1
|
Sun Q, Kong W, Mou X, Wang S. Transcriptional Regulation Analysis of Alzheimer's Disease Based on FastNCA Algorithm. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190919150411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
Understanding the relationship between genetic variation and gene expression
is a central issue in genetics. Although many studies have identified genetic variations associated
with gene expression, it is unclear how they perturb the underlying regulatory network of
gene expression.
Objective:
To explore how genetic variations perturb potential transcriptional regulation networks
of Alzheimer’s disease (AD) to paint a more complete picture of the complex landscape of transcription
regulation.
Methods:
Fast network component analysis (FastNCA), which can capture the genetic variations
in the form of single nucleotide polymorphisms (SNPs), is applied to analyse the expression activities
of TFs and their regulatory strengths on TGs using microarray and RNA-seq data of AD.
Then, multi-data fusion analysis was used to analyze the different TGs regulated by the same TFs
in the different data by constructing the transcriptional regulatory networks of differentially expressed
genes.
Results:
the common TF regulating TGs are not necessarily identical in different data, they may be
involved in the same pathways that are closely related to the pathogenesis of AD, such as immune
response, signal transduction and cytokine-cytokine receptor interaction pathways. Even if they are
involved in different pathways, these pathways are also confirmed to have a potential link with
AD.
Conclusion:
The study shows that the pathways of different TGs regulated by the same TFs in different
data are all closely related to AD. Multi-data fusion analysis can form a certain complement
to some extent and get more comprehensive results in the process of exploring the pathogenesis
of AD.
Collapse
Affiliation(s)
- Qianni Sun
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey 08028, United States
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave., Shanghai 201306, China
| |
Collapse
|
2
|
Li L, Tetu SG, Paulsen IT, Hassan KA. A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria. Methods Mol Biol 2018; 1700:221-235. [PMID: 29177833 DOI: 10.1007/978-1-4939-7454-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The core genomes of most bacterial species include a large number of genes encoding putative efflux pumps. The functional roles of most of these pumps are unknown, however, they are often under tight regulatory control and expressed in response to their substrates. Therefore, one way to identify pumps that function in antimicrobial resistance is to examine the transcriptional responses of efflux pump genes to antimicrobial shock. By conducting complete transcriptomic experiments following antimicrobial shock treatments, it may be possible to identify novel drug efflux pumps encoded in bacterial genomes. In this chapter we describe a complete workflow for conducting transcriptomic analyses by RNA sequencing, to determine transcriptional changes in bacteria responding to antimicrobials.
Collapse
Affiliation(s)
- Liping Li
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sasha G Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Karl A Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia.
| |
Collapse
|
3
|
Dynamic Changes in the Splenic Transcriptome of Chickens during the Early Infection and Progress of Marek's Disease. Sci Rep 2017; 7:11648. [PMID: 28912500 PMCID: PMC5599560 DOI: 10.1038/s41598-017-11304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 08/22/2017] [Indexed: 01/18/2023] Open
Abstract
Gallid alphaherpesvirus 2 (GaHV2) is an oncogenic avian herpesvirus inducing Marek’s disease (MD) and rapid-onset T-cell lymphomas. To reveal molecular events in MD pathogenesis and tumorigenesis, the dynamic splenic transcriptome of GaHV2-infected chickens during early infection and pathogenic phases has been determined utilizing RNA-seq. Based on the significant differentially expressed genes (DEGs), analysis of gene ontology, KEGG pathway and protein-protein interaction network has demonstrated that the molecular events happening during GaHV2 infection are highly relevant to the disease course. In the ‘Cornell Model’ description of MD, innate immune responses and inflammatory responses were established at early cytolytic phase but persisted until lymphoma formation. Humoral immunity in contrast began to play a role firstly in the intestinal system and started at late cytolytic phase. Neurological damage caused by GaHV2 is first seen in early cytolytic phase and is then sustained throughout the following phases over a long time period. During the proliferative phase many pathways associated with transcription and/or translation were significantly enriched, reflecting the cell transformation and lymphoma formation. Our work provides an overall view of host responses to GaHV2 infection and offers a meaningful basis for further studies of MD biology.
Collapse
|
4
|
Mellies JL, Platenkamp A, Osborn J, Ben-Avi L. PerC Manipulates Metabolism and Surface Antigens in Enteropathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:32. [PMID: 28224117 PMCID: PMC5293775 DOI: 10.3389/fcimb.2017.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Escherichia coli is an important cause of profuse, watery diarrhea in infants living in developing regions of the world. Typical strains of EPEC (tEPEC) possess a virulence plasmid, while related clinical isolates that lack the pEAF plasmid are termed atypical EPEC (aEPEC). tEPEC and aEPEC tend to cause acute vs. more chronic type infections, respectively. The pEAF plasmid encodes an attachment factor as well as a regulatory operon, perABC. PerC, a poorly understood regulator, was previously shown to regulate expression of the type III secretion system through Ler. Here we elucidate the regulon of PerC using RNA sequencing analysis to better our understanding of the role of the pEAF in tEPEC infection. We demonstrate that PerC controls anaerobic metabolism by increasing expression of genes necessary for nitrate reduction. A tEPEC strain overexpressing PerC exhibited a growth advantage compared to a strain lacking this regulator, when grown anaerobically in the presence of nitrate, conditions mimicking the human intestine. We show that PerC strongly down-regulates type I fimbriae expression by manipulating fim phase variation. The quantities of a number of non-coding RNA molecules were altered by PerC. In sum, this protein controls niche adaptation, and could help to explain the function of the PerC homologs (Pch), many of which are encoded within prophages in related, Gram-negative pathogens.
Collapse
Affiliation(s)
| | | | - Jossef Osborn
- Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Lily Ben-Avi
- Biology Department, Reed College Portland, OR, USA
| |
Collapse
|
5
|
Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2016; 45:D535-D542. [PMID: 27899627 PMCID: PMC5210524 DOI: 10.1093/nar/gkw1017] [Citation(s) in RCA: 1158] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022] Open
Abstract
The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by ‘virtual integration’ to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.
Collapse
Affiliation(s)
- Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - James J Davis
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Rida Assaf
- Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
| | | | - Thomas Brettin
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christopher Bun
- Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
| | - Neal Conrad
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Emily M Dietrich
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Terry Disz
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Joseph L Gabbard
- Grado Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Ronald W Kenyon
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Dustin Machi
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Chunhong Mao
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Eric K Nordberg
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Gary J Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel E Murphy-Olson
- Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Olson
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Ross Overbeek
- Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA.,Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Bruce Parrello
- Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA.,Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Gordon D Pusch
- Fellowship for Interpretation of Genomes, Burr Ridge, IL 60527, USA
| | - Maulik Shukla
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Andrew Warren
- Biocomplexity Institute, Virginia Tech University, Blacksburg, VA 24060, USA
| | - Fangfang Xia
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Hyunseung Yoo
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Rick L Stevens
- Computation Institute, University of Chicago, Chicago, IL 60637, USA.,Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Computer Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Santos LN, Silva ES, Santos AS, De Sá PH, Ramos RT, Silva A, Cooper PJ, Barreto ML, Loureiro S, Pinheiro CS, Alcantara-Neves NM, Pacheco LGC. De novo assembly and characterization of the Trichuris trichiura adult worm transcriptome using Ion Torrent sequencing. Acta Trop 2016; 159:132-41. [PMID: 27038556 DOI: 10.1016/j.actatropica.2016.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Infection with helminthic parasites, including the soil-transmitted helminth Trichuris trichiura (human whipworm), has been shown to modulate host immune responses and, consequently, to have an impact on the development and manifestation of chronic human inflammatory diseases. De novo derivation of helminth proteomes from sequencing of transcriptomes will provide valuable data to aid identification of parasite proteins that could be evaluated as potential immunotherapeutic molecules in near future. Herein, we characterized the transcriptome of the adult stage of the human whipworm T. trichiura, using next-generation sequencing technology and a de novo assembly strategy. Nearly 17.6 million high-quality clean reads were assembled into 6414 contiguous sequences, with an N50 of 1606bp. In total, 5673 protein-encoding sequences were confidentially identified in the T. trichiura adult worm transcriptome; of these, 1013 sequences represent potential newly discovered proteins for the species, most of which presenting orthologs already annotated in the related species T. suis. A number of transcripts representing probable novel non-coding transcripts for the species T. trichiura were also identified. Among the most abundant transcripts, we found sequences that code for proteins involved in lipid transport, such as vitellogenins, and several chitin-binding proteins. Through a cross-species expression analysis of gene orthologs shared by T. trichiura and the closely related parasites T. suis and T. muris it was possible to find twenty-six protein-encoding genes that are consistently highly expressed in the adult stages of the three helminth species. Additionally, twenty transcripts could be identified that code for proteins previously detected by mass spectrometry analysis of protein fractions of the whipworm somatic extract that present immunomodulatory activities. Five of these transcripts were amongst the most highly expressed protein-encoding sequences in the T. trichiura adult worm. Besides, orthologs of proteins demonstrated to have potent immunomodulatory properties in related parasitic helminths were also predicted from the T. trichiura de novo assembled transcriptome.
Collapse
Affiliation(s)
- Leonardo N Santos
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Eduardo S Silva
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - André S Santos
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Pablo H De Sá
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rommel T Ramos
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Philip J Cooper
- Institute of Infection and Immunity, St. George's University of London, London, UK; Centro de Investigacion en Enfermedades Infecciosas y Cronicas, Pontificia Universidad Catolica del Ecuador, Quito, Ecuador
| | - Maurício L Barreto
- Institute of Public Health, Federal University of Bahia, Salvador, BA, Brazil; Centro de Pesquisas Gonçalo Muniz, FIOCRUZ-BA, Salvador, BA, Brazil
| | - Sebastião Loureiro
- Institute of Public Health, Federal University of Bahia, Salvador, BA, Brazil
| | - Carina S Pinheiro
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | | | - Luis G C Pacheco
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
7
|
Wang J, Rennie W, Liu C, Carmack CS, Prévost K, Caron MP, Massé E, Ding Y, Wade JT. Identification of bacterial sRNA regulatory targets using ribosome profiling. Nucleic Acids Res 2015; 43:10308-20. [PMID: 26546513 PMCID: PMC4666370 DOI: 10.1093/nar/gkv1158] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 10/19/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.
Collapse
Affiliation(s)
- Jing Wang
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - William Rennie
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Chaochun Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Charles S Carmack
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Karine Prévost
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Marie-Pier Caron
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Ye Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| |
Collapse
|
8
|
Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect Immun 2015; 83:3043-60. [PMID: 25987708 DOI: 10.1128/iai.00315-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 01/02/2023] Open
Abstract
Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.
Collapse
|