1
|
Chen OJ, Castellsagué E, Moustafa-Kamal M, Nadaf J, Rivera B, Fahiminiya S, Wang Y, Gamache I, Pacifico C, Jiang L, Carrot-Zhang J, Witkowski L, Berghuis AM, Schönberger S, Schneider D, Hillmer M, Bens S, Siebert R, Stewart CJR, Zhang Z, Chao WCH, Greenwood CMT, Barford D, Tischkowitz M, Majewski J, Foulkes WD, Teodoro JG. Germline Missense Variants in CDC20 Result in Aberrant Mitotic Progression and Familial Cancer. Cancer Res 2022; 82:3499-3515. [PMID: 35913887 DOI: 10.1158/0008-5472.can-21-3956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
CDC20 is a coactivator of the anaphase promoting complex/cyclosome (APC/C) and is essential for mitotic progression. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC), which prevents premature separation of sister chromatids and aneuploidy in daughter cells. Although overexpression of CDC20 is common in many cancers, oncogenic mutations have never been identified in humans. Using whole-exome sequencing, we identified heterozygous missense CDC20 variants (L151R and N331K) that segregate with ovarian germ cell tumors in two families. Functional characterization showed these mutants retain APC/C activation activity but have impaired binding to BUBR1, a component of the SAC. Expression of L151R and N331K variants promoted mitotic slippage in HeLa cells and primary skin fibroblasts derived from carriers. Generation of mice carrying the N331K variant using CRISPR-Cas9 showed that, although homozygous N331K mice were nonviable, heterozygotes displayed accelerated oncogenicity of Myc-driven cancers. These findings highlight an unappreciated role for CDC20 variants as tumor-promoting genes. SIGNIFICANCE Two germline CDC20 missense variants that segregate with cancer in two families compromise the spindle assembly checkpoint and lead to aberrant mitotic progression, which could predispose cells to transformation. See related commentary by Villarroya-Beltri and Malumbres, p. 3432.
Collapse
Affiliation(s)
- Owen J Chen
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Ester Castellsagué
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mohamed Moustafa-Kamal
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Javad Nadaf
- McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada
| | - Barbara Rivera
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Hereditary Cancer Programme, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Somayyeh Fahiminiya
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yilin Wang
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Isabelle Gamache
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Caterina Pacifico
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Lai Jiang
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
| | - Jian Carrot-Zhang
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| | - Stefan Schönberger
- Department of Pediatric Hematology and Oncology, Pediatrics III, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik Schneider
- Clinic of Pediatrics, Dortmund Municipal Hospital, Dortmund, Germany
| | - Morten Hillmer
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm & Ulm University Medical Center, Ulm, Germany
| | - Colin J R Stewart
- Department of Histopathology, King Edward Memorial Hospital, and School for Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - Ziguo Zhang
- Institute of Cancer Research, London, United Kingdom
| | - William C H Chao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Celia M T Greenwood
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
- Departments of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
| | - David Barford
- Institute of Cancer Research, London, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Axis, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, Québec, Canada
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montréal, Québec, Canada
- Division of Medical Genetics and Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Jose G Teodoro
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Montréal, Québec, Canada
| |
Collapse
|
2
|
Bazinet A, Heath J, Chong AS, Simo-Cheyou ER, Worme S, Rivera Polo B, Foulkes WD, Caplan S, Johnson NA, Orthwein A, Mercier FE. Common clonal origin of chronic myelomonocytic leukemia and B-cell acute lymphoblastic leukemia in a patient with a germline CHEK2 variant. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006090. [PMID: 33986034 PMCID: PMC8208041 DOI: 10.1101/mcs.a006090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Hematological malignancies are broadly divided into myeloid and lymphoid neoplasms, reflecting the two major cellular lineages of the hematopoietic system. It is generally rare for hematological malignancies to spontaneously progress with a switch from myeloid to lymphoid lineage. We describe the exceptional case of a patient who sequentially developed myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), and B-cell acute lymphoblastic leukemia (B-ALL), as well as our investigation into the underlying pathogenesis. Using whole-exome sequencing (WES) performed on sorted CMML and B-ALL cell fractions, we identified both common and unique potential driver mutations, suggesting a branching clonal evolution giving rise to both diseases. Interestingly, we also identified a germline variant in the cancer susceptibility gene CHEK2 We validated that this variant (c.475T > C; p.Y159H), located in the forkhead-associated (FHA) domain, impairs its capacity to bind BRCA1 in cellulo. This unique case provides novel insight into the genetics of complex hematological diseases and highlights the possibility that such patients may carry inherited predispositions.
Collapse
Affiliation(s)
- Alexandre Bazinet
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - John Heath
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Anne-Sophie Chong
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada
| | | | - Samantha Worme
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Barbara Rivera Polo
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - William D Foulkes
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec H3A 0C7, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Stephen Caplan
- Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Nathalie A Johnson
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Alexandre Orthwein
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - François E Mercier
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada.,Division of Hematology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
3
|
Liu APY, Wu G, Orr BA, Lin T, Ashford JM, Bass JK, Bowers DC, Hassall T, Fisher PG, Indelicato DJ, Klimo P, Boop F, Conklin H, Onar-Thomas A, Merchant TE, Ellison DW, Gajjar A, Robinson GW. Outcome and molecular analysis of young children with choroid plexus carcinoma treated with non-myeloablative therapy: results from the SJYC07 trial. Neurooncol Adv 2020; 3:vdaa168. [PMID: 33506206 PMCID: PMC7813199 DOI: 10.1093/noajnl/vdaa168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Choroid plexus carcinoma (CPC) is a rare and aggressive tumor of infancy without a clear treatment strategy. This study describes the outcomes of children with CPC treated on the multi-institutional phase 2 SJYC07 trial and reports on the significance of clinical and molecular characteristics. Methods Eligible children <3 years-old with CPC were postoperatively stratified to intermediate-risk (IR) stratum if disease was localized or high-risk (HR) stratum, if metastatic. All received high-dose methotrexate-containing induction chemotherapy. IR-stratum patients received focal irradiation as consolidation whereas HR-stratum patients received additional chemotherapy. Consolidation was followed by oral antiangiogenic maintenance regimen. Survival rates and potential prognostic factors were analyzed. Results Thirteen patients (median age: 1.41 years, range: 0.21-2.93) were enrolled; 5 IR, 8 HR. Gross-total resection or near-total resection was achieved in ten patients and subtotal resection in 3. Seven patients had TP53-mutant tumors, including 4 who were germline carriers. Five patients experienced progression and died of disease; 8 (including 5 HR) are alive without progression. The 5-year progression-free survival (PFS) and overall survival rates were 61.5 ± 13.5% and 68.4 ± 13.1%. Patients with TP53-wild-type tumors had a 5-year PFS of 100% as compared to 28.6 ± 17.1% for TP53-mutant tumors (P = .012). Extent of resection, metastatic status, and use of radiation therapy were not significantly associated with survival. Conclusions Non-myeloablative high-dose methotrexate-containing therapy with maximal surgical resection resulted in long-term PFS in more than half of patients with CPC. TP53-mutational status was the only significant prognostic variable and should form the basis of risk-stratification in future trials.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason M Ashford
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Johnnie K Bass
- Department of Rehabilitation Services, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Hassall
- Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Paul G Fisher
- Department of Neurology, Stanford University, Palo Alto, California, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine-Jacksonville, Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Paul Klimo
- Department of Surgery, St. Jude Children's Research Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Frederick Boop
- Department of Surgery, St. Jude Children's Research Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Department of Neurosurgery, University of Tennessee Health Science Center, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Semmes Murphey Clinic, Memphis, Tennessee, USA.,Semmes Murphey Clinic, Memphis, Tennessee, USA
| | - Heather Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Rivera B, Nadaf J, Fahiminiya S, Apellaniz-Ruiz M, Saskin A, Chong AS, Sharma S, Wagener R, Revil T, Condello V, Harra Z, Hamel N, Sabbaghian N, Muchantef K, Thomas C, de Kock L, Hébert-Blouin MN, Bassenden AV, Rabenstein H, Mete O, Paschke R, Pusztaszeri MP, Paulus W, Berghuis A, Ragoussis J, Nikiforov YE, Siebert R, Albrecht S, Turcotte R, Hasselblatt M, Fabian MR, Foulkes WD. DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis. J Clin Invest 2020; 130:1479-1490. [PMID: 31805011 DOI: 10.1172/jci130206] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDDICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist.METHODSWhole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K.RESULTSWe identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p.E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons.CONCLUSIONWe identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.FUNDINGCanadian Institutes of Health Research, Compute Canada, Alex's Lemonade Stand Foundation, the Mia Neri Foundation for Childhood Cancer, Cassa di Sovvenzioni e Risparmio fra il Personale della Banca d'Italia, and the KinderKrebsInitiative Buchholz/Holm-Seppensen.
Collapse
Affiliation(s)
- Barbara Rivera
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Javad Nadaf
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Maria Apellaniz-Ruiz
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Avi Saskin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Anne-Sophie Chong
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sahil Sharma
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Condello
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zineb Harra
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nancy Hamel
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nelly Sabbaghian
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Karl Muchantef
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec, Canada.,Pediatric Radiology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Leanne de Kock
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Ralf Paschke
- Department of Medicine.,Department of Oncology.,Department of Pathology.,Biochemistry and Molecular Biology Institute, and.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc P Pusztaszeri
- Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Robert Turcotte
- Division of Orthopedic Surgery (Experimental Surgery), McGill University, Montreal, Quebec, Canada.,Department of Surgical Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Marc R Fabian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - William D Foulkes
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Poorly differentiated thyroid carcinoma of childhood and adolescence: a distinct entity characterized by DICER1 mutations. Mod Pathol 2020; 33:1264-1274. [PMID: 31937902 PMCID: PMC7329587 DOI: 10.1038/s41379-020-0458-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Poorly differentiated thyroid carcinomas (PDTC) in young individuals are rare and their clinical and histopathologic features, genetic mechanisms, and outcomes remain largely unknown. Here, we report a detailed characterization of a series of six PDTC in patients ≤21 years old defined by Turin diagnostic criteria studied for mutations and gene fusions characteristic of thyroid cancer using targeted next-generation sequencing (NGS) and whole-exome sequencing (WES). All tumors had solid, insular, or trabecular growth pattern and high mitotic rate, and five out of six tumors showed tumor necrosis. Targeted NGS assay identified somatic mutations in the DICER1 gene in five of six (83%) tumors, all of which were "hotspot" mutations encoding the metal-ion binding sites of the RNase IIIb domain of DICER1. WES was performed in five cases which confirmed all hotspot mutations and detected two tumors with additional inactivating DICER1 alterations. Of these two, one was a germline pathogenic DICER1 variant and the other had loss of heterozygosity for DICER1. No other mutations or gene fusions characteristic of adult well-differentiated thyroid cancer and PDTC (BRAF, RAS, TERT, RET/PTC, and other) were detected. On follow-up, available for five patients, three patients died of disease 8-24 months after diagnosis, whereas two were alive with no disease. The results of our study demonstrate that childhood- and adolescent-onset PDTC are genetically distinct from adult-onset PDTC in that they are strongly associated with DICER1 mutations and may herald DICER1 syndrome in a minority. As such, all young persons with PDTC may benefit from genetic counseling. Furthermore, their clinically aggressive behavior contrasts sharply with the indolent nature of the great majority of thyroid tumors with DICER1 mutations reported to date.
Collapse
|
6
|
Bah I, Fahiminiya S, Bégin LR, Hamel N, D'Agostino MD, Tanguay S, Foulkes WD. Atypical tuberous sclerosis complex presenting as familial renal cell carcinoma with leiomyomatous stroma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2018; 4:167-174. [PMID: 29659200 PMCID: PMC6065116 DOI: 10.1002/cjp2.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/17/2022]
Abstract
We report an atypical tuberous sclerosis complex (TSC) phenotype presenting as familial multiple renal cell carcinomas (RCCs) with (angio)leiomyomatous stroma (RCCLS) (5/7 familial RCCs) on a background of multiple angiomyolipomas, hypopigmented skin macules, and absence of neurological anomalies. In the index case and three relatives, germline genetic testing identified a heterozygous TSC2 missense pathogenic variant [c.2714 G > A, (p.Arg905Gln)], a rare TSC‐associated alteration which has previously been associated with a milder TSC phenotype. Whole‐exome sequencing of five RCCs from the index case and one RCC from his mother demonstrated either unique tumour‐specific deleterious second hits in TSC2 or significant allelic imbalance at the TSC2 gene locus (5/6 RCCs). This study confirms the key tumourigenic role of tumour‐specific TSC2 second hits in TSC‐associated RCCs and supports the notion that RCCLS may be strongly related to abnormalities of the mTOR pathway.
Collapse
Affiliation(s)
- Ismaël Bah
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Louis R Bégin
- Division of Anatomic Pathology, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Nancy Hamel
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Maria D D'Agostino
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Department of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
| | - Simon Tanguay
- Division of Urology, McGill University Health Center, Montreal, QC, Canada
| | - William D Foulkes
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada.,Department of Medical Genetics, Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2017; 131:717-732. [PMID: 29146883 DOI: 10.1182/blood-2017-09-806489] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders (GATA2, RUNX1), telomeropathies (TERC, TERT, RTEL1), ribosome disorders (SBDS, DNAJC21, RPL5), and DNA repair deficiency (LIG4). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling.
Collapse
|
8
|
Salloum R, McConechy MK, Mikael LG, Fuller C, Drissi R, DeWire M, Nikbakht H, De Jay N, Yang X, Boue D, Chow LML, Finlay JL, Gayden T, Karamchandani J, Hummel TR, Olshefski R, Osorio DS, Stevenson C, Kleinman CL, Majewski J, Fouladi M, Jabado N. Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun 2017; 5:78. [PMID: 29084603 PMCID: PMC5663045 DOI: 10.1186/s40478-017-0479-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 03/05/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3) (K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers (ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials (e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
Collapse
|
9
|
Rivera B, Di Iorio M, Frankum J, Nadaf J, Fahiminiya S, Arcand SL, Burk DL, Grapton D, Tomiak E, Hastings V, Hamel N, Wagener R, Aleynikova O, Giroux S, Hamdan FF, Dionne-Laporte A, Zogopoulos G, Rousseau F, Berghuis AM, Provencher D, Rouleau GA, Michaud JL, Mes-Masson AM, Majewski J, Bens S, Siebert R, Narod SA, Akbari MR, Lord CJ, Tonin PN, Orthwein A, Foulkes WD. Functionally Null RAD51D Missense Mutation Associates Strongly with Ovarian Carcinoma. Cancer Res 2017; 77:4517-4529. [PMID: 28646019 DOI: 10.1158/0008-5472.can-17-0190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/23/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
RAD51D is a key player in DNA repair by homologous recombination (HR), and RAD51D truncating variant carriers have an increased risk for ovarian cancer. However, the contribution of nontruncating RAD51D variants to cancer predisposition remains uncertain. Using deep sequencing and case-control genotyping studies, we show that in French Canadians, the missense RAD51D variant c.620C>T;p.S207L is highly prevalent and is associated with a significantly increased risk for ovarian high-grade serous carcinoma (HGSC; 3.8% cases vs. 0.2% controls). The frequency of the p.S207L variant did not significantly differ from that of controls in breast, endometrial, pancreas, or colorectal adenocarcinomas. Functionally, we show that this mutation impairs HR by disrupting the RAD51D-XRCC2 interaction and confers PARP inhibitor sensitivity. These results highlight the importance of a functional RAD51D-XRCC2 interaction to promote HR and prevent the development of HGSC. This study identifies c.620C>T;p.S207L as the first bona fide pathogenic RAD51D missense cancer susceptibility allele and supports the use of targeted PARP-inhibitor therapies in ovarian cancer patients carrying deleterious missense RAD51D variants. Cancer Res; 77(16); 4517-29. ©2017 AACR.
Collapse
Affiliation(s)
- Barbara Rivera
- Department of Human Genetics, McGill University, Montreal, Canada
- Lady Davis Institute, Montreal, Canada
| | - Massimo Di Iorio
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Canada
- Genome Quebec Innovation Centre, Montreal, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suzanna L Arcand
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - David L Burk
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Eva Tomiak
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Valerie Hastings
- Department of Genetics, University of Ottawa, Children's Hospital of Eastern Ontario, Canada
| | - Nancy Hamel
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Olga Aleynikova
- Department of pathology, Jewish General Hospital, Montreal, Canada
| | - Sylvie Giroux
- University of Laval and CHU Research Centre, Quebec; Canada
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Canada
| | | | - George Zogopoulos
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- The Goodman Cancer Research Centre, McGill University, Montreal, Canada
| | | | | | - Diane Provencher
- Centre de recherche du CHUM and Institut du cancer de Montréal, University of Montreal, Montreal, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du CHUM and Institut du cancer de Montréal, University of Montreal, Montreal, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Canada
- Genome Quebec Innovation Centre, Montreal, Canada
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Steven A Narod
- Dalla Lana School of Public Health, Toronto, Canada
- Women's College Hospital, Toronto, Canada
| | - Mohammad R Akbari
- Dalla Lana School of Public Health, Toronto, Canada
- Women's College Hospital, Toronto, Canada
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Patricia N Tonin
- Department of Human Genetics, McGill University, Montreal, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Canada.
- Lady Davis Institute, Montreal, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Medical Genetics, Research Institute, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
10
|
A Survey of Computational Tools to Analyze and Interpret Whole Exome Sequencing Data. Int J Genomics 2016; 2016:7983236. [PMID: 28070503 PMCID: PMC5192301 DOI: 10.1155/2016/7983236] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Whole Exome Sequencing (WES) is the application of the next-generation technology to determine the variations in the exome and is becoming a standard approach in studying genetic variants in diseases. Understanding the exomes of individuals at single base resolution allows the identification of actionable mutations for disease treatment and management. WES technologies have shifted the bottleneck in experimental data production to computationally intensive informatics-based data analysis. Novel computational tools and methods have been developed to analyze and interpret WES data. Here, we review some of the current tools that are being used to analyze WES data. These tools range from the alignment of raw sequencing reads all the way to linking variants to actionable therapeutics. Strengths and weaknesses of each tool are discussed for the purpose of helping researchers make more informative decisions on selecting the best tools to analyze their WES data.
Collapse
|
11
|
Fahiminiya S, Witkowski L, Nadaf J, Carrot-Zhang J, Goudie C, Hasselblatt M, Johann P, Kool M, Lee RS, Gayden T, Roberts CWM, Biegel JA, Jabado N, Majewski J, Foulkes WD. Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor. Oncotarget 2016; 7:1732-40. [PMID: 26646792 PMCID: PMC4811493 DOI: 10.18632/oncotarget.6459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy diagnosed in women under age 40. We and others recently determined that germline and/or somatic deleterious mutations in SMARCA4 characterize SCCOHT. Alterations in this gene, or the related SWI/SNF chromatin remodeling gene SMARCB1, have been previously reported in atypical teratoid/rhabdoid tumors (ATRTs) and malignant rhabdoid tumors (MRTs). To further describe the somatic landscape of SCCOHT, we performed whole exome sequencing on 14 tumors and their matched normal tissues and compared their genomic alterations with those in ATRT and ovarian high grade serous carcinoma (HGSC). We confirmed that SMARCA4 is the only recurrently mutated gene in SCCOHT, and show that recurrent allelic imbalance is observed exclusively on chromosome 19p, where SMARCA4 resides. By comparing genomic alterations between SCCOHT, ATRT and HGSC, we demonstrate that SCCOHTs, like ATRTs, have a remarkably simple genome and harbor significantly fewer somatic protein-coding mutations and chromosomal alterations than HGSC. Furthermore, a comparison of global DNA methylation profiles of 45 SCCOHTs, 65 ATRTs, and 92 HGSCs demonstrates a strong epigenetic correlation between SCCOHT and ATRT. Our results further confirm that the genomic and epigenomic signatures of SCCOHT are more similar to those of ATRT than HGSC, supporting our previous hypothesis that SCCOHT is a rhabdoid tumor and should be renamed MRT of the ovary. Furthermore, we conclude that SMARCA4 inactivation is the main cause of SCCOHT, and that new distinct therapeutic approaches should be developed to specifically target this devastating tumor.
Collapse
Affiliation(s)
- Somayyeh Fahiminiya
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Leora Witkowski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Jian Carrot-Zhang
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Catherine Goudie
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Pascal Johann
- Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neuro-Oncology, German Cancer Research Center DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Ryan S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Charles W M Roberts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Current affiliation: Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jaclyn A Biegel
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Rivera B, Gayden T, Carrot-Zhang J, Nadaf J, Boshari T, Faury D, Zeinieh M, Blanc R, Burk DL, Fahiminiya S, Bareke E, Schüller U, Monoranu CM, Sträter R, Kerl K, Niederstadt T, Kurlemann G, Ellezam B, Michalak Z, Thom M, Lockhart PJ, Leventer RJ, Ohm M, MacGregor D, Jones D, Karamchandani J, Greenwood CMT, Berghuis AM, Bens S, Siebert R, Zakrzewska M, Liberski PP, Zakrzewski K, Sisodiya SM, Paulus W, Albrecht S, Hasselblatt M, Jabado N, Foulkes WD, Majewski J. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial tumors. Acta Neuropathol 2016; 131:847-63. [PMID: 26920151 PMCID: PMC5039033 DOI: 10.1007/s00401-016-1549-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
Dysembryoplastic neuroepithelial tumor (DNET) is a benign brain tumor associated with intractable drug-resistant epilepsy. In order to identify underlying genetic alterations and molecular mechanisms, we examined three family members affected by multinodular DNETs as well as 100 sporadic tumors from 96 patients, which had been referred to us as DNETs. We performed whole-exome sequencing on 46 tumors and targeted sequencing for hotspot FGFR1 mutations and BRAF p.V600E was used on the remaining samples. FISH, copy number variation assays and Sanger sequencing were used to validate the findings. By whole-exome sequencing of the familial cases, we identified a novel germline FGFR1 mutation, p.R661P. Somatic activating FGFR1 mutations (p.N546K or p.K656E) were observed in the tumor samples and further evidence for functional relevance was obtained by in silico modeling. The FGFR1 p.K656E mutation was confirmed to be in cis with the germline p.R661P variant. In 43 sporadic cases, in which the diagnosis of DNET could be confirmed on central blinded neuropathology review, FGFR1 alterations were also frequent and mainly comprised intragenic tyrosine kinase FGFR1 duplication and multiple mutants in cis (25/43; 58.1 %) while BRAF p.V600E alterations were absent (0/43). In contrast, in 53 cases, in which the diagnosis of DNET was not confirmed, FGFR1 alterations were less common (10/53; 19 %; p < 0.0001) and hotspot BRAF p.V600E (12/53; 22.6 %) (p < 0.001) prevailed. We observed overexpression of phospho-ERK in FGFR1 p.R661P and p.N546K mutant expressing HEK293 cells as well as FGFR1 mutated tumor samples, supporting enhanced MAP kinase pathway activation under these conditions. In conclusion, constitutional and somatic FGFR1 alterations and MAP kinase pathway activation are key events in the pathogenesis of DNET. These findings point the way towards existing targeted therapies.
Collapse
|
13
|
Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, Osmond M, Ho CY, Kambhampati M, Hwang EI, Faury D, Siu A, Papillon-Cavanagh S, Bechet D, Ligon KL, Ellezam B, Ingram WJ, Stinson C, Moore AS, Warren KE, Karamchandani J, Packer RJ, Jabado N, Majewski J, Nazarian J. Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 2016; 7:11185. [PMID: 27048880 PMCID: PMC4823825 DOI: 10.1038/ncomms11185] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.
Collapse
Affiliation(s)
- Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Eshini Panditharatna
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Institute for Biomedical Sciences, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Leonie G Mikael
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Rui Li
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Tenzin Gayden
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Matthew Osmond
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Cheng-Ying Ho
- Division of Pathology, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Madhuri Kambhampati
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Health System, Washington, District Of Columbia 20010, USA
| | - Damien Faury
- Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Alan Siu
- The Department of Neurological Surgery, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| | - Simon Papillon-Cavanagh
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Denise Bechet
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1
| | - Keith L Ligon
- Center for Molecular Oncologic Pathology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusett 02115, USA
| | - Benjamin Ellezam
- Department of Pathology, CHU Ste-Justine, Université de Montréal, Montreal, Québec, Canada H3T 1C5
| | - Wendy J Ingram
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia
| | - Caedyn Stinson
- University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Andrew S Moore
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland 4101, Australia.,University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia.,Oncology Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland 4101, Australia
| | - Katherine E Warren
- National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | - Jason Karamchandani
- Department of Pathology, Montreal Neurological Hospital, McGill University, Montreal, Québec, Canada H3A 2B4
| | - Roger J Packer
- Brain Tumour Institute, Center for Neuroscience and Behavioral Medicine, Children's National Health System, Washington, District Of Columbia, 20010, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,Department of Pediatrics, McGill University and McGill University Heath Centre Research Institute, Montreal, Québec, Canada H4A 3J1
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada H3A 1B1.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada H3A 0G1
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children's National Health System, Washington, District Of Columbia 20010, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District Of Columbia 20052, USA
| |
Collapse
|
14
|
Tetreault M, Bareke E, Nadaf J, Alirezaie N, Majewski J. Whole-exome sequencing as a diagnostic tool: current challenges and future opportunities. Expert Rev Mol Diagn 2015; 15:749-60. [PMID: 25959410 DOI: 10.1586/14737159.2015.1039516] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Whole-exome sequencing (WES) represents a significant breakthrough in the field of human genetics. This technology has largely contributed to the identification of new disease-causing genes and is now entering clinical laboratories. WES represents a powerful tool for diagnosis and could reduce the 'diagnostic odyssey' for many patients. In this review, we present a technical overview of WES analysis, variants annotation and interpretation in a clinical setting. We evaluate the usefulness of clinical WES in different clinical indications, such as rare diseases, cancer and complex diseases. Finally, we discuss the efficacy of WES as a diagnostic tool and the impact on patient management.
Collapse
Affiliation(s)
- Martine Tetreault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | | | | | | | | |
Collapse
|