto- or histopathological assessment. During endoscopic retrograde cholangiopancreatography, optimal brush sampling includes obtaining more than one brush within an individual patient to increase its diagnostic value. Currently, no significant increase of the diagnostic accuracy for the new cytology brush devices aiming to enhance the cellularity of brushings versus standard biliary brush devices has been demonstrated. Peroral cholangioscopy with bile duct biopsies appears to be a valuable tool in the diagnostic work-up of indeterminate biliary strictures, and may overcome current technical difficulties of fluoroscopic-guided biopsies. Over the past years, molecular techniques to detect chromosomal instability, mutations and methylation profiling of tumors have revolutionized, and implementation of these techniques on biliary tissue during diagnostic work-up of biliary strictures may be awaited in the near future. Fluorescence in situ hybridization has already been implemented in routine diagnostic evaluation of biliary strictures in several centers. Next-generation sequencing is promising for standard diagnostic care in biliary strictures, and recent studies have shown adequate detection of prevalent genomic alterations in KRAS, TP53, CDKN2A, SMAD4, PIK3CA, and GNAS on biliary brush material. Detection of DNA methylation of tumor suppressor genes and microRNAs may evolve over the coming years to a valuable diagnostic tool for cholangiocarcinoma. This review summarizes optimal strategies for biliary tissue sampling during endoscopic retrograde cholangiopancreatography and focuses on the evolving molecular techniques on biliary tissue to improve the differentiation of benign and malignant biliary strictures.
Collapse
Affiliation(s)
- Eline J. C. A. Kamp
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, The Netherlands
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Pieter Jan F. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Annemarie C. de Vries
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, Room Na-609, Rotterdam, 3015 GD, The Netherlands
| |
Collapse
|
37
|
Hynst J, Navrkalova V, Pal K, Pospisilova S. Bioinformatic strategies for the analysis of genomic aberrations detected by targeted NGS panels with clinical application. PeerJ 2021; 9:e10897. [PMID: 33850640 PMCID: PMC8019320 DOI: 10.7717/peerj.10897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/13/2021] [Indexed: 01/21/2023] Open
Abstract
Molecular profiling of tumor samples has acquired importance in cancer research, but currently also plays an important role in the clinical management of cancer patients. Rapid identification of genomic aberrations improves diagnosis, prognosis and effective therapy selection. This can be attributed mainly to the development of next-generation sequencing (NGS) methods, especially targeted DNA panels. Such panels enable a relatively inexpensive and rapid analysis of various aberrations with clinical impact specific to particular diagnoses. In this review, we discuss the experimental approaches and bioinformatic strategies available for the development of an NGS panel for a reliable analysis of selected biomarkers. Compliance with defined analytical steps is crucial to ensure accurate and reproducible results. In addition, a careful validation procedure has to be performed before the application of NGS targeted assays in routine clinical practice. With more focus on bioinformatics, we emphasize the need for thorough pipeline validation and management in relation to the particular experimental setting as an integral part of the NGS method establishment. A robust and reproducible bioinformatic analysis running on powerful machines is essential for proper detection of genomic variants in clinical settings since distinguishing between experimental noise and real biological variants is fundamental. This review summarizes state-of-the-art bioinformatic solutions for careful detection of the SNV/Indels and CNVs for targeted sequencing resulting in translation of sequencing data into clinically relevant information. Finally, we share our experience with the development of a custom targeted NGS panel for an integrated analysis of biomarkers in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Jakub Hynst
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Veronika Navrkalova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic.,Department of Medical Genetics and Genomics, Faculty of Medicine and University Hospital Brno, Masaryk University, Brno, Czech Republic
| |
Collapse
|
38
|
Viailly PJ, Sater V, Viennot M, Bohers E, Vergne N, Berard C, Dauchel H, Lecroq T, Celebi A, Ruminy P, Marchand V, Lanic MD, Dubois S, Penther D, Tilly H, Mareschal S, Jardin F. Improving high-resolution copy number variation analysis from next generation sequencing using unique molecular identifiers. BMC Bioinformatics 2021; 22:120. [PMID: 33711922 PMCID: PMC7971104 DOI: 10.1186/s12859-021-04060-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recently, copy number variations (CNV) impacting genes involved in oncogenic pathways have attracted an increasing attention to manage disease susceptibility. CNV is one of the most important somatic aberrations in the genome of tumor cells. Oncogene activation and tumor suppressor gene inactivation are often attributed to copy number gain/amplification or deletion, respectively, in many cancer types and stages. Recent advances in next generation sequencing protocols allow for the addition of unique molecular identifiers (UMI) to each read. Each targeted DNA fragment is labeled with a unique random nucleotide sequence added to sequencing primers. UMI are especially useful for CNV detection by making each DNA molecule in a population of reads distinct. RESULTS Here, we present molecular Copy Number Alteration (mCNA), a new methodology allowing the detection of copy number changes using UMI. The algorithm is composed of four main steps: the construction of UMI count matrices, the use of control samples to construct a pseudo-reference, the computation of log-ratios, the segmentation and finally the statistical inference of abnormal segmented breaks. We demonstrate the success of mCNA on a dataset of patients suffering from Diffuse Large B-cell Lymphoma and we highlight that mCNA results have a strong correlation with comparative genomic hybridization. CONCLUSION We provide mCNA, a new approach for CNV detection, freely available at https://gitlab.com/pierrejulien.viailly/mcna/ under MIT license. mCNA can significantly improve detection accuracy of CNV changes by using UMI.
Collapse
Affiliation(s)
- Pierre-Julien Viailly
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France. .,Centre Henri Becquerel, Rouen, France.
| | - Vincent Sater
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France.,LITIS EA 4108, Normandie Univ, UNIROUEN, Rouen, France
| | - Mathieu Viennot
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Elodie Bohers
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | | | | | | | | | - Alison Celebi
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France.,Master Bioinformatique BIM, Normandie Univ, UNIROUEN, Rouen, France
| | - Philippe Ruminy
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Vinciane Marchand
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Marie-Delphine Lanic
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Sydney Dubois
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Dominique Penther
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Hervé Tilly
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| | - Sylvain Mareschal
- INSERM U1052 UMR CNRS 5286, Cancer Research Center of Lyon, Lyon, France
| | - Fabrice Jardin
- INSERM U1245, Team Genomics and Biomarkers of Lymphoma and Solid Tumors, Normandie Univ, UNIROUEN, Rouen, France.,Centre Henri Becquerel, Rouen, France
| |
Collapse
|
39
|
Yaegashi M, Iwaya T, Sasaki N, Fujita M, Ju Z, Siwak D, Hachiya T, Sato K, Endo F, Kimura T, Otsuka K, Sugimoto R, Sugai T, Liotta L, Lu Y, Mills GB, Nakagawa H, Nishizuka SS. Frequent post-operative monitoring of colorectal cancer using individualised ctDNA validated by multiregional molecular profiling. Br J Cancer 2021; 124:1556-1565. [PMID: 33658639 PMCID: PMC8076308 DOI: 10.1038/s41416-021-01266-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Circulating tumour DNA (ctDNA) is known as a tumour-specific personalised biomarker, but the mutation-selection criteria from heterogeneous tumours remain a challenge. Methods We conducted multiregional sequencing of 42 specimens from 14 colorectal tumours of 12 patients, including two double-cancer cases, to identify mutational heterogeneity to develop personalised ctDNA assays using 175 plasma samples. Results “Founder” mutations, defined as a mutation that is present in all regions of the tumour in a binary manner (i.e., present or absent), were identified in 12/14 tumours. In contrast, “truncal” mutations, which are the first mutation that occurs prior to the divergence of branches in the phylogenetic tree using variant allele frequency (VAF) as continuous variables, were identified in 12/14 tumours. Two tumours without founder and truncal mutations were hypermutators. Most founder and truncal mutations exhibited higher VAFs than “non-founder” and “branch” mutations, resulting in a high chance to be detected in ctDNA. In post-operative long-term observation for 10/12 patients, early relapse prediction, treatment efficacy and non-relapse corroboration were achievable from frequent ctDNA monitoring. Conclusions A single biopsy is sufficient to develop custom dPCR probes for monitoring tumour burden in most CRC patients. However, it may not be effective for those with hypermutated tumours.
Collapse
Affiliation(s)
- Mizunori Yaegashi
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan.,Department of Surgery, Iwate Prefectural Kuji Hospital, Iwate, Japan
| | - Takeshi Iwaya
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Noriyuki Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan.,Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Iwate, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Doris Siwak
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, Japan
| | - Kei Sato
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Fumitaka Endo
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Toshimoto Kimura
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Koki Otsuka
- Department of Surgery, Iwate Medical University School of Medicine, Iwate, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute Oregon Health & Science University, Portland, OR, USA
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics Genome Sequencing Analysis, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Iwate, Japan.
| |
Collapse
|
40
|
Barresi V, Simbolo M, Fioravanzo A, Piredda ML, Caffo M, Ghimenton C, Pinna G, Longhi M, Nicolato A, Scarpa A. Molecular Profiling of 22 Primary Atypical Meningiomas Shows the Prognostic Significance of 18q Heterozygous Loss and CDKN2A/B Homozygous Deletion on Recurrence-Free Survival. Cancers (Basel) 2021; 13:cancers13040903. [PMID: 33670055 PMCID: PMC7927130 DOI: 10.3390/cancers13040903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The use of adjuvant therapy is controversial in atypical meningiomas with gross total resection. Predictors of recurrence risk could be useful in selecting patients for additional treatments. The aim of this study was to investigate whether molecular features are associated with recurrence risk of atypical meningiomas. According to WHO classification, the diagnosis of atypical meningioma was based on the presence of one major criteria (mitotic activity, brain invasion) or three or more minor criteria. The molecular profile of 22 cases (eight mitotically active, eight brain-invasive, and six with minor criteria) was assessed exploring the mutational status and copy number variation of 409 genes using next generation sequencing. Of the 22 patients with a median follow up of 53.5 months, 13 had recurrence of disease within 68 months. NF2 mutation was the only recurrent alteration (11/22) and was unrelated to clinical-pathological features. Recurring meningiomas featured a significantly higher proportion of copy number losses than non-recurring ones (p = 0.027). Chromosome 18q heterozygous loss or CDKN2A/B homozygous deletion was significantly associated with shorter recurrence-free survival (p = 0.008; hazard ratio: 5.3). Atypical meningiomas could be tested routinely for these genetic alterations to identify cases for adjuvant treatment.
Collapse
Affiliation(s)
- Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (M.L.P.); (A.S.)
- Correspondence: ; Tel.: +39-0458121964
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (M.L.P.); (A.S.)
| | - Adele Fioravanzo
- Unit of Anatomic Pathology, S. Bortolo Hospital, 36100 Vicenza, Italy;
| | - Maria Liliana Piredda
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (M.L.P.); (A.S.)
| | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, 98125 Messina, Italy;
| | - Claudio Ghimenton
- Unit of Pathology, Department of Pathology and Diagnostics, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37126 Verona, Italy;
| | - Michele Longhi
- Unit of Stereotaxic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona City, Italy; (M.L.); (A.N.)
| | - Antonio Nicolato
- Unit of Stereotaxic Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134 Verona City, Italy; (M.L.); (A.N.)
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (M.S.); (M.L.P.); (A.S.)
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37134 Verona, Italy
| |
Collapse
|
41
|
Barresi V, Simbolo M, Gessi M, Rossi S, Caffo M, Eccher A, Angileri FF, Cannavò S, Brunelli M, Scarpa A. Clinical-Pathological, Immunohistochemical, and Genetic Characterization of a Series of Posterior Pituitary Tumors. J Neuropathol Exp Neurol 2021; 80:45-51. [PMID: 33212494 DOI: 10.1093/jnen/nlaa139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Posterior pituitary tumors are supposed to represent the morphological spectrum of a single entity. Herein, we report the clinical-pathological, immunohistochemical, and genetic features of 5 spindle cell oncocytomas (SCOs), 3 pituicytomas, and 1 granular cell tumor (GCT). SCOs had the highest local invasiveness and affected older subjects. The 3 histotypes differed in the content of spindle cells (predominant in pituicytoma and absent in GCT), presence of lymphocytic infiltrate (in SCO and GCT, but not in the pituicytoma) and EMA/GFAP staining (negative in GCT; EMA-positive/GFAP-negative in 4/5 SCO and GFAP-positive in 3/3 pituicytomas). Three SCOs and 1 pituicytoma analyzed with next-generation sequencing had no mutations in 409 genes. However, 1 SCO had previously unreported homozygous deletion of CDKN2A/B and another of SMARCA4, SMARCB1, and NF2. All 3 SCOs had loss of heterozygosity of chromosome 1p, while the pituicytoma had chromosome 19 homozygous loss and chromosomes 10, 13q, and 18q loss of heterozygosity. Since 1p and 13q losses were previously reported in 1 pituicytoma and 1 SCO, respectively, our data demonstrate that posterior pituitary tumors share common genetic alterations. The possibility that posterior pituitary tumors are SMARCA4/SMARCB1-deficient should be kept in mind in the differential diagnosis toward other entities.
Collapse
Affiliation(s)
- Valeria Barresi
- From the Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona
| | - Michele Simbolo
- From the Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona
| | - Marco Gessi
- Neuropathology Unit, Division of Pathology, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Catholic University
| | | | - Maria Caffo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, Messina
| | - Albino Eccher
- Unit of Anatomic Pathology, Department of Pathology and Diagnostics, Hospital Trust of Verona, Verona
| | - Filippo Flavio Angileri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Neurosurgery, University of Messina, Messina
| | - Salvatore Cannavò
- Department of Human Pathology of Childhood and Adulthood, University of Messina, Messina
| | - Matteo Brunelli
- From the Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona (AS), Italy
| |
Collapse
|
42
|
García-Fernández J, Vilches-Arroyo S, Olavarrieta L, Pérez-Pérez J, Rodríguez de Córdoba S. Detection of Genetic Rearrangements in the Regulators of Complement Activation RCA Cluster by High-Throughput Sequencing and MLPA. Methods Mol Biol 2021; 2227:159-178. [PMID: 33847941 DOI: 10.1007/978-1-0716-1016-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulators of complement activation (RCA) gene cluster in 1q31-1q32 includes most of the genes encoding complement regulatory proteins. Genetic variability in the RCA gene cluster frequently involve copy number variations (CNVs), a type of chromosome structural variation causing alterations in the number of copies of specific regions of DNA. CNVs in the RCA gene cluster often relate with gene rearrangements that result in the generation of novel genes, carrying internal duplications or deletions, and hybrid genes, resulting from the fusion or exchange of genetic material between two different genes. These gene rearrangements are strongly associated with a number of rare and common diseases characterized by complement dysregulation. Identification of CNVs in the RCA gene cluster is critical in the molecular diagnostic of these diseases. It can be done by bioinformatics analysis of DNA sequence data generated by massive parallel sequencing techniques (NGS, next generation sequencing) but often requires special techniques like multiplex ligation-dependent probe amplification (MLPA). This is because the currently used massive parallel DNA sequencing approaches do not easily identify all the structural variations in the RCA gene cluster. We will describe here how to use the MLPA assays and two computational tools to analyze NGS data, NextGENe and ONCOCNV, to detect CNVs and gene rearrangements in the RCA gene cluster.
Collapse
|
43
|
A review of the use of next generation sequencing methodologies to identify biomarkers of resistance to CDK4/6 inhibitors in ER+/HER2- breast cancer. Crit Rev Oncol Hematol 2020; 157:103191. [PMID: 33309572 DOI: 10.1016/j.critrevonc.2020.103191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
The development of cyclin-dependent kinases (CDK) 4 and 6 inhibitors represented a substantial breakthrough in the treatment of estrogen receptor positive (ER+), human epidermal growth factor receptor 2 (HER2) negative metastatic breast cancer. These drugs showed a significant clinical benefit in pivotal clinical trials. However, resistance eventually occurs, leading to disease progression. Next Generation Sequencing methodologies have been employed to investigate predictive biomarkers of response or resistance to CDK4/6 inhibitors. Whole exome and targeted sequencing of solid and liquid biopsies have revealed several possible genomic alterations associated with resistance. Notably, genomic alterations identified by DNA-sequencing did not fully recapitulate the entire landscape of resistance to CDK4/6 inhibitors. Gene expression analysis, such as RNA-Seq methodologies, have provided insights into transcriptional profiles and may need further application. Herein, we report the main findings derived from the use of NGS analysis in the context of resistance to CDK4/6 inhibitors in ER + breast cancer.
Collapse
|
44
|
SoRelle JA, Wachsmann M, Cantarel BL. Assembling and Validating Bioinformatic Pipelines for Next-Generation Sequencing Clinical Assays. Arch Pathol Lab Med 2020; 144:1118-1130. [PMID: 32045276 DOI: 10.5858/arpa.2019-0476-ra] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Clinical next-generation sequencing (NGS) is being rapidly adopted, but analysis and interpretation of large data sets prompt new challenges for a clinical laboratory setting. Clinical NGS results rely heavily on the bioinformatics pipeline for identifying genetic variation in complex samples. The choice of bioinformatics algorithms, genome assembly, and genetic annotation databases are important for determining genetic alterations associated with disease. The analysis methods are often tuned to the assay to maximize accuracy. Once a pipeline has been developed, it must be validated to determine accuracy and reproducibility for samples similar to real-world cases. In silico proficiency testing or institutional data exchange will ensure consistency among clinical laboratories. OBJECTIVE.— To provide molecular pathologists a step-by-step guide to bioinformatics analysis and validation design in order to navigate the regulatory and validation standards of implementing a bioinformatic pipeline as a part of a new clinical NGS assay. DATA SOURCES.— This guide uses published studies on genomic analysis, bioinformatics methods, and methods comparison studies to inform the reader on what resources, including open source software tools and databases, are available for genetic variant detection and interpretation. CONCLUSIONS.— This review covers 4 key concepts: (1) bioinformatic analysis design for detecting genetic variation, (2) the resources for assessing genetic effects, (3) analysis validation assessment experiments and data sets, including a diverse set of samples to mimic real-world challenges that assess accuracy and reproducibility, and (4) if concordance between clinical laboratories will be improved by proficiency testing designed to test bioinformatic pipelines.
Collapse
Affiliation(s)
- Jeffrey A SoRelle
- Department of Pathology (SoRelle, Wachsmann), University of Texas Southwestern Medical Center, Dallas
| | - Megan Wachsmann
- Department of Pathology (SoRelle, Wachsmann), University of Texas Southwestern Medical Center, Dallas
| | - Brandi L Cantarel
- Bioinformatics Core Facility (Cantarel), University of Texas Southwestern Medical Center, Dallas.,Department of Bioinformatics (Cantarel), University of Texas Southwestern Medical Center, Dallas.,University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
45
|
Sasaki N, Iwaya T, Chiba T, Fujita M, Ju Z, Endo F, Yaegashi M, Hachiya T, Sugimoto R, Sugai T, Siwak DR, Liotta LA, Lu Y, Mills GB, Nakagawa H, Nishizuka SS. Analysis of mutational and proteomic heterogeneity of gastric cancer suggests an effective pipeline to monitor post-treatment tumor burden using circulating tumor DNA. PLoS One 2020; 15:e0239966. [PMID: 33027286 PMCID: PMC7540850 DOI: 10.1371/journal.pone.0239966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is released from tumor cells into blood in advanced cancer patients. Although gene mutations in individual tumors can be diverse and heterogenous, ctDNA has the potential to provide comprehensive biomarker information. Here, we performed multi-region sampling (three sites) per resected specimen from 10 gastric cancer patients followed by targeted sequencing and proteomic profiling using reverse-phase protein arrays. A total of 126 non-synonymous mutations were identified from 30 samples from 10 tumors. Of these, 16 (12.7%) were present in all three regions and were designated as founder mutations. Variant allele frequencies (VAFs) of founder mutations were significantly higher than those of non-founder mutations. Phylogenetic analysis also demonstrated a good concordance between founder and truncal mutations, defined as mutations shared by all simulated clones at the trunk of the tumor phylogenetic tree. These findings led us to prioritize founder mutations for quantitative ctDNA monitoring by digital PCR with individually-designed primer/probe sets. In preoperative plasma, the average ctDNA VAF of founder mutations was significantly higher than that of non-founder mutations (p = 0.039). Proteomic heterogeneity was present across the tumor regions both within and between patients independent of mutational status. Our results suggest that, in practice, mutations having high VAF identified without multi-regional sequencing may be immediately useful for quantitative ctDNA monitoring but do not provide sufficient information to predict the proteomic composition of tumors.
Collapse
Affiliation(s)
- Noriyuki Sasaki
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
- Molecular Therapeutics Laboratory, Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
- Division of Biomedical Research and Development, Iwate Medical University Institute of Biomedical Sciences, Yahaba, Japan
| | - Takeshi Iwaya
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
- Molecular Therapeutics Laboratory, Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Takehiro Chiba
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Fumitaka Endo
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Mizunori Yaegashi
- Department of Surgery, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Yahaba, Japan
| | - Ryo Sugimoto
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Doris R. Siwak
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, United States of America
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gordon B. Mills
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cell, Development & Cancer Biology, Knight Cancer Institute, Oregon Health Science University School of Medicine, Portland, Oregon, United States of America
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Satoshi S. Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute of Biomedical Sciences, Yahaba, Japan
- * E-mail:
| |
Collapse
|
46
|
Mangalaparthi KK, Patel K, Khan AA, Manoharan M, Karunakaran C, Murugan S, Gupta R, Gupta R, Khanna-Gupta A, Chaudhuri A, Kumar P, Nair B, Kumar RV, Prasad TSK, Chatterjee A, Pandey A, Gowda H. Mutational Landscape of Esophageal Squamous Cell Carcinoma in an Indian Cohort. Front Oncol 2020; 10:1457. [PMID: 32974170 PMCID: PMC7469928 DOI: 10.3389/fonc.2020.01457] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype of esophageal cancer in India. Cigarette smoking and chewing tobacco are known risk factors associated with ESCC. However, genomic alterations associated with ESCC in India are not well-characterized. In this study, we carried out exome sequencing to characterize the mutational landscape of ESCC tumors from subjects with a varied history of tobacco usage. Whole exome sequence analysis of ESCC from an Indian cohort revealed several genes that were mutated or had copy number changes. ESCC from tobacco chewers had a higher frequency of C:G > A:T transversions and 2-fold enrichment for mutation signature 4 compared to smokers and non-users of tobacco. Genes, such as TP53, CSMD3, SYNE1, PIK3CA, and NOTCH1 were found to be frequently mutated in Indian cohort. Mutually exclusive mutation patterns were observed in PIK3CA-NOTCH1, DNAH5-ZFHX4, MUC16-FAT1, and ZFHX4-NOTCH1 gene pairs. Recurrent amplifications were observed in 3q22-3q29, 11q13.3-q13.4, 7q22.1-q31.1, and 8q24 regions. Approximately 53% of tumors had genomic alterations in PIK3CA making this pathway a promising candidate for targeted therapy. In conclusion, we observe enrichment of mutation signature 4 in ESCC tumors from patients with a history of tobacco chewing. This is likely due to direct exposure of esophagus to tobacco carcinogens when it is chewed and swallowed. Genomic alterations were frequently observed in PIK3CA-AKT pathway members independent of the history of tobacco usage. PIK3CA pathway can be potentially targeted in ESCC which currently has no effective targeted therapeutic options.
Collapse
Affiliation(s)
- Kiran K. Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Aafaque A. Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | | | | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, India
| | | | | | | | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Manipal Academy of Higher Education, Manipal, India
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Anoshkin KI, Karandasheva KO, Goryacheva KM, Pyankov DV, Koshkin PA, Pavlova TV, Bobin AN, Shpot EV, Chernov YN, Vinarov AZ, Zaletaev DV, Kutsev SI, Strelnikov VV. Multiple Chromoanasynthesis in a Rare Case of Sporadic Renal Leiomyosarcoma: A Case Report. Front Oncol 2020; 10:1653. [PMID: 32974204 PMCID: PMC7466669 DOI: 10.3389/fonc.2020.01653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
We present the genetic profile of kidney giant leiomyosarcoma characterized by sequencing of 409 cancer related genes and chromosomal microarray analysis. Renal leiomyosarcomas are extremely rare neoplasms with aggressive behavior and poor survival prognosis. Most frequent somatic events in leiomyosarcomas are mutations in the TP53, RB1, ATRX, and PTEN genes, chromosomal instability (CIN) and chromoanagenesis. 67-year-old woman presented with a right kidney completely replaced by tumor. Immunohistochemical reaction on surgical material was positive to desmin and smooth muscle actin. Molecular genetic analysis revealed that tumor harbored monosomy of chromosomes 3 and 11, gain of Xp (ATRX) arm and three chromoanasynthesis regions (6q21-q27, 7p22.3-p12.1, and 12q13.11-q21.2), with MDM2 and CDK4 oncogenes copy number gains, whereas no copy number variations (CNVs) or tumor specific single nucleotide variants (SNVs) in TP53, RB1, and PTEN genes were present. We hypothesize that chromoanasynthesis in 12q13.11-q21.2 could be a trigger of observed CIN in this tumor.
Collapse
|
48
|
Fontanilles M, Marguet F, Ruminy P, Basset C, Noel A, Beaussire L, Viennot M, Viailly PJ, Cassinari K, Chambon P, Richard D, Alexandru C, Tennevet I, Langlois O, Di Fiore F, Laquerrière A, Clatot F, Sarafan-Vasseur N. Simultaneous detection of EGFR amplification and EGFRvIII variant using digital PCR-based method in glioblastoma. Acta Neuropathol Commun 2020; 8:52. [PMID: 32303258 PMCID: PMC7165387 DOI: 10.1186/s40478-020-00917-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) amplification and EGFR variant III (EGFRvIII, deletion of exons 2-7) are of clinical interest for glioblastoma. The aim was to develop a digital PCR (dPCR)-based method using locked nucleic acid (LNA)-based hydrolysis probes, allowing the simultaneous detection of the EGFR amplification and EGFRvIII variant. Sixty-two patients were included. An exploratory cohort (n = 19) was used to develop the dPCR assay using three selected amplicons within the EGFR gene, targeting intron 1 (EGFR1), junction of exon 3 and intron 3 (EGFR2) and intron 22 (EGFR3). The copy number of EGFR was estimated by the relative quantification of EGFR1, EGFR2 and EGFR3 amplicon droplets compared to the droplets of a reference gene. EGFRvIII was identified by comparing the copy number of the EGFR2 amplicon to either the EGFR1 or EGFR3 amplicon. dPCR results were compared to fluorescence in situ hybridization (FISH) and next-generation sequencing for amplification; and to RT-PCR-based method for EGFRvIII. The dPCR assay was then tested in a validation cohort (n = 43). A total of 8/19 EGFR-amplified and 5/19 EGFRvIII-positive tumors were identified in the exploratory cohort. Compared to FISH, the EGFR3 dPCR assay detected all EGFR-amplified tumors (8/8, 100%) and had the highest concordance with the copy number estimation by NGS. The concordance between RT-PCR and dPCR was also 100% for detecting EGFRvIII using an absolute difference of 10.8 for the copy number between EGFR2 and EGFR3 probes. In the validation cohort, the sensitivity and specificity of dPCR using EGFR3 probes were 100% for the EGFR amplification detection compared to FISH (19/19). EGFRvIII was detected by dPCR in 8 EGFR-amplified patients and confirmed by RT-PCR. Compared to FISH, the EGFR2/EGFR3 dPCR assay was estimated with a one-half cost value. These results highlight that dPCR allowed the simultaneous detection of EGFR amplification and EGFRvIII for glioblastoma.
Collapse
|
49
|
Russo M, Newell JM, Budurlean L, Houser KR, Sheldon K, Kesterson J, Phaeton R, Hossler C, Rosenberg J, DeGraff D, Shuman L, Broach JR, Warrick JI. Mutational profile of endometrial hyperplasia and risk of progression to endometrioid adenocarcinoma. Cancer 2020; 126:2775-2783. [PMID: 32187665 DOI: 10.1002/cncr.32822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endometrial hyperplasia is a precursor to endometrioid adenocarcinoma (EMC), the most common uterine cancer. The likelihood of progression to carcinoma may be evaluated by histologic subclassification of endometrial hyperplasia, although these subclasses are subjective and only modestly reproducible among pathologists. Patient care would be improved by a more objective test to predict the risk of cancer progression. METHODS Next-generation sequencing was performed on archived endometrial biopsy specimens from a retrospective cohort of women with endometrial hyperplasia. Cases were considered to be either progressing if the patient subsequently developed EMC or resolving if the patient had a subsequent negative tissue sampling or no cancer during medium-term follow-up (32 patients: 15 progressing and 17 resolving). Somatic mutations in endometrial hyperplasia were assessed for enrichment in progressing cases versus resolving cases, with an emphasis on genes commonly mutated in EMC. RESULTS Several mutations were more common in progressing hyperplasia than resolving hyperplasia, although significant overlap was observed between progressing and resolving cases. Mutations included those in PTEN, PIK3CA, and FGFR2, genes commonly mutated in EMC. Mutations in ARID1A and MYC were seen only in progressing hyperplasia, although these were uncommon; this limited diagnostic sensitivity. Progressing hyperplasia demonstrated an accumulation of mutations in oncogenic signaling pathways similarly to endometrial carcinoma. CONCLUSIONS Because of mutational differences between progressing and nonprogressing hyperplasia, mutational analysis may predict the risk of progression from endometrial hyperplasia to EMC.
Collapse
Affiliation(s)
- Mariano Russo
- Department of Biochemistry, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Jordan M Newell
- Department of Pathology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Laura Budurlean
- Department of Biochemistry, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Kenneth R Houser
- Department of Biochemistry, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Kathryn Sheldon
- Department of Biochemistry, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Joshua Kesterson
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Carrie Hossler
- Department of Obstetrics and Gynecology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Jennifer Rosenberg
- Department of Radiation Oncology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - David DeGraff
- Department of Pathology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Lauren Shuman
- Department of Pathology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - James R Broach
- Department of Biochemistry, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania.,Institute for Personalized Medicine, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| | - Joshua I Warrick
- Department of Pathology, Penn State College of Medicine, Penn State Health, Hershey, Pennsylvania
| |
Collapse
|
50
|
Aoki Y, Mizuma M, Hata T, Aoki T, Omori Y, Ono Y, Mizukami Y, Unno M, Furukawa T. Intraductal papillary neoplasms of the bile duct consist of two distinct types specifically associated with clinicopathological features and molecular phenotypes. J Pathol 2020; 251:38-48. [PMID: 32100878 DOI: 10.1002/path.5398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
Intraductal papillary neoplasm of the bile duct (IPNB) is a grossly visible papillary biliary neoplasm with morphological variations and occasional invasion. Recently a new classification of IPNB into type 1 and type 2 was proposed in which the type 1 IPNBs consist of fine papillary neoplastic glands and the type 2 IPNBs consist of complex branching glands, seldom with foci of solid-tubular components. However, clinicopathological and molecular characteristics of these types of IPNBs are yet to be identified. We aimed to uncover clinicopathological and molecular characteristics of the types of IPNBs. Thirty-six IPNBs were studied retrospectively. Clinicopathological features as well as molecular alterations of 31 genes were evaluated by means of targeted next-generation sequencing and immunohistochemical examination of expression of mucin and cancer-associated molecules. The 36 IPNBs were classified into 22 of type 1 and 14 of type 2. The type 1 IPNBs were associated with a non-invasive phenotype, intestinal and oncocytic subtypes, development in the intrahepatic bile duct, overt mucin production, and a relatively good prognosis. The type 2 IPNBs were associated with an invasive phenotype, the pancreatobiliary subtype, development within the extrahepatic bile duct, and worse prognosis compared with the type 1 IPNBs. In the molecular analysis, recurrent mutations were found in TP53 (34.3%), KRAS (31.4%), STK11 (25.7%), CTNNB1 (17.1%), APC (14.3%), SMAD4 (14.3%), GNAS (11.4%), PBRM1 (11.4%), ELF3 (8.6%), KMT2C (8.6%), NF1 (8.6%), PIK3CA (8.6%), ARID1A (5.7%), ARID2 (5.7%), BAP1 (5.7%), BRAF (5.7%), EPHA6 (5.7%), ERBB2 (5.7%), ERBB3 (5.7%), KMT2D (5.7%), and RNF43 (5.7%). Mutations in KRAS and GNAS were enriched in the type 1 IPNBs, whereas mutations in TP53, SMAD4, and KMT2C were enriched in the type 2 IPNBs. These results indicate that IPNBs consist of two distinct types of neoplasms specifically associated with clinicopathological features and molecular phenotypes. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yasutaka Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|