1
|
Dorrani M, Zhao J, Bekhti N, Trimigno A, Min S, Ha J, Han A, O’Day E, Kamphorst JJ. Olaris Global Panel (OGP): A Highly Accurate and Reproducible Triple Quadrupole Mass Spectrometry-Based Metabolomics Method for Clinical Biomarker Discovery. Metabolites 2024; 14:280. [PMID: 38786757 PMCID: PMC11123370 DOI: 10.3390/metabo14050280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set.
Collapse
Affiliation(s)
- Masoumeh Dorrani
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Jifang Zhao
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Nihel Bekhti
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Alessia Trimigno
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Sangil Min
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Jongwon Ha
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Ahram Han
- Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; (S.M.); (J.H.); (A.H.)
| | - Elizabeth O’Day
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| | - Jurre J. Kamphorst
- Olaris, Inc., 175 Crossing Boulevard Suite 410, Framingham, MA 01702, USA; (M.D.); (J.Z.); (N.B.); (A.T.); (E.O.)
| |
Collapse
|
2
|
Jia Z, Qiu Q, He R, Zhou T, Chen L. Identification of Metabolite Interference Is Necessary for Accurate LC-MS Targeted Metabolomics Analysis. Anal Chem 2023; 95:7985-7992. [PMID: 37155916 DOI: 10.1021/acs.analchem.3c00804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Targeted metabolomics has been broadly used for metabolite measurement due to its good quantitative linearity and simple metabolite annotation workflow. However, metabolite interference, the phenomenon where one metabolite generates a peak in another metabolite's MRM setting (Q1/Q3) with a close retention time (RT), may lead to inaccurate metabolite annotation and quantification. Besides isomeric metabolites having the same precursor and product ions that may interfere with each other, we found other metabolite interferences as the result of inadequate mass resolution of triple-quadruple mass spectrometry and in-source fragmentation of metabolite ions. Characterizing the targeted metabolomics data using 334 metabolite standards revealed that about 75% of the metabolites generated measurable signals in at least one other metabolite's MRM setting. Different chromatography techniques can resolve 65-85% of these interfering signals among standards. Metabolite interference analysis combined with the manual inspection of cell lysate and serum data suggested that about 10% out of ∼180 annotated metabolites were mis-annotated or mis-quantified. These results highlight that a thorough investigation of metabolite interference is necessary for accurate metabolite measurement in targeted metabolomics.
Collapse
Affiliation(s)
- Zhikun Jia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Qiongju Qiu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Ruiping He
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Tianyu Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| |
Collapse
|
3
|
Investigation of fragmentation behaviors of steroidal drugs with Li+, Na+, K+ adducts by tandem mass spectrometry aided with computational analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Ye D, Li X, Shen J, Xia X. Microbial metabolomics: From novel technologies to diversified applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Souza AL, Patti GJ. A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing. Methods Mol Biol 2021; 2276:357-382. [PMID: 34060055 PMCID: PMC9284939 DOI: 10.1007/978-1-0716-1266-8_27] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Untargeted metabolomics has rapidly become a profiling method of choice in many areas of research, including mitochondrial biology. Most commonly, untargeted metabolomics is performed with liquid chromatography/mass spectrometry because it enables measurement of a relatively wide range of physiochemically diverse molecules. Specifically, to assess energy pathways that are associated with mitochondrial metabolism, hydrophilic interaction liquid chromatography (HILIC) is often applied before analysis with a high-resolution accurate mass instrument. The workflow produces large, complex data files that are impractical to analyze manually. Here, we present a protocol to perform untargeted metabolomics on biofluids such as plasma, urine, and cerebral spinal fluid with a HILIC separation and an Orbitrap mass spectrometer. Our protocol describes each step of the analysis in detail, from preparation of solvents for chromatography to selecting parameters during data processing.
Collapse
Affiliation(s)
- Amanda L Souza
- Life Science Mass Spectrometry Division, Thermo Fisher Scientific, San Jose, CA, USA.
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| |
Collapse
|
6
|
Sun Y, Feng G, Zheng Y, Liu S, Zhang Y, Pi Z, Song F, Liu Z. Putative multiple reaction monitoring strategy for the comparative pharmacokinetics of postoral administration Renshen-Yuanzhi compatibility through liquid chromatography-tandem mass spectrometry. J Ginseng Res 2020; 44:105-114. [PMID: 32148393 PMCID: PMC7033327 DOI: 10.1016/j.jgr.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Background Exploring the pharmacokinetic (PK) changes of various active components of single herbs and their combinations is necessary to elucidate the compatibility mechanism. However, the lack of chemical standards and low concentrations of multiple active ingredients in the biological matrix restrict PK studies. Methods A putative multiple reaction monitoring strategy based on liquid chromatography coupled with mass spectrometry (LC–MS) was developed to extend the PK scopes of quantification without resorting to the use of chemical standards. First, the compounds studied, including components with available reference standard (ARS) and components lacking reference standard (LRS), were preclassified to several groups according to their chemical structures. Herb decoctions were then subjected to ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis with appropriate collision energy (CE) in MS2 mode. Finally, multiple reaction monitoring transitions transformed from MS2 of ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used for ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry to obtain the mass responses of LRS components. LRS components quantification was further performed by developing an assistive group-dependent semiquantitative method. Results The developed method was exemplified by the comparative PK process of single herbs Radix Ginseng (RG), Radix Polygala (RP), and their combinations (RG–RP). Significant changes in PK parameters were observed before and after combination. Conclusion Results indicated that Traditional Chinese Medicine combinations can produce synergistic effects and diminish possible toxic effects, thereby reflecting the advantages of compatibility. The proposed strategy can solve the quantitative problem of LRS and extend the scopes of PK studies.
Collapse
Affiliation(s)
- Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Guifang Feng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Yan Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
7
|
Li Z, Zhang X, Liao J, Fan X, Cheng Y. An ultra-robust fingerprinting method for quality assessment of traditional Chinese medicine using multiple reaction monitoring mass spectrometry. J Pharm Anal 2020; 11:88-95. [PMID: 33717615 PMCID: PMC7930630 DOI: 10.1016/j.jpha.2020.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/28/2019] [Accepted: 01/13/2020] [Indexed: 11/30/2022] Open
Abstract
Chromatographic fingerprinting has been perceived as an essential tool for assessing quality and chemical equivalence of traditional Chinese medicine. However, this pattern-oriented approach still has some weak points in terms of chemical coverage and robustness. In this work, we proposed a multiple reaction monitoring (MRM)-based fingerprinting method in which approximately 100 constituents were simultaneously detected for quality assessment. The derivative MRM approach was employed to rapidly design MRM transitions independent of chemical standards, based on which the large-scale fingerprinting method was efficiently established. This approach was exemplified on QiShenYiQi Pill (QSYQ), a traditional Chinese medicine-derived drug product, and its robustness was systematically evaluated by four indices: clustering analysis by principal component analysis, similarity analysis by the congruence coefficient, the number of separated peaks, and the peak area proportion of separated peaks. Compared with conventional ultraviolet-based fingerprints, the MRM fingerprints provided not only better discriminatory capacity for the tested normal/abnormal QSYQ samples, but also higher robustness under different chromatographic conditions (i.e., flow rate, apparent pH, column temperature, and column). The result also showed for such large-scale fingerprints including a large number of peaks, the angle cosine measure after min-max normalization was more suitable for setting a decision criterion than the unnormalized algorithm. This proof-of-concept application gives evidence that combining MRM technique with proper similarity analysis metrices can provide a highly sensitive, robust and comprehensive analytical approach for quality assessment of traditional Chinese medicine. MRM fingerprints are proposed for quality assessment of traditional medicine. MRM fingerprints show favorable robustness, coverage and discriminatory capacity. Similarity analysis methods for such large-scale fingerprints are proposed.
Collapse
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Chong YK, Ho CC, Leung SY, Lau SK, Woo PC. Clinical Mass Spectrometry in the Bioinformatics Era: A Hitchhiker's Guide. Comput Struct Biotechnol J 2018; 16:316-334. [PMID: 30237866 PMCID: PMC6138949 DOI: 10.1016/j.csbj.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mass spectrometry (MS) is a sensitive, specific and versatile analytical technique in the clinical laboratory that has recently undergone rapid development. From initial use in metabolic profiling, it has matured into applications including clinical toxicology assays, target hormone and metabolite quantitation, and more recently, rapid microbial identification and antimicrobial resistance detection by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this mini-review, we first succinctly outline the basics of clinical mass spectrometry. Examples of hard ionization (electron ionization) and soft ionization (electrospray ionization, MALDI) are presented to demonstrate their clinical applications. Next, a conceptual discourse on mass selection and determination is presented: quadrupole mass filter, time-of-flight mass spectrometer and the Orbitrap; and MS/MS (tandem-in-space, tandem-in-time and data acquisition), illustrated with clinical examples. Current applications in (1) bacterial and fungal identification, antimicrobial susceptibility testing and phylogenetic classification, (2) general unknown urine toxicology screening and expanded new-born metabolic screening and (3) clinical metabolic profiling by gas chromatography are outlined. Finally, major limitations of MS-based techniques, including the technical challenges of matrix effect and isobaric interference; and novel challenges in the post-genomic era, such as protein molecular variants, are critically discussed from the perspective of service laboratories. Computer technology and structural biology have played important roles in the maturation of this field. MS-based techniques have the potential to replace current analytical techniques, and existing expertise and instrument will undergo rapid evolution. Significant automation and adaptation to regulatory requirements are underway. Mass spectrometry is unleashing its potentials in clinical laboratories.
Collapse
Affiliation(s)
- Yeow-Kuan Chong
- Hospital Authority Toxicology Reference Laboratory, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
- Chemical Pathology and Medical Genetics, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
| | - Chi-Chun Ho
- Division of Chemical Pathology, Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital (PYNEH), Hong Kong
- Division of Clinical Biochemistry, Department of Pathology, Queen Mary Hospital (QMH), Hong Kong
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shui-Yee Leung
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Perez de Souza L, Naake T, Tohge T, Fernie AR. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience 2017; 6:1-20. [PMID: 28520864 PMCID: PMC5499862 DOI: 10.1093/gigascience/gix037] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 01/19/2023] Open
Abstract
The grand challenge currently facing metabolomics is the expansion of the coverage of the metabolome from a minor percentage of the metabolic complement of the cell toward the level of coverage afforded by other post-genomic technologies such as transcriptomics and proteomics. In plants, this problem is exacerbated by the sheer diversity of chemicals that constitute the metabolome, with the number of metabolites in the plant kingdom generally considered to be in excess of 200 000. In this review, we focus on web resources that can be exploited in order to improve analyte and ultimately metabolite identification and quantification. There is a wide range of available software that not only aids in this but also in the related area of peak alignment; however, for the uninitiated, choosing which program to use is a daunting task. For this reason, we provide an overview of the pros and cons of the software as well as comments regarding the level of programing skills required to effectively exploit their basic functions. In addition, the torrent of available genome and transcriptome sequences that followed the advent of next-generation sequencing has opened up further valuable resources for metabolite identification. All things considered, we posit that only via a continued communal sharing of information such as that deposited in the databases described within the article are we likely to be able to make significant headway toward improving our coverage of the plant metabolome.
Collapse
Affiliation(s)
- Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Naake
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Hong A, Lee HH, Heo CE, Cho Y, Kim S, Kang D, Kim HI. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:628-637. [PMID: 27981443 DOI: 10.1007/s13361-016-1559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Areum Hong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hong Hee Lee
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Chae Eun Heo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yunju Cho
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
| | - Sunghwan Kim
- Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dukjin Kang
- Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Li Z, Liu T, Liao J, Ai N, Fan X, Cheng Y. Deciphering chemical interactions between Glycyrrhizae Radix and Coptidis Rhizoma by liquid chromatography with transformed multiple reaction monitoring mass spectrometry. J Sep Sci 2017; 40:1254-1265. [PMID: 28098420 DOI: 10.1002/jssc.201601054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/30/2016] [Indexed: 11/07/2022]
Abstract
In this study, we propose an integrated strategy for the efficient identification and quantification of herbal constituents using liquid chromatography with mass spectrometry. First, liquid chromatography with quadrupole time-of-flight mass spectrometry was employed for the chemical profiling of herbs, where a targeted following nontargeted approach was developed to detect trace constituents by using structural correlations and extracted ion chromatograms. Next, ion pairs and parameters of MS2 of quadrupole time-of-flight mass spectrometry were selected to design multiple reaction monitoring transitions for the identified compounds on liquid chromatography with triple quadrupole mass spectrometry. The relative concentration of each constituent was then calculated using a semiquantitative calibration curve. The proposed strategy was applied in a study of chemical interactions between Glycyrrhizae Radix and Coptidis Rhizoma. A total of 140 compounds were identified or tentatively characterized from the herbs, 132 of which were relatively quantified. The visualized quantitative results clearly showed codecoction produced significant constituent concentration variations especially for those with a low polarity. The case study also indicated that the present methodology could provide a reliable, accurate, and labor-saving solution for chemical studies of herbal medicines.
Collapse
Affiliation(s)
- Zhenhao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ting Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ni Ai
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiyu Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Barnes S, Benton HP, Casazza K, Cooper S, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:535-548. [PMID: 28239968 PMCID: PMC5584587 DOI: 10.1002/jms.3780] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/24/2016] [Indexed: 05/13/2023]
Abstract
Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Author for Correspondence: Stephen Barnes, PhD, Department of Pharmacology and Toxicology, MCLM 452, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, Tel #: 205 934-7117; Fax #: 205 934-6944;
| | | | - Krista Casazza
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - Xiangqin Cui
- School of Medicine; Section on Statistical Genetics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, NC 28223
| | - Jeffrey Engler
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Janusz H. Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shuzhao Li
- Department of Medicine, Emory University, Atlanta, GA 30322
| | | | - Jeevan K. Prasain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hemant K. Tiwari
- School of Medicine; Section on Statistical Genetics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
13
|
Spalding JL, Cho K, Mahieu NG, Nikolskiy I, Llufrio EM, Johnson SL, Patti GJ. Bar Coding MS(2) Spectra for Metabolite Identification. Anal Chem 2016; 88:2538-42. [PMID: 26837423 PMCID: PMC4869618 DOI: 10.1021/acs.analchem.5b04925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.
Collapse
Affiliation(s)
- Jonathan L Spalding
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Genetics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Nathaniel G Mahieu
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Igor Nikolskiy
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Genetics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Elizabeth M Llufrio
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States.,Department of Medicine, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics 2016; 13:1. [PMID: 26751220 PMCID: PMC4705754 DOI: 10.1186/s12014-015-9102-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 12/30/2022] Open
Abstract
The greatest unmet needs in biomarker discovery are those discoveries that lead to the development of clinical diagnostic tests. These clinical diagnostic tests can provide early intervention when a patient would present otherwise healthy (e.g., cancer or cardiovascular disease) and aid clinical decision making with improved clinical outcomes. The past two decades have seen significant technological improvements in the analytical capabilities of mass spectrometers. Mass spectrometers are unique in that they can directly analyze any biological molecule susceptible to ionization. The biological studies of human metabolites and proteins using contemporary mass spectrometry technology (metabolomics and proteomics, respectively) has been ongoing for over a decade. Some of these studies have resulted in exciting insights into human biology. However, relatively few biomarkers have been translated into clinical tests. This review will discuss some key technological developments that have occurred over this time with an emphasis on technologies that will create new avenues for biomarker discovery.
Collapse
|
15
|
Gu H, Zhang P, Zhu J, Raftery D. Globally Optimized Targeted Mass Spectrometry: Reliable Metabolomics Analysis with Broad Coverage. Anal Chem 2015; 87:12355-62. [PMID: 26579731 PMCID: PMC5437843 DOI: 10.1021/acs.analchem.5b03812] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted detection is one of the most important methods in mass spectrometry (MS)-based metabolomics; however, its major limitation is the reduced metabolome coverage that results from the limited set of targeted metabolites typically used in the analysis. In this study we describe a new approach, globally optimized targeted (GOT)-MS, that combines many of the advantages of targeted detection and global profiling in metabolomics analysis, including the capability to detect unknowns, broad metabolite coverage, and excellent quantitation. The key step in GOT-MS is a global search of precursor and product ions using a single liquid chromatography-triple quadrupole (LC-QQQ) mass spectrometer. Here, focused on measuring serum metabolites, we obtained 595 precursor ions and 1 890 multiple reaction monitoring (MRM) transitions, under positive and negative ionization modes in the mass range of 60-600 Da. For many of the MRMs/metabolites under investigation, the analytical performance of GOT-MS is better than or at least comparable to that obtained by global profiling using a quadrupole-time-of-flight (Q-TOF) instrument of similar vintage. Using a study of serum metabolites in colorectal cancer (CRC) as a representative example, GOT-MS significantly outperformed a large targeted MS assay containing ∼160 biologically important metabolites and provided a complementary approach to traditional global profiling using Q-TOF-MS. GOT-MS thus expands and optimizes the detection capabilities for QQQ-MS through a novel approach and should have the potential to significantly advance both basic and clinical metabolic research.
Collapse
Affiliation(s)
- Haiwei Gu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi Province 330013, P. R. China
| | - Ping Zhang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Jiangjiang Zhu
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
16
|
Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis 2015; 37:86-110. [DOI: 10.1002/elps.201500417] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/04/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute; University of Florida; Gainesville FL USA
| | | |
Collapse
|