1
|
Arriojas A, Patalano S, Macoska J, Zarringhalam K. A Bayesian noisy logic model for inference of transcription factor activity from single cell and bulk transcriptomic data. NAR Genom Bioinform 2023; 5:lqad106. [PMID: 38094309 PMCID: PMC10716740 DOI: 10.1093/nargab/lqad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as transcription factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF-gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.
Collapse
Affiliation(s)
- Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jill Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
2
|
Hecker D, Lauber M, Behjati Ardakani F, Ashrafiyan S, Manz Q, Kersting J, Hoffmann M, Schulz MH, List M. Computational tools for inferring transcription factor activity. Proteomics 2023; 23:e2200462. [PMID: 37706624 DOI: 10.1002/pmic.202200462] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Transcription factors (TFs) are essential players in orchestrating the regulatory landscape in cells. Still, their exact modes of action and dependencies on other regulatory aspects remain elusive. Since TFs act cell type-specific and each TF has its own characteristics, untangling their regulatory interactions from an experimental point of view is laborious and convoluted. Thus, there is an ongoing development of computational tools that estimate transcription factor activity (TFA) from a variety of data modalities, either based on a mapping of TFs to their putative target genes or in a genome-wide, gene-unspecific fashion. These tools can help to gain insights into TF regulation and to prioritize candidates for experimental validation. We want to give an overview of available computational tools that estimate TFA, illustrate examples of their application, debate common result validation strategies, and discuss assumptions and concomitant limitations.
Collapse
Affiliation(s)
- Dennis Hecker
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Michael Lauber
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Fatemeh Behjati Ardakani
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Shamim Ashrafiyan
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Quirin Manz
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Johannes Kersting
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- GeneSurge GmbH, München, Germany
| | - Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcel H Schulz
- Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Goethe University Hospital, Frankfurt am Main, Germany
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Li X, Lappalainen T, Bussemaker HJ. Identifying genetic regulatory variants that affect transcription factor activity. CELL GENOMICS 2023; 3:100382. [PMID: 37719147 PMCID: PMC10504674 DOI: 10.1016/j.xgen.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Genetic variants affecting gene expression levels in humans have been mapped in the Genotype-Tissue Expression (GTEx) project. Trans-acting variants impacting many genes simultaneously through a shared transcription factor (TF) are of particular interest. Here, we developed a generalized linear model (GLM) to estimate protein-level TF activity levels in an individual-specific manner from GTEx RNA sequencing (RNA-seq) profiles. It uses observed differential gene expression after TF perturbation as a predictor and, by analyzing differential expression within pairs of neighboring genes, controls for the confounding effect of variation in chromatin state along the genome. We inferred genotype-specific activities for 55 TFs across 49 tissues. Subsequently performing genome-wide association analysis on this virtual trait revealed TF activity quantitative trait loci (aQTLs) that, as a set, are enriched for functional features. Altogether, the set of tools we introduce here highlights the potential of genetic association studies for cellular endophenotypes based on a network-based multi-omics approach. The transparent peer review record is available.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Arriojas A, Patalano S, Macoska J, Zarringhalam K. A Bayesian Noisy Logic Model for Inference of Transcription Factor Activity from Single Cell and Bulk Transcriptomic Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539308. [PMID: 37205561 PMCID: PMC10187261 DOI: 10.1101/2023.05.03.539308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as Transcription Factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF-gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.
Collapse
Affiliation(s)
- Argenis Arriojas
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Jill Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
5
|
Ma CZ, Brent MR. Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data. Bioinformatics 2021; 37:1234-1245. [PMID: 33135076 PMCID: PMC8189679 DOI: 10.1093/bioinformatics/btaa947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Motivation The activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now. Results We systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels. We find that expression data in which the activities of individual TFs have been perturbed are both necessary and sufficient for obtaining good performance. To a considerable extent, control strengths inferred using expression data from one growth condition carry over to other conditions, so the control strength matrices derived here can be used by others. Finally, we apply these methods to gain insight into the upstream factors that regulate the activities of yeast TFs Gcr2, Gln3, Gcn4 and Msn2. Availability and implementation Evaluation code and data are available at https://doi.org/10.5281/zenodo.4050573. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cynthia Z Ma
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA
| | - Michael R Brent
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Computer Science and Engineering, Washington University, St. Louis, MO 63130, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Poos AM, Kordaß T, Kolte A, Ast V, Oswald M, Rippe K, König R. Modelling TERT regulation across 19 different cancer types based on the MIPRIP 2.0 gene regulatory network approach. BMC Bioinformatics 2019; 20:737. [PMID: 31888467 PMCID: PMC6937852 DOI: 10.1186/s12859-019-3323-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
Background Reactivation of the telomerase reverse transcriptase gene TERT is a central feature for unlimited proliferation of the majority of cancers. However, the underlying regulatory processes are only partly understood. Results We assembled regulator binding information from serveral sources to construct a generic human and mouse gene regulatory network. Advancing our “Mixed Integer linear Programming based Regulatory Interaction Predictor” (MIPRIP) approach, we identified the most common and cancer-type specific regulators of TERT across 19 different human cancers. The results were validated by using the well-known TERT regulation by the ETS1 transcription factor in a subset of melanomas with mutations in the TERT promoter. Our improved MIPRIP2 R-package and the associated generic regulatory networks are freely available at https://github.com/KoenigLabNM/MIPRIP. Conclusion MIPRIP 2.0 identified common as well as tumor type specific regulators of TERT. The software can be easily applied to transcriptome datasets to predict gene regulation for any gene and disease/condition under investigation.
Collapse
Affiliation(s)
- Alexandra M Poos
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Theresa Kordaß
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Research Group GMP & T Cell Therapy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Amol Kolte
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Volker Ast
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Marcus Oswald
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
7
|
Estimation of Transcription Factor Activity in Knockdown Studies. Sci Rep 2019; 9:9593. [PMID: 31270369 PMCID: PMC6610105 DOI: 10.1038/s41598-019-46053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/20/2019] [Indexed: 11/24/2022] Open
Abstract
Numerous methods have been developed trying to infer actual regulatory events in a sample. A prominent class of methods model genome-wide gene expression as linear equations derived from a transcription factor (TF) – gene network and optimizes parameters to fit the measured expression intensities. We apply four such methods on experiments with a TF-knockdown (KD) in human and E. coli. The transcriptome data provides clear expression signals and thus represents an extremely favorable test setting. The methods estimate activity changes of all TFs, which we expect to be highest in the KD TF. However, only in 15 out of 54 cases, the KD TFs ranked in the top 5%. We show that this poor overall performance cannot be attributed to a low effectiveness of the knockdown or the specific regulatory network provided as background knowledge. Further, the ranks of regulators related to the KD TF by the network or pathway are not significantly different from a random selection. In general, the result overlaps of different methods are small, indicating that they draw very different conclusions when presented with the same, presumably simple, inference problem. These results show that the investigated methods cannot yield robust TF activity estimates in knockdown schemes.
Collapse
|
8
|
Chen Y, Widschwendter M, Teschendorff AE. Systems-epigenomics inference of transcription factor activity implicates aryl-hydrocarbon-receptor inactivation as a key event in lung cancer development. Genome Biol 2017; 18:236. [PMID: 29262847 PMCID: PMC5738803 DOI: 10.1186/s13059-017-1366-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
Background Diverse molecular alterations associated with smoking in normal and precursor lung cancer cells have been reported, yet their role in lung cancer etiology remains unclear. A prominent example is hypomethylation of the aryl hydrocarbon-receptor repressor (AHRR) locus, which is observed in blood and squamous epithelial cells of smokers, but not in lung cancer. Results Using a novel systems-epigenomics algorithm, called SEPIRA, which leverages the power of a large RNA-sequencing expression compendium to infer regulatory activity from messenger RNA expression or DNA methylation (DNAm) profiles, we infer the landscape of binding activity of lung-specific transcription factors (TFs) in lung carcinogenesis. We show that lung-specific TFs become preferentially inactivated in lung cancer and precursor lung cancer lesions and further demonstrate that these results can be derived using only DNAm data. We identify subsets of TFs which become inactivated in precursor cells. Among these regulatory factors, we identify AHR, the aryl hydrocarbon-receptor which controls a healthy immune response in the lung epithelium and whose repressor, AHRR, has recently been implicated in smoking-mediated lung cancer. In addition, we identify FOXJ1, a TF which promotes growth of airway cilia and effective clearance of the lung airway epithelium from carcinogens. Conclusions We identify TFs, such as AHR, which become inactivated in the earliest stages of lung cancer and which, unlike AHRR hypomethylation, are also inactivated in lung cancer itself. The novel systems-epigenomics algorithm SEPIRA will be useful to the wider epigenome-wide association study community as a means of inferring regulatory activity. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1366-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Chen
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai, 200031, China. .,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK. .,UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Trescher S, Münchmeyer J, Leser U. Estimating genome-wide regulatory activity from multi-omics data sets using mathematical optimization. BMC SYSTEMS BIOLOGY 2017; 11:41. [PMID: 28347313 PMCID: PMC5369021 DOI: 10.1186/s12918-017-0419-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 03/08/2017] [Indexed: 12/28/2022]
Abstract
Background Gene regulation is one of the most important cellular processes, indispensable for the adaptability of organisms and closely interlinked with several classes of pathogenesis and their progression. Elucidation of regulatory mechanisms can be approached by a multitude of experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive and tissue or disease-specific cellular models requires rigorous computational methods. Recently, several algorithms have been proposed which model genome-wide gene regulation as sets of (linear) equations over the activity and relationships of transcription factors, genes and other factors. Subsequent optimization finds those parameters that minimize the divergence of predicted and measured expression intensities. In various settings, these methods produced promising results in terms of estimating transcription factor activity and identifying key biomarkers for specific phenotypes. However, despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. Results Here, we review five recent methods of this class in detail and compare them with respect to several key properties. Furthermore, we quantitatively compare the results of four of the presented methods based on publicly available data sets. Conclusions The results show that all methods seem to find biologically relevant information. However, we also observe that the mutual result overlaps are very low, which contradicts biological intuition. Our aim is to raise further awareness of the power of these methods, yet also to identify common shortcomings and necessary extensions enabling focused research on the critical points. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0419-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saskia Trescher
- Knowledge Management in Bioinformatics, Computer Science Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| | - Jannes Münchmeyer
- Knowledge Management in Bioinformatics, Computer Science Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Computer Science Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
10
|
Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data. PLoS One 2017; 12:e0171240. [PMID: 28166542 PMCID: PMC5293552 DOI: 10.1371/journal.pone.0171240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
Abstract
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
Collapse
|
11
|
Pataskar A, Tiwari VK. Computational challenges in modeling gene regulatory events. Transcription 2016; 7:188-195. [PMID: 27390891 DOI: 10.1080/21541264.2016.1204491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating "omics" data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology.
Collapse
Affiliation(s)
| | - Vijay K Tiwari
- a Institute of Molecular Biology (IMB) , Mainz , Germany
| |
Collapse
|
12
|
Chasman D, Fotuhi Siahpirani A, Roy S. Network-based approaches for analysis of complex biological systems. Curr Opin Biotechnol 2016; 39:157-166. [PMID: 27115495 DOI: 10.1016/j.copbio.2016.04.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022]
Abstract
Cells function and respond to changes in their environment by the coordinated activity of their molecular components, including mRNAs, proteins and metabolites. At the heart of proper cellular function are molecular networks connecting these components to process extra-cellular environmental signals and drive dynamic, context-specific cellular responses. Network-based computational approaches aim to systematically integrate measurements from high-throughput experiments to gain a global understanding of cellular function under changing environmental conditions. We provide an overview of recent methodological developments toward solving two major computational problems within this field in the past two years (2013-2015): network reconstruction and network-based interpretation. Looking forward, we envision development of methods that can predict phenotypes with high accuracy as well as provide biologically plausible mechanistic hypotheses.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States
| | - Alireza Fotuhi Siahpirani
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, United States; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, United States; Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|