1
|
Marceca GP, Romano G, Acunzo M, Nigita G. ncRNA Editing: Functional Characterization and Computational Resources. Methods Mol Biol 2025; 2883:455-495. [PMID: 39702721 DOI: 10.1007/978-1-0716-4290-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Non-coding RNAs (ncRNAs) play crucial roles in gene expression regulation, translation, and disease development, including cancer. They are classified by size in short and long non-coding RNAs. This chapter focuses on the functional implications of adenosine-to-inosine (A-to-I) RNA editing in both short (e.g., miRNAs) and long ncRNAs. RNA editing dynamically alters the sequence and structure of primary transcripts, impacting ncRNA biogenesis and function. Notable findings include the role of miRNA editing in promoting glioblastoma invasiveness, characterizing RNA editing hotspots across cancers, and its implications in thyroid cancer and ischemia. This chapter also highlights bioinformatics resources and next-generation sequencing (NGS) technologies that enable comprehensive ncRNAome studies and genome-wide RNA editing detection. Dysregulation of RNA editing machinery has been linked to various human diseases, emphasizing the potential of RNA editing as a biomarker and therapeutic target. This overview integrates current knowledge and computational tools for studying ncRNA editing, providing insights into its biological significance and clinical applications.
Collapse
Affiliation(s)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Int J Mol Sci 2023; 25:351. [PMID: 38203521 PMCID: PMC10779106 DOI: 10.3390/ijms25010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs' function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications.
Collapse
Affiliation(s)
- Shenghui Weng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Xinyi Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Nannan Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Peng-Cheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
4
|
Knutson SD, Heemstra JM. EndoVIPER-seq for Improved Detection of A-to-I Editing Sites in Cellular RNA. ACTA ACUST UNITED AC 2021; 12:e82. [PMID: 32469473 DOI: 10.1002/cpch.82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine to-inosine (A-to-I) RNA editing is a conserved post-transcriptional modification that is critical for a variety of cellular processes. A-to-I editing is widespread in nearly all types of RNA, directly imparting significant global changes in cellular function and behavior. Dysfunctional RNA editing is also implicated in a number of diseases, and A-to-I editing activity is rapidly becoming an important biomarker for early detection of cancer, immune disorders, and neurodegeneration. While millions of sites have been identified, the biological function of the majority of these sites is unknown, and the regulatory mechanisms for controlling editing activity at individual sites is not well understood. Robust detection and mapping of A-to-I editing activity throughout the transcriptome is vital for understanding these properties and how editing affects cellular behavior. However, accurately identifying A-to-I editing sites is challenging because of inherent sampling errors present in RNA-seq. We recently developed Endonuclease V immunoprecipitation enrichment sequencing (EndoVIPER-seq) to directly address this challenge by enrichment of A-to-I edited RNAs prior to sequencing. This protocol outlines how to process cellular RNA, enrich for A-to-I edited transcripts with EndoVIPER pulldown, and prepare libraries suitable for generating RNA-seq data. © 2020 Wiley Periodicals LLC. Basic Protocol 1: mRNA fragmentation and glyoxalation Basic Protocol 2: EndoVIPER pulldown Basic Protocol 3: RNA-seq library preparation and data analysis.
Collapse
|
5
|
Wang H, Chen S, Wei J, Song G, Zhao Y. A-to-I RNA Editing in Cancer: From Evaluating the Editing Level to Exploring the Editing Effects. Front Oncol 2021; 10:632187. [PMID: 33643923 PMCID: PMC7905090 DOI: 10.3389/fonc.2020.632187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
As an important regulatory mechanism at the posttranscriptional level in metazoans, adenosine deaminase acting on RNA (ADAR)-induced A-to-I RNA editing modification of double-stranded RNA has been widely detected and reported. Editing may lead to non-synonymous amino acid mutations, RNA secondary structure alterations, pre-mRNA processing changes, and microRNA-mRNA redirection, thereby affecting multiple cellular processes and functions. In recent years, researchers have successfully developed several bioinformatics software tools and pipelines to identify RNA editing sites. However, there are still no widely accepted editing site standards due to the variety of parallel optimization and RNA high-seq protocols and programs. It is also challenging to identify RNA editing by normal protocols in tumor samples due to the high DNA mutation rate. Numerous RNA editing sites have been reported to be located in non-coding regions and can affect the biosynthesis of ncRNAs, including miRNAs and circular RNAs. Predicting the function of RNA editing sites located in non-coding regions and ncRNAs is significantly difficult. In this review, we aim to provide a better understanding of bioinformatics strategies for human cancer A-to-I RNA editing identification and briefly discuss recent advances in related areas, such as the oncogenic and tumor suppressive effects of RNA editing.
Collapse
Affiliation(s)
- Heming Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Selective Enrichment of A-to-I Edited Transcripts from Cellular RNA Using Endonuclease V. J Am Chem Soc 2020; 142:5241-5251. [PMID: 32109061 DOI: 10.1021/jacs.9b13406] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Creating accurate maps of A-to-I RNA editing activity is vital to improving our understanding of the biological role of this process and harnessing it as a signal for disease diagnosis. Current RNA sequencing techniques are susceptible to random sampling limitations due to the complexity of the transcriptome and require large amounts of RNA material, specialized instrumentation, and high read counts to accurately interrogate A-to-I editing sites. To address these challenges, we show that Escherichia coli Endonuclease V (eEndoV), an inosine-cleaving enzyme, can be repurposed to bind and isolate A-to-I edited transcripts from cellular RNA. While Mg2+ enables eEndoV to catalyze RNA cleavage, we show that similar levels of Ca2+ instead promote binding of inosine without cleavage and thus enable high affinity capture of inosine in RNA. We leverage this capability to demonstrate EndoVIPER-seq (Endonuclease V inosine precipitation enrichment sequencing) as a facile and effective method to enrich A-to-I edited transcripts prior to RNA-seq, producing significant increases in the coverage and detection of identified editing sites. We envision the use of this approach as a straightforward and cost-effective strategy to improve the epitranscriptomic informational density of RNA samples, facilitating a deeper understanding of the functional roles of A-to-I editing.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia 30322, United States
| | - H Richard Johnston
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Weirick T, Militello G, Hosen MR, John D, Moore JB, Uchida S. Investigation of RNA Editing Sites within Bound Regions of RNA-Binding Proteins. High Throughput 2019; 8:ht8040019. [PMID: 31795425 PMCID: PMC6970233 DOI: 10.3390/ht8040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/08/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Studies in epitranscriptomics indicate that RNA is modified by a variety of enzymes. Among these RNA modifications, adenosine to inosine (A-to-I) RNA editing occurs frequently in the mammalian transcriptome. These RNA editing sites can be detected directly from RNA sequencing (RNA-seq) data by examining nucleotide changes from adenosine (A) to guanine (G), which substitutes for inosine (I). However, a careful investigation of such nucleotide changes must be conducted to distinguish sequencing errors and genomic mutations from the genuine editing sites. Building upon our recent introduction of an easy-to-use bioinformatics tool, RNA Editor, to detect RNA editing events from RNA-seq data, we examined the extent by which RNA editing events affect the binding of RNA-binding proteins (RBP). Through employing bioinformatic techniques, we uncovered that RNA editing sites occur frequently in RBP-bound regions. Moreover, the presence of RNA editing sites are more frequent when RNA editing islands were examined, which are regions in which RNA editing sites are present in clusters. When the binding of one RBP, human antigen R [HuR; encoded by ELAV-like protein 1 (ELAV1)], was quantified experimentally, its binding was reduced upon silencing of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) compared to the control-suggesting that the presence of RNA editing islands influence HuR binding to its target regions. These data indicate RNA editing as an important mediator of RBP-RNA interactions-a mechanism which likely constitutes an additional mode of post-transcription gene regulation in biological systems.
Collapse
Affiliation(s)
- Tyler Weirick
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Giuseppe Militello
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, Yale Science Building-260 Whitney Avenue, New Haven, CT 06511, USA;
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine-II, Molecular Cardiology, Biomedical Center (BMZ), University of Bonn, Sigmund-Freud-Str. 25, Bonn 53127, Germany;
| | - David John
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany;
| | - Joseph B. Moore
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA
- The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
- Correspondence: ; Tel.: +1-502-854-0570
| |
Collapse
|
8
|
Guo Y, Yu H, Samuels DC, Yue W, Ness S, Zhao YY. Single-nucleotide variants in human RNA: RNA editing and beyond. Brief Funct Genomics 2019; 18:30-39. [PMID: 30312373 PMCID: PMC7962770 DOI: 10.1093/bfgp/ely032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Through analysis of paired high-throughput DNA-Seq and RNA-Seq data, researchers quickly recognized that RNA-Seq can be used for more than just gene expression quantification. The alternative applications of RNA-Seq data are abundant, and we are particularly interested in its usefulness for detecting single-nucleotide variants, which arise from RNA editing, genomic variants and other RNA modifications. A stunning discovery made from RNA-Seq analyses is the unexpectedly high prevalence of RNA-editing events, many of which cannot be explained by known RNA-editing mechanisms. Over the past 6-7 years, substantial efforts have been made to maximize the potential of RNA-Seq data. In this review we describe the controversial history of mining RNA-editing events from RNA-Seq data and the corresponding development of methodologies to identify, predict, assess the quality of and catalog RNA-editing events as well as genomic variants.
Collapse
Affiliation(s)
- Yan Guo
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Hui Yu
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - David C Samuels
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN, USA
| | - Wei Yue
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Scott Ness
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Ying-yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Northwest University,Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Quinones-Valdez G, Tran SS, Jun HI, Bahn JH, Yang EW, Zhan L, Brümmer A, Wei X, Van Nostrand EL, Pratt GA, Yeo GW, Graveley BR, Xiao X. Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol 2019; 2:19. [PMID: 30652130 PMCID: PMC6331435 DOI: 10.1038/s42003-018-0271-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing, mediated by the ADAR enzymes, diversifies the transcriptome by altering RNA sequences. Recent studies reported global changes in RNA editing in disease and development. Such widespread editing variations necessitate an improved understanding of the regulatory mechanisms of RNA editing. Here, we study the roles of >200 RNA-binding proteins (RBPs) in mediating RNA editing in two human cell lines. Using RNA-sequencing and global protein-RNA binding data, we identify a number of RBPs as key regulators of A-to-I editing. These RBPs, such as TDP-43, DROSHA, NF45/90 and Ro60, mediate editing through various mechanisms including regulation of ADAR1 expression, interaction with ADAR1, and binding to Alu elements. We highlight that editing regulation by Ro60 is consistent with the global up-regulation of RNA editing in systemic lupus erythematosus. Additionally, most key editing regulators act in a cell type-specific manner. Together, our work provides insights for the regulatory mechanisms of RNA editing.
Collapse
Affiliation(s)
| | - Stephen S. Tran
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Ei-Wen Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Anneke Brümmer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Eric L. Van Nostrand
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Gabriel A. Pratt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Brenton R. Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030 USA
| | - Xinshu Xiao
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
10
|
Tran SS, Jun HI, Bahn JH, Azghadi A, Ramaswami G, Van Nostrand EL, Nguyen TB, Hsiao YHE, Lee C, Pratt GA, Martínez-Cerdeño V, Hagerman RJ, Yeo GW, Geschwind DH, Xiao X. Widespread RNA editing dysregulation in brains from autistic individuals. Nat Neurosci 2019; 22:25-36. [PMID: 30559470 PMCID: PMC6375307 DOI: 10.1038/s41593-018-0287-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/08/2018] [Indexed: 12/29/2022]
Abstract
Transcriptomic analyses of postmortem brains have begun to elucidate molecular abnormalities in autism spectrum disorder (ASD). However, a crucial pathway involved in synaptic development, RNA editing, has not yet been studied on a genome-wide scale. Here we profiled global patterns of adenosine-to-inosine (A-to-I) editing in a large cohort of postmortem brains of people with ASD. We observed a global bias for hypoediting in ASD brains, which was shared across brain regions and involved many synaptic genes. We show that the Fragile X proteins FMRP and FXR1P interact with RNA-editing enzymes (ADAR proteins) and modulate A-to-I editing. Furthermore, we observed convergent patterns of RNA-editing alterations in ASD and Fragile X syndrome, establishing this as a molecular link between these related diseases. Our findings, which are corroborated across multiple data sets, including dup15q (genomic duplication of 15q11.2-13.1) cases associated with intellectual disability, highlight RNA-editing dysregulation in ASD and reveal new mechanisms underlying this disorder.
Collapse
Affiliation(s)
- Stephen S Tran
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Hyun-Ik Jun
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Adel Azghadi
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Gokul Ramaswami
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Thai B Nguyen
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Changhoon Lee
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | | | - Randi J Hagerman
- The MIND Institute, Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA, USA
- Stem Cell Program, UCSD, La Jolla, CA, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, UCSD, La Jolla, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Institute for Quantitative and Computational Biology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
11
|
John D, Weirick T, Dimmeler S, Uchida S. RNAEditor: easy detection of RNA editing events and the introduction of editing islands. Brief Bioinform 2018; 18:993-1001. [PMID: 27694136 DOI: 10.1093/bib/bbw087] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Indexed: 12/30/2022] Open
Abstract
RNA editing of adenosine residues to inosine ('A-to-I editing') is the most common RNA modification event detectible with RNA sequencing (RNA-seq). While not directly detectable, inosine is read by next-generation sequencers as guanine. Therefore, mapping RNA-seq reads to their corresponding reference genome can detect potential editing events by identifying 'A-to-G' conversions. However, one must exercise caution when searching for editing sites, as A-to-G conversions also arise from sequencing errors as well as mutations. To address these complexities, several algorithms and software products have been developed to accurately identify editing events. Here, we survey currently available methods to analyze RNA editing events and introduce a new easy-to-use bioinformatics tool 'RNAEditor' for the detection of RNA editing events. During the development of RNAEditor, we noticed editing often happened in clusters, which we named 'editing islands'. We developed a clustering algorithm to find editing islands and included it in RNAEditor. RNAEditor is freely available at http://rnaeditor.uni-frankfurt.de. We anticipate that RNAEditor will provide biologists with an easy-to-use tool for studying RNA editing events and the newly defined editing islands.
Collapse
|
12
|
Hsiao YHE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW, Quinones-Valdez G, Xiao X. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018; 28:812-823. [PMID: 29724793 PMCID: PMC5991522 DOI: 10.1101/gr.231209.117] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites.
Collapse
Affiliation(s)
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xianzhi Lin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Tran
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ei-Wen Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - Xinshu Xiao
- Department of Bioengineering
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Brümmer A, Yang Y, Chan TW, Xiao X. Structure-mediated modulation of mRNA abundance by A-to-I editing. Nat Commun 2017; 8:1255. [PMID: 29093448 PMCID: PMC5665907 DOI: 10.1038/s41467-017-01459-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
RNA editing introduces single nucleotide changes to RNA, thus potentially diversifying gene expression. Recent studies have reported significant changes in RNA editing profiles in disease and development. The functional consequences of these widespread alterations remain elusive because of the unknown function of most RNA editing sites. Here, we carry out a comprehensive analysis of A-to-I editomes in human populations. Surprisingly, we observe highly similar editing profiles across populations despite striking differences in the expression levels of ADAR genes. Striving to explain this discrepancy, we uncover a functional mechanism of A-to-I editing in regulating mRNA abundance. We show that A-to-I editing stabilizes RNA secondary structures and reduces the accessibility of AGO2-miRNA to target sites in mRNAs. The editing-dependent stabilization of mRNAs in turn alters the observed editing levels in the stable RNA repertoire. Our study provides valuable insights into the functional impact of RNA editing in human cells.
Collapse
Affiliation(s)
- Anneke Brümmer
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Bioinformatics Interdepartmental Program, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095-1570, USA.
| |
Collapse
|
14
|
Sahraeian SME, Mohiyuddin M, Sebra R, Tilgner H, Afshar PT, Au KF, Bani Asadi N, Gerstein MB, Wong WH, Snyder MP, Schadt E, Lam HYK. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat Commun 2017; 8:59. [PMID: 28680106 PMCID: PMC5498581 DOI: 10.1038/s41467-017-00050-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
RNA-sequencing (RNA-seq) is an essential technique for transcriptome studies, hundreds of analysis tools have been developed since it was debuted. Although recent efforts have attempted to assess the latest available tools, they have not evaluated the analysis workflows comprehensively to unleash the power within RNA-seq. Here we conduct an extensive study analysing a broad spectrum of RNA-seq workflows. Surpassing the expression analysis scope, our work also includes assessment of RNA variant-calling, RNA editing and RNA fusion detection techniques. Specifically, we examine both short- and long-read RNA-seq technologies, 39 analysis tools resulting in ~120 combinations, and ~490 analyses involving 15 samples with a variety of germline, cancer and stem cell data sets. We report the performance and propose a comprehensive RNA-seq analysis protocol, named RNACocktail, along with a computational pipeline achieving high accuracy. Validation on different samples reveals that our proposed protocol could help researchers extract more biologically relevant predictions by broad analysis of the transcriptome. RNA-seq is widely used for transcriptome analysis. Here, the authors analyse a wide spectrum of RNA-seq workflows and present a comprehensive analysis protocol named RNACocktail as well as a computational pipeline leveraging the widely used tools for accurate RNA-seq analysis.
Collapse
Affiliation(s)
| | | | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hagen Tilgner
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Pegah T Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Mark B Gerstein
- Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Wing Hung Wong
- Statistics; Health Research and Policy, Stanford University, Stanford, CA, 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hugo Y K Lam
- Roche Sequencing Solutions, Belmont, CA, 94002, USA.
| |
Collapse
|
15
|
Xiong H, Liu D, Li Q, Lei M, Xu L, Wu L, Wang Z, Ren S, Li W, Xia M, Lu L, Lu H, Hou Y, Zhu S, Liu X, Sun Y, Wang J, Yang H, Wu K, Xu X, Lee LJ. RED-ML: a novel, effective RNA editing detection method based on machine learning. Gigascience 2017; 6:1-8. [PMID: 28328004 PMCID: PMC5467039 DOI: 10.1093/gigascience/gix012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/27/2017] [Indexed: 11/12/2022] Open
Abstract
With the advancement of second generation sequencing techniques, our ability to detect and quantify RNA editing on a global scale has been vastly improved. As a result, RNA editing is now being studied under a growing number of biological conditions so that its biochemical mechanisms and functional roles can be further understood. However, a major barrier that prevents RNA editing from being a routine RNA-seq analysis, similar to gene expression and splicing analysis, for example, is the lack of user-friendly and effective computational tools. Based on years of experience of analyzing RNA editing using diverse RNA-seq datasets, we have developed a software tool, RED-ML: RNA Editing Detection based on Machine learning (pronounced as "red ML"). The input to RED-ML can be as simple as a single BAM file, while it can also take advantage of matched genomic variant information when available. The output not only contains detected RNA editing sites, but also a confidence score to facilitate downstream filtering. We have carefully designed validation experiments and performed extensive comparison and analysis to show the efficiency and effectiveness of RED-ML under different conditions, and it can accurately detect novel RNA editing sites without relying on curated RNA editing databases. We have also made this tool freely available via GitHub . We have developed a highly accurate, speedy and general-purpose tool for RNA editing detection using RNA-seq data. With the availability of RED-ML, it is now possible to conveniently make RNA editing a routine analysis of RNA-seq. We believe this can greatly benefit the RNA editing research community and has profound impact to accelerate our understanding of this intriguing posttranscriptional modification process.
Collapse
Affiliation(s)
- Heng Xiong
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Mengyue Lei
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Liqin Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Zongji Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wangsheng Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Min Xia
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Lihua Lu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Haorong Lu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xin Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Leo J. Lee
- BGI-Shenzhen, Shenzhen 518083, China
- Department of Electrical and Computer Engineering, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
16
|
Hasin-Brumshtein Y, Khan AH, Hormozdiari F, Pan C, Parks BW, Petyuk VA, Piehowski PD, Brümmer A, Pellegrini M, Xiao X, Eskin E, Smith RD, Lusis AJ, Smith DJ. Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes. eLife 2016; 5. [PMID: 27623010 PMCID: PMC5053804 DOI: 10.7554/elife.15614] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. DOI:http://dx.doi.org/10.7554/eLife.15614.001 Metabolism is a term that describes all the chemical reactions that are involved in keeping a living organism alive. Diseases related to metabolism – such as obesity, heart disease and diabetes – are a major health problem in the Western world. The causes of these diseases are complex and include both environmental factors, such as diet and exercise, and genetics. Indeed, many genetic variants that contribute to obesity have been uncovered in both humans and mice. However, it is only dimly understood how these genetic variants affect the underlying networks of interacting genes that cause metabolic disorders. Measuring gene activity or expression, and tracing how genetic instructions are carried from DNA into RNA and proteins, can reliably identify groups of genes that correlate with metabolic traits in specific organs. This strategy was successfully used in previous studies to reveal new information about abnormalities linked to obesity in specific tissues such as the liver and fat tissues. It was also shown that this approach might suggest new molecules that could be targeted to treat metabolic disorders. A brain region called the hypothalamus is key to the control of metabolism, including feeding behavior and obesity. Hasin-Brumshtein et al. set out to explore gene expression in the hypothalamus of 99 different strains of mice, in the hope that the data will help identify new connections between gene expression and metabolism. This approach showed that thousands of new and known genes are expressed in the mouse hypothalamus, some of which coded for proteins, and some of which did not. Hasin-Brumshtein et al. uncovered two genetic variants that controlled the expression of hundreds of other genes. Further analysis then revealed thousands of genetic variants that regulated the expression of, and type of RNA (so-called "spliceforms") produced from neighboring genes. Also, the expression of many individual genes showed significant similarities with about 150 metabolic measurements that had been evaluated previously in the mice. This new dataset is a unique resource that can be coupled with different approaches to test existing ideas and develop new ones about the role of particular genes or genetic mechanisms in obesity. Future studies will likely focus on new genes that show strong associations with attributes that are relevant to metabolic disorders, such as insulin levels, weight and fat mass. DOI:http://dx.doi.org/10.7554/eLife.15614.002
Collapse
Affiliation(s)
- Yehudit Hasin-Brumshtein
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Arshad H Khan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| | - Farhad Hormozdiari
- Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
| | - Calvin Pan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Brian W Parks
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Anneke Brümmer
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, United States
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, United States
| | - Aldons J Lusis
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Microbiology, University of California, Los Angeles, Los Angeles, United states.,Department of Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|