1
|
Tian X, Wang R, Liu Z, Lu S, Chen X, Zhang Z, Liu F, Li H, Zhang X, Wang M. Widespread impact of transposable elements on the evolution of post-transcriptional regulation in the cotton genus Gossypium. Genome Biol 2025; 26:60. [PMID: 40098207 PMCID: PMC11912738 DOI: 10.1186/s13059-025-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Transposable element (TE) expansion has long been known to mediate genome evolution and phenotypic diversity in organisms, but its impact on the evolution of post-transcriptional regulation following species divergence remains unclear. RESULTS To address this issue, we perform long-read direct RNA sequencing, polysome profiling sequencing, and small RNA sequencing in the cotton genus Gossypium, the species of which range more than three folds in genome size. We find that TE expansion contributes to the turnover of transcription splicing sites and regulatory sequences, leading to changes in alternative splicing patterns and the expression levels of orthologous genes. We also find that TE-derived upstream open reading frames and microRNAs serve as regulatory elements mediating differences in the translation levels of orthologous genes. We further identify genes that exhibit lineage-specific divergence at the transcriptional, splicing, and translational levels, and showcase the high flexibility of gene expression regulation in the evolutionary process. CONCLUSIONS Our work highlights the significant role of TE in driving post-transcriptional regulation divergence in the cotton genus. It offers insights for deciphering the evolutionary mechanisms of cotton species and the formation of biological diversity.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Hongbin Li
- College of Life Science, Shihezi University, Shihezi, 832003, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
2
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
3
|
Lee DH, Bae WH, Ha H, Kim WR, Park EG, Lee YJ, Kim JM, Shin HJ, Kim HS. The human PTGR1 gene expression is controlled by TE-derived Z-DNA forming sequence cooperating with miR-6867-5p. Sci Rep 2024; 14:4723. [PMID: 38413664 PMCID: PMC10899170 DOI: 10.1038/s41598-024-55332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a critical role in the regulation of gene expression. Although TEs can generate Z-DNA and miRNAs can bind to Z-DNA, how these factors affect gene transcription has yet to be elucidated. Here, we identified potential Z-DNA forming sequence (ZFS), including TE-derived ZFS, in the promoter of prostaglandin reductase 1 (PTGR1) by data analysis. The transcriptional activity of these ZFS in PTGR1 was confirmed using dual-luciferase reporter assays. In addition, we discovered a novel ZFS-binding miRNA (miR-6867-5p) that suppressed PTGR1 expression by targeting to ZFS. In conclusion, these findings suggest that ZFS, including TE-derived ZFS, can regulate PTGR1 gene expression and that miR-6867-5p can suppress PTGR1 by interacting with ZFS.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hongseok Ha
- Institute of Endemic Diseases, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jung-Min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan, 46241, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA 2023; 14:9. [PMID: 37596675 PMCID: PMC10439571 DOI: 10.1186/s13100-023-00297-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Interspersed repetitions called transposable elements (TEs), commonly referred to as mobile elements, make up a significant portion of the genomes of higher animals. TEs contribute in controlling the expression of genes locally and even far away at the transcriptional and post-transcriptional levels, which is one of their significant functional effects on gene function and genome evolution. There are different mechanisms through which TEs control the expression of genes. First, TEs offer cis-regulatory regions in the genome with their inherent regulatory features for their own expression, making them potential factors for controlling the expression of the host genes. Promoter and enhancer elements contain cis-regulatory sites generated from TE, which function as binding sites for a variety of trans-acting factors. Second, a significant portion of miRNAs and long non-coding RNAs (lncRNAs) have been shown to have TEs that encode for regulatory RNAs, revealing the TE origin of these RNAs. Furthermore, it was shown that TE sequences are essential for these RNAs' regulatory actions, which include binding to the target mRNA. By being a member of cis-regulatory and regulatory RNA sequences, TEs therefore play essential regulatory roles. Additionally, it has been suggested that TE-derived regulatory RNAs and cis-regulatory regions both contribute to the evolutionary novelty of gene regulation. Additionally, these regulatory systems arising from TE frequently have tissue-specific functions. The objective of this review is to discuss TE-mediated gene regulation, with a particular emphasis on the processes, contributions of various TE types, differential roles of various tissue types, based mostly on recent studies on humans.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia.
| |
Collapse
|
5
|
Yao Y, Frith MC. Improved DNA-Versus-Protein Homology Search for Protein Fossils. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1691-1699. [PMID: 35617174 DOI: 10.1109/tcbb.2022.3177855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein fossils, i.e., noncoding DNA descended from coding DNA, arise frequently from transposable elements (TEs), decayed genes, and viral integrations. They can reveal, and mislead about, evolutionary history and relationships. They have been detected by comparing DNA to protein sequences, but current methods are not optimized for this task. We describe a powerful DNA-protein homology search method. We use a 64×21 substitution matrix, which is fitted to sequence data, automatically learning the genetic code. We detect subtly homologous regions by considering alternative possible alignments between them, and calculate significance (probability of occurring by chance between random sequences). Our method detects TE protein fossils much more sensitively than blastx, and faster. Of the ∼ 7 major categories of eukaryotic TE, three were long thought absent in mammals: we find two of them in the human genome, polinton and DIRS/Ngaro. This method increases our power to find ancient fossils, and perhaps to detect non-standard genetic codes. The alternative-alignments and significance paradigm is not specific to DNA-protein comparison, and could benefit homology search generally. This is an extended version of a conference paper (Yao & Frith, 2021).
Collapse
|
6
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Obeidova L, Urbanova M, Stekrova J, Elisakova V, Hirschfeldova K. Improvement of Diagnostic Yield by an Additional Amplicon Module to Hybridization-Based Next-Generation Sequencing Panels. J Mol Diagn 2022; 24:844-855. [PMID: 35697147 DOI: 10.1016/j.jmoldx.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Many approaches aimed at improving next-generation sequencing output for clinical purposes exist. However, sequencing gaps or misalignments for regions that are difficult to cover because of their low complexity or high homology still exist. The aim of this study was to improve the yield of sequencing data. A hybridization-based next-generation sequencing library was pooled with custom add-on amplicon-based libraries processed by the same commercial test and run in parallel and sequenced simultaneously. Formulas and steps for proper amplicon pooling (250 to 7000 bp) and final library merging are presented. The novel strategy was tested on selected archetypal situations: diagnostics of a gene with many pseudogenes, a genomic region surrounded by Alu repeats, simple one-time addition of an extra gene, and mosaicism detection. The sequence of all supplemented genomic regions was traced with reasonable coverage at the background of a hybridization captured library. The flexible add-on module expands the possibilities of routine diagnostics. The technical solution makes it possible to mix amplicons that differ significantly in size and process them in one tube simultaneously with samples of the hybridization-based panel. The proposed approach reduces turnaround time and increases diagnostic yield.
Collapse
Affiliation(s)
- Lena Obeidova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marketa Urbanova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jitka Stekrova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Veronika Elisakova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Hirschfeldova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
8
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
9
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
10
|
Chen N, Zheng Q, Wan G, Guo F, Zeng X, Shi P. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments. Cancer Metastasis Rev 2021; 40:739-759. [PMID: 34342796 DOI: 10.1007/s10555-021-09980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer (PC) is a highly aggressive cancer, with a 9% 5-year survival rate and a high risk of recurrence. In part, this is because PC is composed of heterogeneous subgroups with different biological and functional characteristics and personalized anticancer treatments are required. Posttranslational modifications (PTMs) play an important role in modifying protein functions/roles and are required for the maintenance of cell viability and biological processes; thus, their dysregulation can lead to disease. Different types of PTMs increase the functional diversity of the proteome, which subsequently influences most aspects of normal cell biology or pathogenesis. This review primarily focuses on ubiquitination, SUMOylation, and NEDDylation, as well as the current understanding of their roles and molecular mechanisms in pancreatic carcinogenesis. Additionally, we briefly summarize studies and clinical trials on PC treatments to advance our knowledge of drugs available to target the ubiquitination, SUMOylation, and NEDDylation PTM types. Further investigation of PTMs could be a critical field of study in relation to PC, as they have been implicated in the initiation and progression of many other types of cancer.
Collapse
Affiliation(s)
- Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
- Department of Cell Biology & University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Guoqing Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China
| | - Feng Guo
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, 2Nd Clinical Medical College, Jinan University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School, Guangdong Province, Shenzhen University, Shenzhen, 518037, People's Republic of China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
11
|
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genom Bioinform 2021; 3:lqab044. [PMID: 34046593 PMCID: PMC8140736 DOI: 10.1093/nargab/lqab044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
12
|
Etchegaray E, Naville M, Volff JN, Haftek-Terreau Z. Transposable element-derived sequences in vertebrate development. Mob DNA 2021; 12:1. [PMID: 33407840 PMCID: PMC7786948 DOI: 10.1186/s13100-020-00229-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Transposable elements (TEs) are major components of all vertebrate genomes that can cause deleterious insertions and genomic instability. However, depending on the specific genomic context of their insertion site, TE sequences can sometimes get positively selected, leading to what are called "exaptation" events. TE sequence exaptation constitutes an important source of novelties for gene, genome and organism evolution, giving rise to new regulatory sequences, protein-coding exons/genes and non-coding RNAs, which can play various roles beneficial to the host. In this review, we focus on the development of vertebrates, which present many derived traits such as bones, adaptive immunity and a complex brain. We illustrate how TE-derived sequences have given rise to developmental innovations in vertebrates and how they thereby contributed to the evolutionary success of this lineage.
Collapse
Affiliation(s)
- Ema Etchegaray
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France.
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| | - Zofia Haftek-Terreau
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d'Italie, F-69364, Lyon, France
| |
Collapse
|
13
|
Mirza AN, Gonzalez F, Ha SK, Oro AE. The Sky's the LEMit: New insights into nuclear structure regulation of transcription factor activity. Curr Opin Cell Biol 2020; 68:173-180. [PMID: 33227657 DOI: 10.1016/j.ceb.2020.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/24/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
The nucleoskeleton has been associated with partitioning the genome into active and inactive compartments that dictate local transcription factor (TF) activity. However, recent data indicate that the nucleoskeleton and TFs reciprocally influence each other in dynamic TF trafficking pathways through the functions of LEM proteins. While the conserved peripheral recruitment of TFs by LEM proteins has been viewed as a mechanism of repressing transcription, a diversity of release mechanisms from the lamina suggest this compartment serves as a refuge for nuclear TF accumulation for rapid mobilization and signal stability. Detailed mechanisms suggest that TFs toggle between nuclear lamina refuge and nuclear matrix lamin-LEM protein complexes at sites of active transcription. In this review we will highlight emerging LEM functions acting at the interface of chromatin and nucleoskeleton to create TF trafficking networks.
Collapse
Affiliation(s)
- Amar N Mirza
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Fernanda Gonzalez
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Sierra K Ha
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Choe SH, Park SJ, Cho HM, Park HR, Lee JR, Kim YH, Huh JW. A single mutation in the ACTR8 gene associated with lineage-specific expression in primates. BMC Evol Biol 2020; 20:66. [PMID: 32503430 PMCID: PMC7275561 DOI: 10.1186/s12862-020-01620-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Alternative splicing (AS) generates various transcripts from a single gene and thus plays a significant role in transcriptomic diversity and proteomic complexity. Alu elements are primate-specific transposable elements (TEs) and can provide a donor or acceptor site for AS. In a study on TE-mediated AS, we recently identified a novel AluSz6-exonized ACTR8 transcript of the crab-eating monkey (Macaca fascicularis). In the present study, we sought to determine the molecular mechanism of AluSz6 exonization of the ACTR8 gene and investigate its evolutionary and functional consequences in the crab-eating monkey. Results We performed RT-PCR and genomic PCR to analyze AluSz6 exonization in the ACTR8 gene and the expression of the AluSz6-exonized transcript in nine primate samples, including prosimians, New world monkeys, Old world monkeys, and hominoids. AluSz6 integration was estimated to have occurred before the divergence of simians and prosimians. The Alu-exonized transcript obtained by AS was lineage-specific and expressed only in Old world monkeys and apes, and humans. This lineage-specific expression was caused by a single G duplication in AluSz6, which provides a new canonical 5′ splicing site. We further identified other alternative transcripts that were unaffected by the AluSz6 insertion. Finally, we observed that the alternative transcripts were transcribed into new isoforms with C-terminus deletion, and in silico analysis showed that these isoforms do not have a destructive function. Conclusions The single G duplication in the TE sequence is the source of TE exonization and AS, and this mutation may suffer a different fate of ACTR8 gene expression during primate evolution.
Collapse
Affiliation(s)
- Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Hye-Ri Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| |
Collapse
|
15
|
Riccio AA, Schellenberg MJ, Williams RS. Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution. Cell Mol Life Sci 2020; 77:81-91. [PMID: 31728578 PMCID: PMC6960353 DOI: 10.1007/s00018-019-03367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.
Collapse
Affiliation(s)
- Amanda A Riccio
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Matthew J Schellenberg
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - R Scott Williams
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
16
|
Martinez-Gomez L, Abascal F, Jungreis I, Pozo F, Kellis M, Mudge JM, Tress ML. Few SINEs of life: Alu elements have little evidence for biological relevance despite elevated translation. NAR Genom Bioinform 2019; 2:lqz023. [PMID: 31886458 PMCID: PMC6924539 DOI: 10.1093/nargab/lqz023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/30/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Transposable elements colonize genomes and with time may end up being incorporated into functional regions. SINE Alu elements, which appeared in the primate lineage, are ubiquitous in the human genome and more than a thousand overlap annotated coding exons. Although almost all Alu-derived coding exons appear to be in alternative transcripts, they have been incorporated into the main coding transcript in at least 11 genes. The extent to which Alu regions are incorporated into functional proteins is unclear, but we detected reliable peptide evidence to support the translation to protein of 33 Alu-derived exons. All but one of the Alu elements for which we detected peptides were frame-preserving and there was proportionally seven times more peptide evidence for Alu elements as for other primate exons. Despite this strong evidence for translation to protein we found no evidence of selection, either from cross species alignments or human population variation data, among these Alu-derived exons. Overall, our results confirm that SINE Alu elements have contributed to the expansion of the human proteome, and this contribution appears to be stronger than might be expected over such a relatively short evolutionary timeframe. Despite this, the biological relevance of these modifications remains open to question.
Collapse
Affiliation(s)
- Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | | | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA and Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA and Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain
- To whom correspondence should be addressed. Tel: +34 91 732 8000; Fax: +34 91 224 6980;
| |
Collapse
|
17
|
Carducci F, Biscotti MA, Barucca M, Canapa A. Transposable elements in vertebrates: species evolution and environmental adaptation. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1695967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Drongitis D, Aniello F, Fucci L, Donizetti A. Roles of Transposable Elements in the Different Layers of Gene Expression Regulation. Int J Mol Sci 2019; 20:ijms20225755. [PMID: 31731828 PMCID: PMC6888579 DOI: 10.3390/ijms20225755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 02/03/2023] Open
Abstract
The biology of transposable elements (TEs) is a fascinating and complex field of investigation. TEs represent a substantial fraction of many eukaryotic genomes and can influence many aspects of DNA function that range from the evolution of genetic information to duplication, stability, and gene expression. Their ability to move inside the genome has been largely recognized as a double-edged sword, as both useful and deleterious effects can result. A fundamental role has been played by the evolution of the molecular processes needed to properly control the expression of TEs. Today, we are far removed from the original reductive vision of TEs as “junk DNA”, and are more convinced that TEs represent an essential element in the regulation of gene expression. In this review, we summarize some of the more recent findings, mainly in the animal kingdom, concerning the active roles that TEs play at every level of gene expression regulation, including chromatin modification, splicing, and protein translation.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy;
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Laura Fucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (F.A.); (L.F.)
- Correspondence:
| |
Collapse
|
19
|
Jiang F, Zhang J, Liu Q, Liu X, Wang H, He J, Kang L. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol 2019; 16:950-959. [PMID: 30982421 PMCID: PMC6546357 DOI: 10.1080/15476286.2019.1602437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The large genome of the migratory locust (Locusta migratoria) genome accumulates massive amount of accumulated transposable elements (TEs), which show intrinsic transcriptional activities. Hampering the ability to precisely determine full-length RNA transcript sequences are exonized TEs, which produce numerous highly similar fragments that are difficult to resolve using short-read sequencing technology. Here, we applied a 5'-Cap capturing method using Nanopore long-read direct RNA sequencing to characterize full-length transcripts in their native RNA form and to analyze the TE exonization pattern in the locust transcriptome. Our results revealed the widespread establishment of TE exonization and a substantial contribution of TEs to RNA splicing in the locust transcriptome. The results of the transcriptomic spectrum influenced by Piwi expression indicated that TE-derived sequences were the main targets of Piwi-mediated repression. Furthermore, our study showed that Piwi expression regulates the length of RNA transcripts containing TE-derived sequences, creating an alternative UTR usage. Overall, our results reveal the transcriptomic characteristics of TE exonization in the species characterized by large and repetitive genomes.
Collapse
Affiliation(s)
- Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huimin Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Babarinde IA, Li Y, Hutchins AP. Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts. Comput Struct Biotechnol J 2019; 17:628-637. [PMID: 31193391 PMCID: PMC6526290 DOI: 10.1016/j.csbj.2019.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.
Collapse
Affiliation(s)
| | | | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China
| |
Collapse
|
21
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
22
|
Bhuiyan SA, Ly S, Phan M, Huntington B, Hogan E, Liu CC, Liu J, Pavlidis P. Systematic evaluation of isoform function in literature reports of alternative splicing. BMC Genomics 2018; 19:637. [PMID: 30153812 PMCID: PMC6114036 DOI: 10.1186/s12864-018-5013-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although most genes in mammalian genomes have multiple isoforms, an ongoing debate is whether these isoforms are all functional as well as the extent to which they increase the functional repertoire of the genome. To ground this debate in data, it would be helpful to have a corpus of experimentally-verified cases of genes which have functionally distinct splice isoforms (FDSIs). RESULTS We established a curation framework for evaluating experimental evidence of FDSIs, and analyzed over 700 human and mouse genes, strongly biased towards genes that are prominent in the alternative splicing literature. Despite this bias, we found experimental evidence meeting the classical definition for functionally distinct isoforms for ~ 5% of the curated genes. If we relax our criteria for inclusion to include weaker forms of evidence, the fraction of genes with evidence of FDSIs remains low (~ 13%). We provide evidence that this picture will not change substantially with further curation and conclude there is a large gap between the presumed impact of splicing on gene function and the experimental evidence. Furthermore, many functionally distinct isoforms were not traceable to a specific isoform in Ensembl, a database that forms the basis for much computational research. CONCLUSIONS We conclude that the claim that alternative splicing vastly increases the functional repertoire of the genome is an extrapolation from a limited number of empirically supported cases. We also conclude that more work is needed to integrate experimental evidence and genome annotation databases. Our work should help shape research around the role of splicing on gene function from presuming large general effects to acknowledging the need for stronger experimental evidence.
Collapse
Affiliation(s)
- Shamsuddin A. Bhuiyan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Sophia Ly
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Minh Phan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Brandon Huntington
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Ellie Hogan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Chao Chun Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - James Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
23
|
Chambers DM, Moretti L, Zhang JJ, Cooper SW, Chambers DM, Santangelo PJ, Barker TH. LEM domain-containing protein 3 antagonizes TGFβ-SMAD2/3 signaling in a stiffness-dependent manner in both the nucleus and cytosol. J Biol Chem 2018; 293:15867-15886. [PMID: 30108174 DOI: 10.1074/jbc.ra118.003658] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β (TGFβ) signaling through SMAD2/3 is an important driver of pathological fibrosis in multiple organ systems. TGFβ signaling and extracellular matrix (ECM) stiffness form an unvirtuous pathological circuit in which matrix stiffness drives activation of latent TGFβ, and TGFβ signaling then drives cellular stress and ECM synthesis. Moreover, ECM stiffness also appears to sensitize cells to exogenously activated TGFβ through unknown mechanisms. Here, using human fibroblasts, we explored the effect of ECM stiffness on a putative inner nuclear membrane protein, LEM domain-containing protein 3 (LEMD3), which is physically connected to the cell's actin cytoskeleton and inhibits TGFβ signaling. We showed that LEMD3-SMAD2/3 interactions are inversely correlated with ECM stiffness and TGFβ-driven luciferase activity and that LEMD3 expression is correlated with the mechanical response of the TGFβ-driven luciferase reporter. We found that actin polymerization but not cellular stress or LEMD3-nuclear-cytoplasmic couplings were necessary for LEMD3-SMAD2/3 interactions. Intriguingly, LEMD3 and SMAD2/3 frequently interacted in the cytosol, and we discovered LEMD3 was proteolytically cleaved into protein fragments. We confirmed that a consensus C-terminal LEMD3 fragment binds SMAD2/3 in a stiffness-dependent manner throughout the cell and is sufficient for antagonizing SMAD2/3 signaling. Using human lung biopsies, we observed that these nuclear and cytosolic interactions are also present in tissue and found that fibrotic tissues exhibit locally diminished and cytoplasmically shifted LEMD3-SMAD2/3 interactions, as noted in vitro Our work reveals novel LEMD3 biology and stiffness-dependent regulation of TGFβ by LEMD3, providing a novel target to antagonize pathological TGFβ signaling.
Collapse
Affiliation(s)
- Dwight M Chambers
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Leandro Moretti
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| | - Jennifer J Zhang
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Spencer W Cooper
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Davis M Chambers
- the College of Arts and Sciences, Georgia State University, Atlanta, Georgia 30303
| | - Philip J Santangelo
- From the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332
| | - Thomas H Barker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, and
| |
Collapse
|
24
|
Zhang Z, Chen H, Lu Y, Feng T, Sun W. LncRNA BC032020 suppresses the survival of human pancreatic ductal adenocarcinoma cells by targeting ZNF451. Int J Oncol 2018. [PMID: 29532883 PMCID: PMC5843399 DOI: 10.3892/ijo.2018.4289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study examined the effects of long non‑coding RNA (lncRNA) BC032020 on the development of human pancreatic ductal adenocarcinoma (PDAC), and the potential molecular mechanisms responsible for these effects. The expression of BC032020 was assessed in 20 pairs of PDAC tumor tissues and adjacent normal tissues. The overexpression of BC032020 was enforced in the AsPC‑1 and PANC‑1 cells, and the effects on cell proliferation, cell cycle distribution, cell migration and apoptosis were determined. We also analyzed the functions of zinc finger protein 451 (ZNF451), which shares a gene sequence with two exons of BC032020 and a non‑coding region with another two exons, in PDAC cells. The AsPC‑1 and PANC‑1 cells that overexpressed BC032020 were used to establish a subcutaneous tumor xenograft model in order to examine the effects of BC032020 on tumor growth in vivo. The results revealed that the BC032020 levels in the PDAC tumor tissues were lower than those in the adjacent normal tissues, and ZNF451 expression inversely correlated with the BC032020 levels in the PDAC tumor tissues and cell lines. BC032020 overexpression led to a decrease in ZNF451 expression; it also suppressed the proliferation and migration of the AsPC‑1 and PANC‑1 cells, and induced G1 phase arrest and cell apoptosis. The results of in vivo experiments revealed that BC032020 suppressed tumor growth in a xenograft model by inhibiting ZNF451 expression. Taken together, the findings of this study indicate that BC032020 suppresses the survival of PDAC cells by inhibiting ZNF451 expression.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongxi Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tiecheng Feng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
26
|
Anwar SL, Wulaningsih W, Lehmann U. Transposable Elements in Human Cancer: Causes and Consequences of Deregulation. Int J Mol Sci 2017; 18:E974. [PMID: 28471386 PMCID: PMC5454887 DOI: 10.3390/ijms18050974] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
| | - Wahyu Wulaningsih
- PILAR (Philippine and Indonesian Scholar) Research and Education, 20 Station Road, Cambridge CB1 2JD, UK.
- MRC (Medical Research Council) Unit for Lifelong Health and Ageing, University College London, London WC1B 5JU, UK.
- Division of Haematology/Oncology, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ulrich Lehmann
- Institute of Pathology, Medizinische Hochschule Hannover, Hannover 30625, Germany.
| |
Collapse
|
27
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
28
|
Cappadocia L, Pichler A, Lima CD. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol 2015; 22:968-75. [PMID: 26524494 PMCID: PMC4709122 DOI: 10.1038/nsmb.3116] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/23/2015] [Indexed: 01/25/2023]
Abstract
E3 protein ligases enhance transfer of ubiquitin-like (Ubl) proteins from E2 conjugating enzymes to substrates by stabilizing the thioester-charged E2~Ubl in a closed configuration optimally aligned for nucleophilic attack. Here, we report biochemical and structural data that define the N-terminal domain of the Homo sapiens ZNF451 as the catalytic module for SUMO E3 ligase activity. ZNF451 catalytic module contains tandem SUMO interaction motifs (SIMs) bridged by a Proline-Leucine-Arginine-Proline (PLRP) motif. The first SIM and PLRP motif engage thioester charged E2~SUMO while the next SIM binds a second molecule of SUMO bound to the backside of E2. We show that ZNF451 is SUMO2 specific and that SUMO-modification of ZNF451 may contribute to activity by providing a second molecule of SUMO that interacts with E2. Our results are consistent with ZNF451 functioning as a bona fide SUMO E3 ligase.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, New York, New York, USA.,Howard Hughes Medical Institute, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
29
|
Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ, Pichler A. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol 2015; 22:959-67. [PMID: 26524493 DOI: 10.1038/nsmb.3114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Viduth K Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Stefanie Koidl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rettich
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
30
|
Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vázquez J, Valencia A, Tress ML. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. PLoS Comput Biol 2015; 11:e1004325. [PMID: 26061177 PMCID: PMC4465641 DOI: 10.1371/journal.pcbi.1004325] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. Alternative splicing is thought to be one means for generating the protein diversity necessary for the whole range of cellular functions. While the presence of alternatively spliced transcripts in the cell has been amply demonstrated, the same cannot be said for alternatively spliced proteins. The quest for alternative protein isoforms has focused primarily on the analysis of peptides from large-scale mass spectroscopy experiments, but evidence for alternative isoforms has been patchy and contradictory. A careful analysis of the peptide evidence is needed to fully understand the scale of alternative splicing detectable at the protein level. Here we analysed peptides from eight large-scale data sets, identifying just 282 splice events among 12,716 genes. This suggests that most genes have a single dominant isoform. Many of the alternative isoforms that we identified were only subtly different from the main splice variant, and one in five was generated by substitution of homologous exons by swapping one related exon for another. Remarkably, the alternative isoforms generated from homologous exons were highly conserved, first appearing 460 million years ago, and several appear to have tissue-specific roles in the brain and heart. Our results suggest that these particular isoforms are likely to have important cellular roles.
Collapse
Affiliation(s)
- Federico Abascal
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Iakes Ezkurdia
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan Rodriguez-Rivas
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jose Manuel Rodriguez
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela del Pozo
- Instituto de Genetica Medica y Molecular, Hospital Universitario La Paz, Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (AV); (MLT)
| | - Michael L. Tress
- Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- * E-mail: (AV); (MLT)
| |
Collapse
|