1
|
Li B, Li X, Li X, Wang L, Lu J, Wang J. Prediction of influenza A virus-human protein-protein interactions using XGBoost with continuous and discontinuous amino acids information. PeerJ 2025; 13:e18863. [PMID: 39897484 PMCID: PMC11787804 DOI: 10.7717/peerj.18863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Influenza A virus (IAV) has the characteristics of high infectivity and high pathogenicity, which makes IAV infection a serious public health threat. Identifying protein-protein interactions (PPIs) between IAV and human proteins is beneficial for understanding the mechanism of viral infection and designing antiviral drugs. In this article, we developed a sequence-based machine learning method for predicting PPI. First, we applied a new negative sample construction method to establish a high-quality IAV-human PPI dataset. Then we used conjoint triad (CT) and Moran autocorrelation (Moran) to encode biologically relevant features. The joint consideration utilizing the complementary information between contiguous and discontinuous amino acids provides a more comprehensive description of PPI information. After comparing different machine learning models, the eXtreme Gradient Boosting (XGBoost) model was determined as the final model for the prediction. The model achieved an accuracy of 96.89%, precision of 98.79%, recall of 94.85%, F1-score of 96.78%. Finally, we successfully identified 3,269 potential target proteins. Gene ontology (GO) and pathway analysis showed that these genes were highly associated with IAV infection. The analysis of the PPI network further revealed that the predicted proteins were classified as core proteins within the human protein interaction network. This study may encourage the identification of potential targets for the discovery of more effective anti-influenza drugs. The source codes and datasets are available at https://github.com/HVPPIlab/IVA-Human-PPI/.
Collapse
Affiliation(s)
- Binghua Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agriultrual University, Wuhan, China
| | - Xin Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agriultrual University, Wuhan, China
| | - Xiaoyu Li
- College of Informatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agriultrual University, Wuhan, China
| | - Li Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agriultrual University, Wuhan, China
| | - Jun Lu
- College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Jia Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Huazhong Agriultrual University, Wuhan, China
| |
Collapse
|
2
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Zhang L, Wang S, Wang Y, Zhao T. HBFormer: a single-stream framework based on hybrid attention mechanism for identification of human-virus protein-protein interactions. Bioinformatics 2024; 40:btae724. [PMID: 39673490 PMCID: PMC11648999 DOI: 10.1093/bioinformatics/btae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
MOTIVATION Exploring human-virus protein-protein interactions (PPIs) is crucial for unraveling the underlying pathogenic mechanisms of viruses. Limitations in the coverage and scalability of high-throughput approaches have impeded the identification of certain key interactions. Current popular computational methods adopt a two-stream pipeline to identify PPIs, which can only achieve relation modeling of protein pairs at the classification phase. However, the fitting capacity of the classifier is insufficient to comprehensively mine the complex interaction patterns between protein pairs. RESULTS In this study, we propose a pioneering single-stream framework HBFormer that combines hybrid attention mechanism and multimodal feature fusion strategy for identifying human-virus PPIs. The Transformer architecture based on hybrid attention can bridge the bidirectional information flows between human protein and viral protein, thus unifying joint feature learning and relation modeling of protein pairs. The experimental results demonstrate that HBFormer not only achieves superior performance on multiple human-virus PPI datasets but also outperforms 5 other state-of-the-art human-virus PPI identification methods. Moreover, ablation studies and scalability experiments further validate the effectiveness of our single-stream framework. AVAILABILITY AND IMPLEMENTATION Codes and datasets are available at https://github.com/RmQ5v/HBFormer.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Sicong Wang
- Institute of Bioinformatics, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| | - Tianyi Zhao
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
4
|
Harris J, Yadalam PK, Ardila CM. Comparing Regularized Logistic Regression and Stochastic Gradient Descent in Predicting Drug-Gene Interactions of Inhibitors of Apoptosis Proteins in Periodontitis. Cureus 2024; 16:e70858. [PMID: 39493178 PMCID: PMC11531857 DOI: 10.7759/cureus.70858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE Periodontitis, characterized by inflammation linked to apoptosis dysregulation, underscores the role of inhibitors of apoptosis proteins (IAPs) like survivin and cIAP1, implicated in disease progression and treatment resistance across various conditions. Our study aims to analyze the prediction of drug-gene interactions by machine learning techniques, combining regularized logistic regression and stochastic gradient descent (SGD) for efficient classification. METHODS Data from Probes-Drugs.org on IAP-based drug-protein interactions underwent rigorous annotation and outlier removal. A data robot tool trained machine learning models, regularized logistic regression and SGD (https://app.datarobot.com/new). Network analysis employed Cytoscape to construct and analyze the IAP network, identifying key hub nodes crucial in periodontitis pathogenesis. RESULTS The constructed IAP network comprised 376 nodes and 556 edges, revealing intricate drug-gene interactions with an average of 2957 neighbors per node. Ten hub nodes were identified as pivotal in regulating biological processes specific to periodontitis, suggesting their potential as therapeutic targets and biomarkers. Predictive models demonstrated high accuracy, with gradient descent achieving 93% and regularized logistic regression achieving 92% in identifying drug-gene interactions within the IAP network. CONCLUSIONS These findings highlight the utility of computational methods in elucidating molecular mechanisms underlying periodontitis, offering insights into potential therapeutic strategies targeting IAP-related pathways. Future research should focus on validating hub genes experimentally and integrating multi-omics data to advance precision medicine approaches in periodontitis treatment.
Collapse
Affiliation(s)
- Johnisha Harris
- Periodontics, Saveetha Dental College and Hospital, Chennai, IND
| | | | | |
Collapse
|
5
|
Guevara-Barrientos D, Kaundal R. Malivhu: A Comprehensive Bioinformatics Resource for Filtering SARS and MERS Virus Proteins by Their Classification, Family and Species, and Prediction of Their Interactions Against Human Proteins. Bioinform Biol Insights 2024; 18:11779322241263671. [PMID: 39148721 PMCID: PMC11325310 DOI: 10.1177/11779322241263671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024] Open
Abstract
COVID 19 pandemic is still ongoing, having taken more than 6 million human lives with it, and it seems that the world will have to learn how to live with the virus around. In consequence, there is a need to develop different treatments against it, not only with vaccines, but also new medicines. To do this, human-virus protein-protein interactions (PPIs) play a key part in drug-target discovery, but finding them experimentally can be either costly or sometimes unreliable. Therefore, computational methods arose as a powerful alternative to predict these interactions, reducing costs and helping researchers confirm only certain interactions instead of trying all possible combinations in the laboratory. Malivhu is a tool that predicts human-virus PPIs through a 4-phase process using machine learning models, where phase 1 filters ssRNA(+) class virus proteins, phase 2 filters Coronaviridae family proteins and phase 3 filters severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) species proteins, and phase 4 predicts human-SARS-CoV/SARS-CoV-2/MERS protein-protein interactions. The performance of the models was measured with Matthews correlation coefficient, F1-score, specificity, sensitivity, and accuracy scores, getting accuracies of 99.07%, 99.83%, and 100% for the first 3 phases, respectively, and 94.24% for human-SARS-CoV PPI, 94.50% for human-SARS-CoV-2 PPI, and 95.45% for human-MERS PPI on independent testing. All the prediction models developed for each of the 4 phases were implemented as web server which is freely available at https://kaabil.net/malivhu/.
Collapse
Affiliation(s)
- David Guevara-Barrientos
- Department of Computer Science, College of Science, Utah State University, Logan, UT, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Rakesh Kaundal
- Department of Computer Science, College of Science, Utah State University, Logan, UT, USA
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
- Department of Plants, Soils & Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
6
|
Hao T, Zhang M, Song Z, Gou Y, Wang B, Sun J. Reconstruction of Eriocheir sinensis Protein-Protein Interaction Network Based on DGO-SVM Method. Curr Issues Mol Biol 2024; 46:7353-7372. [PMID: 39057077 PMCID: PMC11276262 DOI: 10.3390/cimb46070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Eriocheir sinensis is an economically important aquatic animal. Its regulatory mechanisms underlying many biological processes are still vague due to the lack of systematic analysis tools. The protein-protein interaction network (PIN) is an important tool for the systematic analysis of regulatory mechanisms. In this work, a novel machine learning method, DGO-SVM, was applied to predict the protein-protein interaction (PPI) in E. sinensis, and its PIN was reconstructed. With the domain, biological process, molecular functions and subcellular locations of proteins as the features, DGO-SVM showed excellent performance in Bombyx mori, humans and five aquatic crustaceans, with 92-96% accuracy. With DGO-SVM, the PIN of E. sinensis was reconstructed, containing 14,703 proteins and 7,243,597 interactions, in which 35,604 interactions were associated with 566 novel proteins mainly involved in the response to exogenous stimuli, cellular macromolecular metabolism and regulation. The DGO-SVM demonstrated that the biological process, molecular functions and subcellular locations of proteins are significant factors for the precise prediction of PPIs. We reconstructed the largest PIN for E. sinensis, which provides a systematic tool for the regulatory mechanism analysis. Furthermore, the novel-protein-related PPIs in the PIN may provide important clues for the mechanism analysis of the underlying specific physiological processes in E. sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Bin Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (M.Z.); (Z.S.); (Y.G.)
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; (T.H.); (M.Z.); (Z.S.); (Y.G.)
| |
Collapse
|
7
|
Asnicar F, Thomas AM, Passerini A, Waldron L, Segata N. Machine learning for microbiologists. Nat Rev Microbiol 2024; 22:191-205. [PMID: 37968359 PMCID: PMC11980903 DOI: 10.1038/s41579-023-00984-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Collapse
Affiliation(s)
- Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrew Maltez Thomas
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Levi Waldron
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA.
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
8
|
Yang X, Wuchty S, Liang Z, Ji L, Wang B, Zhu J, Zhang Z, Dong Y. Multi-modal features-based human-herpesvirus protein-protein interaction prediction by using LightGBM. Brief Bioinform 2024; 25:bbae005. [PMID: 38279649 PMCID: PMC10818167 DOI: 10.1093/bib/bbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 01/01/2021] [Indexed: 01/28/2024] Open
Abstract
The identification of human-herpesvirus protein-protein interactions (PPIs) is an essential and important entry point to understand the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes. The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.
Collapse
Affiliation(s)
- Xiaodi Yang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami FL, 33146, USA
- Department of Biology, University of Miami, Miami FL, 33146, USA
- Institute of Data Science and Computation, University of Miami, Miami, FL 33146, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Li Ji
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Bingjie Wang
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Jialin Zhu
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, China
| |
Collapse
|
9
|
Chen HM, Liu JX, Liu D, Hao GF, Yang GF. Human-virus protein-protein interactions maps assist in revealing the pathogenesis of viral infection. Rev Med Virol 2024; 34:e2517. [PMID: 38282401 DOI: 10.1002/rmv.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/12/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Many significant viral infections have been recorded in human history, which have caused enormous negative impacts worldwide. Human-virus protein-protein interactions (PPIs) mediate viral infection and immune processes in the host. The identification, quantification, localization, and construction of human-virus PPIs maps are critical prerequisites for understanding the biophysical basis of the viral invasion process and characterising the framework for all protein functions. With the technological revolution and the introduction of artificial intelligence, the human-virus PPIs maps have been expanded rapidly in the past decade and shed light on solving complicated biomedical problems. However, there is still a lack of prospective insight into the field. In this work, we comprehensively review and compare the effectiveness, potential, and limitations of diverse approaches for constructing large-scale PPIs maps in human-virus, including experimental methods based on biophysics and biochemistry, databases of human-virus PPIs, computational methods based on artificial intelligence, and tools for visualising PPIs maps. The work aims to provide a toolbox for researchers, hoping to better assist in deciphering the relationship between humans and viruses.
Collapse
Affiliation(s)
- Hui-Min Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Jia-Xin Liu
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| |
Collapse
|
10
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
11
|
Xie P, Zhuang J, Tian G, Yang J. Emvirus: An embedding-based neural framework for human-virus protein-protein interactions prediction. BIOSAFETY AND HEALTH 2023; 5:152-158. [PMID: 37362223 PMCID: PMC10166638 DOI: 10.1016/j.bsheal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023] Open
Abstract
Human-virus protein-protein interactions (PPIs) play critical roles in viral infection. For example, the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds primarily to human angiotensin-converting enzyme 2 (ACE2) protein to infect human cells. Thus, identifying and blocking these PPIs contribute to controlling and preventing viruses. However, wet-lab experiment-based identification of human-virus PPIs is usually expensive, labor-intensive, and time-consuming, which presents the need for computational methods. Many machine-learning methods have been proposed recently and achieved good results in predicting human-virus PPIs. However, most methods are based on protein sequence features and apply manually extracted features, such as statistical characteristics, phylogenetic profiles, and physicochemical properties. In this work, we present an embedding-based neural framework with convolutional neural network (CNN) and bi-directional long short-term memory unit (Bi-LSTM) architecture, named Emvirus, to predict human-virus PPIs (including human-SARS-CoV-2 PPIs). In addition, we conduct cross-viral experiments to explore the generalization ability of Emvirus. Compared to other feature extraction methods, Emvirus achieves better prediction accuracy.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jujuan Zhuang
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| |
Collapse
|
12
|
Kazmirchuk TDD, Bradbury-Jost C, Withey TA, Gessese T, Azad T, Samanfar B, Dehne F, Golshani A. Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing. Genes (Basel) 2023; 14:1194. [PMID: 37372372 PMCID: PMC10298604 DOI: 10.3390/genes14061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Leveraging computation in the development of peptide therapeutics has garnered increasing recognition as a valuable tool to generate novel therapeutics for disease-related targets. To this end, computation has transformed the field of peptide design through identifying novel therapeutics that exhibit enhanced pharmacokinetic properties and reduced toxicity. The process of in-silico peptide design involves the application of molecular docking, molecular dynamics simulations, and machine learning algorithms. Three primary approaches for peptide therapeutic design including structural-based, protein mimicry, and short motif design have been predominantly adopted. Despite the ongoing progress made in this field, there are still significant challenges pertaining to peptide design including: enhancing the accuracy of computational methods; improving the success rate of preclinical and clinical trials; and developing better strategies to predict pharmacokinetics and toxicity. In this review, we discuss past and present research pertaining to the design and development of in-silico peptide therapeutics in addition to highlighting the potential of computation and artificial intelligence in the future of disease therapeutics.
Collapse
Affiliation(s)
- Thomas David Daniel Kazmirchuk
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Calvin Bradbury-Jost
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Taylor Ann Withey
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Tadesse Gessese
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Bahram Samanfar
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Ashkan Golshani
- Department of Biology, and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
13
|
Ma Y, Zhong J. Logistic tensor decomposition with sparse subspace learning for prediction of multiple disease types of human-virus protein-protein interactions. Brief Bioinform 2023; 24:6961474. [PMID: 36573486 DOI: 10.1093/bib/bbac604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
Viral infection involves a large number of protein-protein interactions (PPIs) between the virus and the host, and the identification of these PPIs plays an important role in revealing viral infection and pathogenesis. Existing computational models focus on predicting whether human proteins and viral proteins interact, and rarely take into account the types of diseases associated with these interactions. Although there are computational models based on a matrix and tensor decomposition for predicting multi-type biological interaction relationships, these methods cannot effectively model high-order nonlinear relationships of biological entities and are not suitable for integrating multiple features. To this end, we propose a novel computational framework, LTDSSL, to determine human-virus PPIs under different disease types. LTDSSL utilizes logistic functions to model nonlinear associations, sets importance levels to emphasize the importance of observed interactions and utilizes sparse subspace learning of multiple features to improve model performance. Experimental results show that LTDSSL has better predictive performance for both new disease types and new triples than the state-of-the-art methods. In addition, the case study further demonstrates that LTDSSL can effectively predict human-viral PPIs under various disease types.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, 361024 , China
| | - Junjiang Zhong
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, 361024 , China
| |
Collapse
|
14
|
Ibrahim AH, Karabulut OC, Karpuzcu BA, Türk E, Süzek BE. A correlation coefficient-based feature selection approach for virus-host protein-protein interaction prediction. PLoS One 2023; 18:e0285168. [PMID: 37130110 PMCID: PMC10153705 DOI: 10.1371/journal.pone.0285168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Prediction of virus-host protein-protein interactions (PPI) is a broad research area where various machine-learning-based classifiers are developed. Transforming biological data into machine-usable features is a preliminary step in constructing these virus-host PPI prediction tools. In this study, we have adopted a virus-host PPI dataset and a reduced amino acids alphabet to create tripeptide features and introduced a correlation coefficient-based feature selection. We applied feature selection across several correlation coefficient metrics and statistically tested their relevance in a structural context. We compared the performance of feature-selection models against that of the baseline virus-host PPI prediction models created using different classification algorithms without the feature selection. We also tested the performance of these baseline models against the previously available tools to ensure their predictive power is acceptable. Here, the Pearson coefficient provides the best performance with respect to the baseline model as measured by AUPR; a drop of 0.003 in AUPR while achieving a 73.3% (from 686 to 183) reduction in the number of tripeptides features for random forest. The results suggest our correlation coefficient-based feature selection approach, while decreasing the computation time and space complexity, has a limited impact on the prediction performance of virus-host PPI prediction tools.
Collapse
Affiliation(s)
- Ahmed Hassan Ibrahim
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
- Georgetown University Medical Center, Biochemistry and Molecular & Cellular Biology, Washington DC, United States of America
| |
Collapse
|
15
|
Iuchi H, Kawasaki J, Kubo K, Fukunaga T, Hokao K, Yokoyama G, Ichinose A, Suga K, Hamada M. Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 2023; 21:1774-1784. [PMID: 36874163 PMCID: PMC9969756 DOI: 10.1016/j.csbj.2023.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Koki Hokao
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Gentaro Yokoyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akiko Ichinose
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kanta Suga
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
16
|
Karpuzcu BA, Türk E, Ibrahim AH, Karabulut OC, Süzek BE. Machine Learning Methods for Virus-Host Protein-Protein Interaction Prediction. Methods Mol Biol 2023; 2690:401-417. [PMID: 37450162 DOI: 10.1007/978-1-0716-3327-4_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The attachment of a virion to a respective cellular receptor on the host organism occurring through the virus-host protein-protein interactions (PPIs) is a decisive step for viral pathogenicity and infectivity. Therefore, a vast number of wet-lab experimental techniques are used to study virus-host PPIs. Taking the great number and enormous variety of virus-host PPIs and the cost as well as labor of laboratory work, however, computational approaches toward analyzing the available interaction data and predicting previously unidentified interactions have been on the rise. Among them, machine-learning-based models are getting increasingly more attention with a great body of resources and tools proposed recently.In this chapter, we first provide the methodology with major steps toward the development of a virus-host PPI prediction tool. Next, we discuss the challenges involved and evaluate several existing machine-learning-based virus-host PPI prediction tools. Finally, we describe our experience with several ensemble techniques as utilized on available prediction results retrieved from individual PPI prediction tools. Overall, based on our experience, we recognize there is still room for the development of new individual and/or ensemble virus-host PPI prediction tools that leverage existing tools.
Collapse
Affiliation(s)
- Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ahmad Hassan Ibrahim
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey.
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.
| |
Collapse
|
17
|
Murakami Y, Mizuguchi K. Recent developments of sequence-based prediction of protein-protein interactions. Biophys Rev 2022; 14:1393-1411. [PMID: 36589735 PMCID: PMC9789376 DOI: 10.1007/s12551-022-01038-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
The identification of protein-protein interactions (PPIs) can lead to a better understanding of cellular functions and biological processes of proteins and contribute to the design of drugs to target disease-causing PPIs. In addition, targeting host-pathogen PPIs is useful for elucidating infection mechanisms. Although several experimental methods have been used to identify PPIs, these methods can yet to draw complete PPI networks. Hence, computational techniques are increasingly required for the prediction of potential PPIs, which have never been seen experimentally. Recent high-performance sequence-based methods have contributed to the construction of PPI networks and the elucidation of pathogenetic mechanisms in specific diseases. However, the usefulness of these methods depends on the quality and quantity of training data of PPIs. In this brief review, we introduce currently available PPI databases and recent sequence-based methods for predicting PPIs. Also, we discuss key issues in this field and present future perspectives of the sequence-based PPI predictions.
Collapse
Affiliation(s)
- Yoichi Murakami
- grid.440890.10000 0004 0640 9413Tokyo University of Information Sciences, 4-1 Onaridai, Wakaba-Ku, Chiba, 265-8501 Japan
| | - Kenji Mizuguchi
- grid.136593.b0000 0004 0373 3971Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-Shi, Osaka, 565-0871 Japan ,grid.482562.fNational Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085 Japan
| |
Collapse
|
18
|
Neumann D, Roy S, Minhas FUAA, Ben-Hur A. On the choice of negative examples for prediction of host-pathogen protein interactions. FRONTIERS IN BIOINFORMATICS 2022; 2:1083292. [PMID: 36591335 PMCID: PMC9798088 DOI: 10.3389/fbinf.2022.1083292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
As practitioners of machine learning in the area of bioinformatics we know that the quality of the results crucially depends on the quality of our labeled data. While there is a tendency to focus on the quality of positive examples, the negative examples are equally as important. In this opinion paper we revisit the problem of choosing negative examples for the task of predicting protein-protein interactions, either among proteins of a given species or for host-pathogen interactions and describe important issues that are prevalent in the current literature. The challenge in creating datasets for this task is the noisy nature of the experimentally derived interactions and the lack of information on non-interacting proteins. A standard approach is to choose random pairs of non-interacting proteins as negative examples. Since the interactomes of all species are only partially known, this leads to a very small percentage of false negatives. This is especially true for host-pathogen interactions. To address this perceived issue, some researchers have chosen to select negative examples as pairs of proteins whose sequence similarity to the positive examples is sufficiently low. This clearly reduces the chance for false negatives, but also makes the problem much easier than it really is, leading to over-optimistic accuracy estimates. We demonstrate the effect of this form of bias using a selection of recent protein interaction prediction methods of varying complexity, and urge researchers to pay attention to the details of generating their datasets for potential biases like this.
Collapse
Affiliation(s)
- Don Neumann
- Department Computer Science, Colorado State University, Fort Collins, CO, United States,*Correspondence: Don Neumann, ; Asa Ben-Hur,
| | - Soumyadip Roy
- Department Computer Science, Colorado State University, Fort Collins, CO, United States
| | | | - Asa Ben-Hur
- Department Computer Science, Colorado State University, Fort Collins, CO, United States,*Correspondence: Don Neumann, ; Asa Ben-Hur,
| |
Collapse
|
19
|
Asim MN, Fazeel A, Ibrahim MA, Dengel A, Ahmed S. MP-VHPPI: Meta predictor for viral host protein-protein interaction prediction in multiple hosts and viruses. Front Med (Lausanne) 2022; 9:1025887. [PMID: 36465911 PMCID: PMC9709337 DOI: 10.3389/fmed.2022.1025887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Viral-host protein-protein interaction (VHPPI) prediction is essential to decoding molecular mechanisms of viral pathogens and host immunity processes that eventually help to control the propagation of viral diseases and to design optimized therapeutics. Multiple AI-based predictors have been developed to predict diverse VHPPIs across a wide range of viruses and hosts, however, these predictors produce better performance only for specific types of hosts and viruses. The prime objective of this research is to develop a robust meta predictor (MP-VHPPI) capable of more accurately predicting VHPPI across multiple hosts and viruses. The proposed meta predictor makes use of two well-known encoding methods Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-sequence (QS) Order that capture amino acids sequence order and distributional information to most effectively generate the numerical representation of complete viral-host raw protein sequences. Feature agglomeration method is utilized to transform the original feature space into a more informative feature space. Random forest (RF) and Extra tree (ET) classifiers are trained on optimized feature space of both APAAC and QS order separate encoders and by combining both encodings. Further predictions of both classifiers are utilized to feed the Support Vector Machine (SVM) classifier that makes final predictions. The proposed meta predictor is evaluated over 7 different benchmark datasets, where it outperforms existing VHPPI predictors with an average performance of 3.07, 6.07, 2.95, and 2.85% in terms of accuracy, Mathews correlation coefficient, precision, and sensitivity, respectively. To facilitate the scientific community, the MP-VHPPI web server is available at https://sds_genetic_analysis.opendfki.de/MP-VHPPI/.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Ahtisham Fazeel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| |
Collapse
|
20
|
Cross-attention PHV: Prediction of human and virus protein-protein interactions using cross-attention-based neural networks. Comput Struct Biotechnol J 2022; 20:5564-5573. [PMID: 36249566 PMCID: PMC9546503 DOI: 10.1016/j.csbj.2022.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Cross-attention PHV implements two key technologies: cross-attention mechanism and 1D-CNN. It accurately predicts PPIs between human and unknown influenza viruses/SARS-CoV-2. It extracts critical taxonomic and evolutionary differences responsible for PPI prediction.
Viral infections represent a major health concern worldwide. The alarming rate at which SARS-CoV-2 spreads, for example, led to a worldwide pandemic. Viruses incorporate genetic material into the host genome to hijack host cell functions such as the cell cycle and apoptosis. In these viral processes, protein–protein interactions (PPIs) play critical roles. Therefore, the identification of PPIs between humans and viruses is crucial for understanding the infection mechanism and host immune responses to viral infections and for discovering effective drugs. Experimental methods including mass spectrometry-based proteomics and yeast two-hybrid assays are widely used to identify human-virus PPIs, but these experimental methods are time-consuming, expensive, and laborious. To overcome this problem, we developed a novel computational predictor, named cross-attention PHV, by implementing two key technologies of the cross-attention mechanism and a one-dimensional convolutional neural network (1D-CNN). The cross-attention mechanisms were very effective in enhancing prediction and generalization abilities. Application of 1D-CNN to the word2vec-generated feature matrices reduced computational costs, thus extending the allowable length of protein sequences to 9000 amino acid residues. Cross-attention PHV outperformed existing state-of-the-art models using a benchmark dataset and accurately predicted PPIs for unknown viruses. Cross-attention PHV also predicted human–SARS-CoV-2 PPIs with area under the curve values >0.95. The Cross-attention PHV web server and source codes are freely available at https://kurata35.bio.kyutech.ac.jp/Cross-attention_PHV/ and https://github.com/kuratahiroyuki/Cross-Attention_PHV, respectively.
Collapse
Key Words
- 1D-CNN, One-dimensional-CNN
- AC, Accuracy
- AUC, Area under the curve
- CNN, Convolutional neural network
- Convolutional neural network
- DT, Decision tree
- F1, F1-score
- HV-PPIs, Human-virus PPIs
- HuV-PPI, Human–unknown virus PPI
- Human
- LR, Linear regression
- MCC, Matthews correlation coefficient
- PPIs, Protein-protein interactions
- Protein–protein interaction
- RF, Random forest
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SN, Sensitivity
- SP, Specificity
- SVM, Support vector machine
- T-SNE, T-distributed stochastic neighbor embedding
- Virus
- W2V, Word2vec
- Word2vec
Collapse
|
21
|
Madan S, Demina V, Stapf M, Ernst O, Fröhlich H. Accurate prediction of virus-host protein-protein interactions via a Siamese neural network using deep protein sequence embeddings. PATTERNS (NEW YORK, N.Y.) 2022; 3:100551. [PMID: 36124304 PMCID: PMC9481957 DOI: 10.1016/j.patter.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022]
Abstract
Prediction and understanding of virus-host protein-protein interactions (PPIs) have relevance for the development of novel therapeutic interventions. In addition, virus-like particles open novel opportunities to deliver therapeutics to targeted cell types and tissues. Given our incomplete knowledge of PPIs on the one hand and the cost and time associated with experimental procedures on the other, we here propose a deep learning approach to predict virus-host PPIs. Our method (Siamese Tailored deep sequence Embedding of Proteins [STEP]) is based on recent deep protein sequence embedding techniques, which we integrate into a Siamese neural network. After showing the state-of-the-art performance of STEP on external datasets, we apply it to two use cases, severe acute respiratory syndrome coronavirus 2 and John Cunningham polyomavirus, to predict virus-host PPIs. Altogether our work highlights the potential of deep sequence embedding techniques originating from the field of NLP as well as explainable artificial intelligence methods for the analysis of biological sequences.
Collapse
Affiliation(s)
- Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Institute of Computer Science, University of Bonn, 53115 Bonn, Germany
| | | | - Marcus Stapf
- NEUWAY Pharma GmbH, In den Dauen 6A, 53117 Bonn, Germany
| | - Oliver Ernst
- NEUWAY Pharma GmbH, In den Dauen 6A, 53117 Bonn, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
22
|
Koca MB, Nourani E, Abbasoğlu F, Karadeniz İ, Sevilgen FE. Graph convolutional network based virus-human protein-protein interaction prediction for novel viruses. Comput Biol Chem 2022; 101:107755. [PMID: 36037723 DOI: 10.1016/j.compbiolchem.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/07/2022] [Accepted: 08/10/2022] [Indexed: 11/03/2022]
Abstract
Computational identification of human-virus protein-protein interactions (PHIs) is a worthwhile step towards understanding infection mechanisms. Analysis of the PHI networks is important for the determination of pathogenic diseases. Prediction of these interactions is a popular problem since experimental detection of PHIs is both time-consuming and expensive. The available methods use biological features like amino acid sequences, molecular structure, or biological activities for prediction. Recent studies show that the topological properties of proteins in protein-protein interaction (PPI) networks increase the performance of the predictions. The basic network projections, random-walk-based models, or graph neural networks are used for generating topologically enriched (hybrid) protein embeddings. In this study, we propose a three-stage machine learning pipeline that generates and uses hybrid embeddings for PHI prediction. In the first stage, numerical features are extracted from the amino acid sequences using the Doc2Vec and Byte Pair Encoding method. The amino acid embeddings are used as node features while training a modified GraphSAGE model, which is an improved version of the graph convolutional network. Lastly, the hybrid protein embeddings are used for training a binary interaction classifier model that predicts whether there is an interaction between the given two proteins or not. The proposed method is evaluated with comprehensive experiments to test its functionality and compare it with the state-of-art methods. The experimental results on the benchmark dataset prove the efficiency of the proposed model by having a 3-23% better area under curve (AUC) score than its competitors.
Collapse
Affiliation(s)
- Mehmet Burak Koca
- Department of Computer Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Esmaeil Nourani
- Department of Information Technology, Faculty of Computer Engineering and Information Technology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Ferda Abbasoğlu
- Department of Computer Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey
| | - İlknur Karadeniz
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Işık University, İstanbul, Turkey.
| | - Fatih Erdoğan Sevilgen
- Department of Computer Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey; Institute for Data Science and Artificial Intelligence, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
23
|
Chen W, Wang S, Song T, Li X, Han P, Gao C. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction. BMC Genomics 2022; 23:555. [PMID: 35922751 PMCID: PMC9351149 DOI: 10.1186/s12864-022-08772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
Background Protein-protein interaction (PPI) is very important for many biochemical processes. Therefore, accurate prediction of PPI can help us better understand the role of proteins in biochemical processes. Although there are many methods to predict PPI in biology, they are time-consuming and lack accuracy, so it is necessary to build an efficiently and accurately computational model in the field of PPI prediction. Results We present a novel sequence-based computational approach called DCSE (Double-Channel-Siamese-Ensemble) to predict potential PPI. In the encoding layer, we treat each amino acid as a word, and map it into an N-dimensional vector. In the feature extraction layer, we extract features from local and global perspectives by Multilayer Convolutional Neural Network (MCN) and Multilayer Bidirectional Gated Recurrent Unit with Convolutional Neural Networks (MBC). Finally, the output of the feature extraction layer is then fed into the prediction layer to output whether the input protein pair will interact each other. The MCN and MBC are siamese and ensemble based network, which can effectively improve the performance of the model. In order to demonstrate our model’s performance, we compare it with four machine learning based and three deep learning based models. The results show that our method outperforms other models in all evaluation criteria. The Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC of our model are 0.9303, 0.9091, 0.9268, 0.9452, 0.8609. For the other seven models, the highest Accuracy, Precision, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{1}$$\end{document}F1, Recall and MCC are 0.9288, 0.9243, 0.9246, 0.9250, 0.8572. We also test our model in the imbalanced dataset and transfer our model to another species. The results show our model is excellent. Conclusion Our model achieves the best performance by comparing it with seven other models. NLP-based coding method has a good effect on PPI prediction task. MCN and MBC extract protein sequence features from local and global perspectives and these two feature extraction layers are based on siamese and ensemble network structures. Siamese-based network structure can keep the features consistent and ensemble based network structure can effectively improve the accuracy of the model. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08772-6.
Collapse
Affiliation(s)
- Wenqi Chen
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Shuang Wang
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.
| | - Tao Song
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China.,Department of Artificial Intelligence, Polytechnical University of Madrid, Madrid, Spain
| | - Xue Li
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Peifu Han
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| | - Changnan Gao
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
24
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Asim MN, Ibrahim MA, Imran Malik M, Dengel A, Ahmed S. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction. Int J Mol Sci 2022; 23:ijms23158221. [PMID: 35897818 PMCID: PMC9329987 DOI: 10.3390/ijms23158221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
Circular ribonucleic acids (circRNAs) are novel non-coding RNAs that emanate from alternative splicing of precursor mRNA in reversed order across exons. Despite the abundant presence of circRNAs in human genes and their involvement in diverse physiological processes, the functionality of most circRNAs remains a mystery. Like other non-coding RNAs, sub-cellular localization knowledge of circRNAs has the aptitude to demystify the influence of circRNAs on protein synthesis, degradation, destination, their association with different diseases, and potential for drug development. To date, wet experimental approaches are being used to detect sub-cellular locations of circular RNAs. These approaches help to elucidate the role of circRNAs as protein scaffolds, RNA-binding protein (RBP) sponges, micro-RNA (miRNA) sponges, parental gene expression modifiers, alternative splicing regulators, and transcription regulators. To complement wet-lab experiments, considering the progress made by machine learning approaches for the determination of sub-cellular localization of other non-coding RNAs, the paper in hand develops a computational framework, Circ-LocNet, to precisely detect circRNA sub-cellular localization. Circ-LocNet performs comprehensive extrinsic evaluation of 7 residue frequency-based, residue order and frequency-based, and physio-chemical property-based sequence descriptors using the five most widely used machine learning classifiers. Further, it explores the performance impact of K-order sequence descriptor fusion where it ensembles similar as well dissimilar genres of statistical representation learning approaches to reap the combined benefits. Considering the diversity of statistical representation learning schemes, it assesses the performance of second-order, third-order, and going all the way up to seventh-order sequence descriptor fusion. A comprehensive empirical evaluation of Circ-LocNet over a newly developed benchmark dataset using different settings reveals that standalone residue frequency-based sequence descriptors and tree-based classifiers are more suitable to predict sub-cellular localization of circular RNAs. Further, K-order heterogeneous sequence descriptors fusion in combination with tree-based classifiers most accurately predict sub-cellular localization of circular RNAs. We anticipate this study will act as a rich baseline and push the development of robust computational methodologies for the accurate sub-cellular localization determination of novel circRNAs.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Correspondence:
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Muhammad Imran Malik
- School of Computer Science & Electrical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
| | - Andreas Dengel
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany; (M.A.I.); (A.D.); (S.A.)
- DeepReader GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
| |
Collapse
|
26
|
Asim MN, Ibrahim MA, Malik MI, Dengel A, Ahmed S. LGCA-VHPPI: A local-global residue context aware viral-host protein-protein interaction predictor. PLoS One 2022; 17:e0270275. [PMID: 35789333 PMCID: PMC9255777 DOI: 10.1371/journal.pone.0270275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/07/2022] [Indexed: 11/19/2022] Open
Abstract
Viral-host protein protein interaction (PPI) analysis is essential to decode the molecular mechanism of viral pathogen and host immunity processes which eventually help to control viral diseases and optimize therapeutics. The state-of-the-art viral-host PPI predictor leverages unsupervised embedding learning technique (doc2vec) to generate statistical representations of viral-host protein sequences and a Random Forest classifier for interaction prediction. However, doc2vec approach generates the statistical representations of viral-host protein sequences by merely modelling the local context of residues which only partially captures residue semantics. The paper in hand proposes a novel technique for generating better statistical representations of viral and host protein sequences based on the infusion of comprehensive local and global contextual information of the residues. While local residue context aware encoding captures semantic relatedness and short range dependencies of residues. Global residue context aware encoding captures comprehensive long-range residues dependencies, positional invariance of residues, and unique residue combination distribution important for interaction prediction. Using concatenated rich statistical representations of viral and host protein sequences, a robust machine learning framework "LGCA-VHPPI" is developed which makes use of a deep forest model to effectively model complex non-linearity of viral-host PPI sequences. An in-depth performance comparison of the proposed LGCA-VHPPI framework with existing diverse sequence encoding schemes based viral-host PPI predictors reveals that LGCA-VHPPI outperforms state-of-the-art predictor by 6%, 2%, and 2% in terms of matthews correlation coefficient over 3 different benchmark viral-host PPI prediction datasets.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Muhammad Imran Malik
- National Center of Artificial Intelligence, National University of Sciences and Technology, Islamabad, Pakistan
| | - Andreas Dengel
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
| |
Collapse
|
27
|
Xia S, Xia Y, Xiang C, Wang H, Wang C, He J, Shi G, Gu L. A virus–target host proteins recognition method based on integrated complexes data and seed extension. BMC Bioinformatics 2022; 23:256. [PMID: 35764916 PMCID: PMC9238269 DOI: 10.1186/s12859-022-04792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Target drugs play an important role in the clinical treatment of virus diseases. Virus-encoded proteins are widely used as targets for target drugs. However, they cannot cope with the drug resistance caused by a mutated virus and ignore the importance of host proteins for virus replication. Some methods use interactions between viruses and their host proteins to predict potential virus–target host proteins, which are less susceptible to mutated viruses. However, these methods only consider the network topology between the virus and the host proteins, ignoring the influences of protein complexes. Therefore, we introduce protein complexes that are less susceptible to drug resistance of mutated viruses, which helps recognize the unknown virus–target host proteins and reduce the cost of disease treatment.
Results
Since protein complexes contain virus–target host proteins, it is reasonable to predict virus–target human proteins from the perspective of the protein complexes. We propose a coverage clustering-core-subsidiary protein complex recognition method named CCA-SE that integrates the known virus–target host proteins, the human protein–protein interaction network, and the known human protein complexes. The proposed method aims to obtain the potential unknown virus–target human host proteins. We list part of the targets after proving our results effectively in enrichment experiments.
Conclusions
Our proposed CCA-SE method consists of two parts: one is CCA, which is to recognize protein complexes, and the other is SE, which is to select seed nodes as the core of protein complexes by using seed expansion. The experimental results validate that CCA-SE achieves efficient recognition of the virus–target host proteins.
Collapse
|
28
|
Ma Y, He T, Tan Y, Jiang X. Seq-BEL: Sequence-Based Ensemble Learning for Predicting Virus-Human Protein-Protein Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1322-1333. [PMID: 32750886 DOI: 10.1109/tcbb.2020.3008157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infectious diseases are currently the most important and widespread health problem, and identifying viral infection mechanisms is critical for controlling diseases caused by highly infectious viruses. Because of the lack of non-interactive protein pairs and serious imbalance between positive and negative sample ratios, the supervised learning algorithm is not suitable for prediction. At the same time, due to the lack of information on viral proteins and significant dissimilarity in sequence, some ensemble learning models have poor generalization ability. In this paper, we propose a Sequence-Based Ensemble Learning (Seq-BEL) method to predict the potential virus-human PPIs. Specifically, based on the amino acid sequence of proteins and the currently known virus-human PPI network, Seq-BEL calculates various features and similarities of human proteins and viral proteins, and then combines these similarities and features to score the potential of virus-human PPIs. The computational results show that Seq-BEL achieves success in predicting potential virus-human PPIs and outperforms other state-of-the-art methods. More importantly, Seq-BEL also has good predictive performance for new human proteins and new viral proteins. In addition, the model has the advantages of strong robustness and good generalization ability, and can be used as an effective tool for virus-human PPI prediction.
Collapse
|
29
|
Kaundal R, Loaiza CD, Duhan N, Flann N. deepHPI: a comprehensive deep learning platform for accurate prediction and visualization of host-pathogen protein-protein interactions. Brief Bioinform 2022; 23:6576450. [PMID: 35511057 DOI: 10.1093/bib/bbac125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 01/06/2023] Open
Abstract
Host-pathogen protein interactions (HPPIs) play vital roles in many biological processes and are directly involved in infectious diseases. With the outbreak of more frequent pandemics in the last couple of decades, such as the recent outburst of Covid-19 causing millions of deaths, it has become more critical to develop advanced methods to accurately predict pathogen interactions with their respective hosts. During the last decade, experimental methods to identify HPIs have been used to decipher host-pathogen systems with the caveat that those techniques are labor-intensive, expensive and time-consuming. Alternatively, accurate prediction of HPIs can be performed by the use of data-driven machine learning. To provide a more robust and accurate solution for the HPI prediction problem, we have developed a deepHPI tool based on deep learning. The web server delivers four host-pathogen model types: plant-pathogen, human-bacteria, human-virus and animal-pathogen, leveraging its operability to a wide range of analyses and cases of use. The deepHPI web tool is the first to use convolutional neural network models for HPI prediction. These models have been selected based on a comprehensive evaluation of protein features and neural network architectures. The best prediction models have been tested on independent validation datasets, which achieved an overall Matthews correlation coefficient value of 0.87 for animal-pathogen using the combined pseudo-amino acid composition and conjoint triad (PAAC_CT) features, 0.75 for human-bacteria using the combined pseudo-amino acid composition, conjoint triad and normalized Moreau-Broto feature (PAAC_CT_NMBroto), 0.96 for human-virus using PAAC_CT_NMBroto and 0.94 values for plant-pathogen interactions using the combined pseudo-amino acid composition, composition and transition feature (PAAC_CTDC_CTDT). Our server running deepHPI is deployed on a high-performance computing cluster that enables large and multiple user requests, and it provides more information about interactions discovered. It presents an enriched visualization of the resulting host-pathogen networks that is augmented with external links to various protein annotation resources. We believe that the deepHPI web server will be very useful to researchers, particularly those working on infectious diseases. Additionally, many novel and known host-pathogen systems can be further investigated to significantly advance our understanding of complex disease-causing agents. The developed models are established on a web server, which is freely accessible at http://bioinfo.usu.edu/deepHPI/.
Collapse
Affiliation(s)
- Rakesh Kaundal
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences.,Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences.,Department of Computer Science, College of Science; Utah State University, Logan, 84322 USA
| | - Cristian D Loaiza
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences.,Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences
| | - Naveen Duhan
- Bioinformatics Facility, Center for Integrated BioSystems, College of Agriculture and Applied Sciences.,Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences
| | - Nicholas Flann
- Department of Computer Science, College of Science; Utah State University, Logan, 84322 USA
| |
Collapse
|
30
|
Saha D, Iannuccelli M, Brun C, Zanzoni A, Licata L. The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Front Microbiol 2022; 13:849781. [PMID: 35531299 PMCID: PMC9069133 DOI: 10.3389/fmicb.2022.849781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components. Experimental protein-protein interactions described in the scientific literature have been systematically captured into several molecular interaction databases. These data are organized in structured formats and can be easily downloaded by users to perform further bioinformatic and network studies. Network analysis of available virus-host interactomes allow us to understand how the host interactome is perturbed upon viral infection and what are the key host proteins targeted by the virus and the main cellular pathways that are subverted. In this review, we give an overview of publicly available viral-human protein-protein interactions resources and the community standards, curation rules and adopted ontologies. A description of the main virus-human interactome available is provided, together with the main network analyses that have been performed. We finally discuss the main limitations and future challenges to assess the quality and reliability of protein-protein interaction datasets and resources.
Collapse
Affiliation(s)
- Deeya Saha
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
| | | | - Christine Brun
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Univ., Inserm, TAGC, UMR_S1090, Marseille, France
- *Correspondence: Andreas Zanzoni,
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Luana Licata,
| |
Collapse
|
31
|
Yang X, Yang S, Ren P, Wuchty S, Zhang Z. Deep Learning-Powered Prediction of Human-Virus Protein-Protein Interactions. Front Microbiol 2022; 13:842976. [PMID: 35495666 PMCID: PMC9051481 DOI: 10.3389/fmicb.2022.842976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying human-virus protein-protein interactions (PPIs) is an essential step for understanding viral infection mechanisms and antiviral response of the human host. Recent advances in high-throughput experimental techniques enable the significant accumulation of human-virus PPI data, which have further fueled the development of machine learning-based human-virus PPI prediction methods. Emerging as a very promising method to predict human-virus PPIs, deep learning shows the powerful ability to integrate large-scale datasets, learn complex sequence-structure relationships of proteins and convert the learned patterns into final prediction models with high accuracy. Focusing on the recent progresses of deep learning-powered human-virus PPI predictions, we review technical details of these newly developed methods, including dataset preparation, deep learning architectures, feature engineering, and performance assessment. Moreover, we discuss the current challenges and potential solutions and provide future perspectives of human-virus PPI prediction in the coming post-AlphaFold2 era.
Collapse
Affiliation(s)
- Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Panyu Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, FL, United States
- Department of Biology, University of Miami, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Ziding Zhang,
| |
Collapse
|
32
|
Delaunay M, Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2405:205-230. [PMID: 35298816 DOI: 10.1007/978-1-0716-1855-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.
Collapse
Affiliation(s)
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
| |
Collapse
|
33
|
Zhou H, Beltrán JF, Brito IL. Host-microbiome protein-protein interactions capture disease-relevant pathways. Genome Biol 2022; 23:72. [PMID: 35246229 PMCID: PMC8895870 DOI: 10.1186/s13059-022-02643-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Host-microbe interactions are crucial for normal physiological and immune system development and are implicated in a variety of diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), obesity, and type 2 diabetes (T2D). Despite large-scale case-control studies aimed at identifying microbial taxa or genes involved in pathogeneses, the mechanisms linking them to disease have thus far remained elusive. Results To identify potential pathways through which human-associated bacteria impact host health, we leverage publicly-available interspecies protein-protein interaction (PPI) data to find clusters of microbiome-derived proteins with high sequence identity to known human-protein interactors. We observe differential targeting of putative human-interacting bacterial genes in nine independent metagenomic studies, finding evidence that the microbiome broadly targets human proteins involved in immune, oncogenic, apoptotic, and endocrine signaling pathways in relation to IBD, CRC, obesity, and T2D diagnoses. Conclusions This host-centric analysis provides a mechanistic hypothesis-generating platform and extensively adds human functional annotation to commensal bacterial proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02643-9.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Juan Felipe Beltrán
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Li S, Wu S, Wang L, Li F, Jiang H, Bai F. Recent advances in predicting protein-protein interactions with the aid of artificial intelligence algorithms. Curr Opin Struct Biol 2022; 73:102344. [PMID: 35219216 DOI: 10.1016/j.sbi.2022.102344] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are essential in the regulation of biological functions and cell events, therefore understanding PPIs have become a key issue to understanding the molecular mechanism and investigating the design of drugs. Here we highlight the major developments in computational methods developed for predicting PPIs by using types of artificial intelligence algorithms. The first part introduces the source of experimental PPI data. The second part is devoted to the PPI prediction methods based on sequential information. The third part covers representative methods using structural information as the input feature. The last part is methods designed by combining different types of features. For each part, the state-of-the-art computational PPI prediction methods are reviewed in an inclusive view. Finally, we discuss the flaws existing in this area and future directions of next-generation algorithms.
Collapse
Affiliation(s)
- Shiwei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sanan Wu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fenglei Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Information Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
35
|
Marques-Pereira C, Pires M, Moreira IS. Discovery of Virus-Host interactions using bioinformatic tools. Methods Cell Biol 2022; 169:169-198. [PMID: 35623701 DOI: 10.1016/bs.mcb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Dong TN, Brogden G, Gerold G, Khosla M. A multitask transfer learning framework for the prediction of virus-human protein-protein interactions. BMC Bioinformatics 2021; 22:572. [PMID: 34837942 PMCID: PMC8626732 DOI: 10.1186/s12859-021-04484-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein-protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses. RESULTS We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein-protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein-protein interaction prediction model. CONCLUSIONS Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-COV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein-protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer .
Collapse
Affiliation(s)
- Thi Ngan Dong
- L3S Research Center, Leibniz University Hannover, Hannover, Germany.
| | - Graham Brogden
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Gisa Gerold
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Megha Khosla
- L3S Research Center, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
37
|
Tsukiyama S, Hasan MM, Fujii S, Kurata H. LSTM-PHV: prediction of human-virus protein-protein interactions by LSTM with word2vec. Brief Bioinform 2021; 22:bbab228. [PMID: 34160596 PMCID: PMC8574953 DOI: 10.1093/bib/bbab228] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Viral infection involves a large number of protein-protein interactions (PPIs) between human and virus. The PPIs range from the initial binding of viral coat proteins to host membrane receptors to the hijacking of host transcription machinery. However, few interspecies PPIs have been identified, because experimental methods including mass spectrometry are time-consuming and expensive, and molecular dynamic simulation is limited only to the proteins whose 3D structures are solved. Sequence-based machine learning methods are expected to overcome these problems. We have first developed the LSTM model with word2vec to predict PPIs between human and virus, named LSTM-PHV, by using amino acid sequences alone. The LSTM-PHV effectively learnt the training data with a highly imbalanced ratio of positive to negative samples and achieved AUCs of 0.976 and 0.973 and accuracies of 0.984 and 0.985 on the training and independent datasets, respectively. In predicting PPIs between human and unknown or new virus, the LSTM-PHV learned greatly outperformed the existing state-of-the-art PPI predictors. Interestingly, learning of only sequence contexts as words is sufficient for PPI prediction. Use of uniform manifold approximation and projection demonstrated that the LSTM-PHV clearly distinguished the positive PPI samples from the negative ones. We presented the LSTM-PHV online web server and support data that are freely available at http://kurata35.bio.kyutech.ac.jp/LSTM-PHV.
Collapse
Affiliation(s)
- Sho Tsukiyama
- Department of Interdisciplinary Informatics in the Kyushu Institute of Technology, Japan
| | | | - Satoshi Fujii
- Department of Bioscience and Bioinformatics in the Kyushu Institute of Technology, Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics in the Kyushu Institute of Technology, Japan
| |
Collapse
|
38
|
Pitta JLDLP, Vasconcelos CRDS, Wallau GDL, Campos TDL, Rezende AM. In silico predictions of protein interactions between Zika virus and human host. PeerJ 2021; 9:e11770. [PMID: 34513323 PMCID: PMC8395582 DOI: 10.7717/peerj.11770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The ZIKA virus (ZIKV) belongs to the Flaviviridae family, was first isolated in the 1940s, and remained underreported until its global threat in 2016, where drastic consequences were reported as Guillan-Barre syndrome and microcephaly in newborns. Understanding molecular interactions of ZIKV proteins during the host infection is important to develop treatments and prophylactic measures; however, large-scale experimental approaches normally used to detect protein-protein interaction (PPI) are onerous and labor-intensive. On the other hand, computational methods may overcome these challenges and guide traditional approaches on one or few protein molecules. The prediction of PPIs can be used to study host-parasite interactions at the protein level and reveal key pathways that allow viral infection. RESULTS Applying Random Forest and Support Vector Machine (SVM) algorithms, we performed predictions of PPI between two ZIKV strains and human proteomes. The consensus number of predictions of both algorithms was 17,223 pairs of proteins. Functional enrichment analyses were executed with the predicted networks to access the biological meanings of the protein interactions. Some pathways related to viral infection and neurological development were found for both ZIKV strains in the enrichment analysis, but the JAK-STAT pathway was observed only for strain PE243 when compared with the FSS13025 strain. CONCLUSIONS The consensus network of PPI predictions made by Random Forest and SVM algorithms allowed an enrichment analysis that corroborates many aspects of ZIKV infection. The enrichment results are mainly related to viral infection, neuronal development, and immune response, and presented differences among the two compared ZIKV strains. Strain PE243 presented more predicted interactions between proteins from the JAK-STAT signaling pathway, which could lead to a more inflammatory immune response when compared with the FSS13025 strain. These results show that the methodology employed in this study can potentially reveal new interactions between the ZIKV and human cells.
Collapse
Affiliation(s)
| | | | | | - Túlio de Lima Campos
- Bioinformatics Platform, Aggeu Magalhães Institute-FIOCRUZ/PE, Recife, PE, Brasil
| | | |
Collapse
|
39
|
Abstract
This review provides the feasible literature on drug discovery through ML tools and techniques that are enforced in every phase of drug development to accelerate the research process and deduce the risk and expenditure in clinical trials. Machine learning techniques improve the decision-making in pharmaceutical data across various applications like QSAR analysis, hit discoveries, de novo drug architectures to retrieve accurate outcomes. Target validation, prognostic biomarkers, digital pathology are considered under problem statements in this review. ML challenges must be applicable for the main cause of inadequacy in interpretability outcomes that may restrict the applications in drug discovery. In clinical trials, absolute and methodological data must be generated to tackle many puzzles in validating ML techniques, improving decision-making, promoting awareness in ML approaches, and deducing risk failures in drug discovery.
Collapse
Affiliation(s)
- Suresh Dara
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Swetha Dhamercherla
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR) and Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313 Telangana India
| | - CH Madhu Babu
- Department of Computer Science and Engineering, B V Raju Institute of Technology, Narsapur, Medak, 502313 Telangana India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Jaipur, 302023 Rajasthan India
| |
Collapse
|
40
|
Zhu J, Eid FE, Tong L, Zhao W, Wang W, Heath LS, Kang L, Cui F. Characterization of protein-protein interactions between rice viruses and vector insects. INSECT SCIENCE 2021; 28:976-986. [PMID: 32537916 DOI: 10.1111/1744-7917.12840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Planthoppers are the most notorious rice pests, because they transmit various rice viruses in a persistent-propagative manner. Protein-protein interactions (PPIs) between virus and vector are crucial for virus transmission by vector insects. However, the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods. In this study, we applied DeNovo, a virus-host sequence-based PPI predictor, to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses. PPIs were identified at two different confidence thresholds, referred to as low and high modes. The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode. After eliminating the "one-too-many" redundant interacting information, the PPIs with unique planthopper proteins were reduced to 343-724 in the low mode and 758-1671 in the high mode. Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes, indicating that they are potential conserved vector factors essential for transmission of rice viruses. Ten PPIs between small brown planthopper and rice stripe virus (RSV) were verified using glutathione-S-transferase (GST)/His-pull down or co-immunoprecipitation assay. Five of the ten PPIs were proven positive, and three of the five SBPH proteins were confirmed to interact with RSV. The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects.
Collapse
Affiliation(s)
- Junjie Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | | | - Lu Tong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Yang X, Yang S, Lian X, Wuchty S, Zhang Z. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction. Bioinformatics 2021; 37:4771-4778. [PMID: 34273146 PMCID: PMC8406877 DOI: 10.1093/bioinformatics/btab533] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Motivation To complement experimental efforts, machine learning-based computational methods are playing an increasingly important role to predict human–virus protein–protein interactions (PPIs). Furthermore, transfer learning can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task, improving prediction performance. Results To predict interactions between human and viral proteins, we combine evolutionary sequence profile features with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our main contribution, we introduce two transfer learning methods (i.e. ‘frozen’ type and ‘fine-tuning’ type) that reliably predict interactions in a target human–virus domain based on training in a source human–virus domain, by retraining CNN layers. Finally, we utilize the ‘frozen’ type transfer learning approach to predict human–SARS-CoV-2 PPIs, indicating that our predictions are topologically and functionally similar to experimentally known interactions. Availability and implementation: The source codes and datasets are available at https://github.com/XiaodiYangCAU/TransPPI/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Stefan Wuchty
- Dept. of Computer Science, University of Miami, Miami, FL 33146, USA.,Dept. of Biology, University of Miami, Miami, FL 33146, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
42
|
Karabulut OC, Karpuzcu BA, Türk E, Ibrahim AH, Süzek BE. ML-AdVInfect: A Machine-Learning Based Adenoviral Infection Predictor. Front Mol Biosci 2021; 8:647424. [PMID: 34026828 PMCID: PMC8139618 DOI: 10.3389/fmolb.2021.647424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/22/2021] [Indexed: 01/08/2023] Open
Abstract
Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only clinically relevant but also important to elucidate the potential use of AdVs as vectors in therapeutic applications. For an adenoviral infection to occur, attachment of the viral ligand to a cellular receptor on the host organism is a prerequisite and, in this sense, it is a criterion to decide whether an adenoviral infection can potentially happen. The interaction between any virus and its corresponding host organism is a specific kind of protein-protein interaction (PPI) and several experimental techniques, including high-throughput methods are being used in exploring such interactions. As a result, there has been accumulating data on virus-host interactions including a significant portion reported at publicly available bioinformatics resources. There is not, however, a computational model to integrate and interpret the existing data to draw out concise decisions, such as whether an infection happens or not. In this study, accepting the cellular entry of AdV as a decisive parameter for infectivity, we have developed a machine learning, more precisely support vector machine (SVM), based methodology to predict whether adenoviral infection can take place in a given host. For this purpose, we used the sequence data of the known receptors of AdVs, we identified sets of adenoviral ligands and their respective host species, and eventually, we have constructed a comprehensive adenovirus–host interaction dataset. Then, we committed interaction predictions through publicly available virus-host PPI tools and constructed an AdV infection predictor model using SVM with RBF kernel, with the overall sensitivity, specificity, and AUC of 0.88 ± 0.011, 0.83 ± 0.064, and 0.86 ± 0.030, respectively. ML-AdVInfect is the first of its kind as an effective predictor to screen the infection capacity along with anticipating any cross-species shifts. We anticipate our approach led to ML-AdVInfect can be adapted in making predictions for other viral infections.
Collapse
Affiliation(s)
- Onur Can Karabulut
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Betül Asiye Karpuzcu
- Bioinformatics Graduate Program, Graduate School of Natural and Applied Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Erdem Türk
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ahmad Hassan Ibrahim
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Barış Ethem Süzek
- Department of Computer Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey.,Georgetown University Medical Center, Biochemistry and Molecular and Cellular Biology, Washington, DC, United States
| |
Collapse
|
43
|
Prasasty VD, Hutagalung RA, Gunadi R, Sofia DY, Rosmalena R, Yazid F, Sinaga E. Prediction of human-Streptococcus pneumoniae protein-protein interactions using logistic regression. Comput Biol Chem 2021; 92:107492. [PMID: 33964803 DOI: 10.1016/j.compbiolchem.2021.107492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae is a major cause of mortality in children under five years old. In recent years, the emergence of antibiotic-resistant strains of S. pneumoniae increases the threat level of this pathogen. For that reason, the exploration of S. pneumoniae protein virulence factors should be considered in developing new drugs or vaccines, for instance by the analysis of host-pathogen protein-protein interactions (HP-PPIs). In this research, prediction of protein-protein interactions was performed with a logistic regression model with the number of protein domain occurrences as features. By utilizing HP-PPIs of three different pathogens as training data, the model achieved 57-77 % precision, 64-75 % recall, and 96-98 % specificity. Prediction of human-S. pneumoniae protein-protein interactions using the model yielded 5823 interactions involving thirty S. pneumoniae proteins and 324 human proteins. Pathway enrichment analysis showed that most of the pathways involved in the predicted interactions are immune system pathways. Network topology analysis revealed β-galactosidase (BgaA) as the most central among the S. pneumoniae proteins in the predicted HP-PPI networks, with a degree centrality of 1.0 and a betweenness centrality of 0.451853. Further experimental studies are required to validate the predicted interactions and examine their roles in S. pneumoniae infection.
Collapse
Affiliation(s)
- Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia.
| | - Rory Anthony Hutagalung
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Reinhart Gunadi
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Dewi Yustika Sofia
- Department of Biology, Faculty of Life Sciences, Universitas Surya, Tangerang, Banten, 15143, Indonesia
| | - Rosmalena Rosmalena
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Fatmawaty Yazid
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Ernawati Sinaga
- Faculty of Biology, Universitas Nasional, Jakarta, 12520, Indonesia.
| |
Collapse
|
44
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
45
|
Liu-Wei W, Kafkas Ş, Chen J, Dimonaco NJ, Tegnér J, Hoehndorf R. DeepViral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes. Bioinformatics 2021; 37:2722-2729. [PMID: 33682875 PMCID: PMC8428617 DOI: 10.1093/bioinformatics/btab147] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Infectious diseases caused by novel viruses have become a major public health concern. Rapid identification of virus-host interactions can reveal mechanistic insights into infectious diseases and shed light on potential treatments. Current computational prediction methods for novel viruses are based mainly on protein sequences. However, it is not clear to what extent other important features, such as the symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e., signs and symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a potential proxy and an additional source of information for the underlying molecular interactions between the pathogens and hosts. RESULTS We developed DeepViral, a deep learning based method that predicts protein-protein interactions (PPI) between humans and viruses. Motivated by the potential utility of infectious disease phenotypes, we first embedded human proteins and viruses in a shared space using their associated phenotypes and functions, supported by formalized background knowledge from biomedical ontologies. By jointly learning from protein sequences and phenotype features, DeepViral significantly improves over existing sequence-based methods for intra- and inter-species PPI prediction. AVAILABILITY Code and datasets for reproduction and customization are available at https://github.com/bio-ontology-research-group/DeepViral. Prediction results for 14 virus families are available at https://doi.org/10.5281/zenodo.4429824.
Collapse
Affiliation(s)
- Wang Liu-Wei
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Şenay Kafkas
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jun Chen
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3BQ, Wales, UK
| | - Jesper Tegnér
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
46
|
Yang X, Lian X, Fu C, Wuchty S, Yang S, Zhang Z. HVIDB: a comprehensive database for human-virus protein-protein interactions. Brief Bioinform 2021; 22:832-844. [PMID: 33515030 DOI: 10.1093/bib/bbaa425] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
While leading to millions of people's deaths every year the treatment of viral infectious diseases remains a huge public health challenge.Therefore, an in-depth understanding of human-virus protein-protein interactions (PPIs) as the molecular interface between a virus and its host cell is of paramount importance to obtain new insights into the pathogenesis of viral infections and development of antiviral therapeutic treatments. However, current human-virus PPI database resources are incomplete, lack annotation and usually do not provide the opportunity to computationally predict human-virus PPIs. Here, we present the Human-Virus Interaction DataBase (HVIDB, http://zzdlab.com/hvidb/) that provides comprehensively annotated human-virus PPI data as well as seamlessly integrates online PPI prediction tools. Currently, HVIDB highlights 48 643 experimentally verified human-virus PPIs covering 35 virus families, 6633 virally targeted host complexes, 3572 host dependency/restriction factors as well as 911 experimentally verified/predicted 3D complex structures of human-virus PPIs. Furthermore, our database resource provides tissue-specific expression profiles of 6790 human genes that are targeted by viruses and 129 Gene Expression Omnibus series of differentially expressed genes post-viral infections. Based on these multifaceted and annotated data, our database allows the users to easily obtain reliable information about PPIs of various human viruses and conduct an in-depth analysis of their inherent biological significance. In particular, HVIDB also integrates well-performing machine learning models to predict interactions between the human host and viral proteins that are based on (i) sequence embedding techniques, (ii) interolog mapping and (iii) domain-domain interaction inference. We anticipate that HVIDB will serve as a one-stop knowledge base to further guide hypothesis-driven experimental efforts to investigate human-virus relationships.
Collapse
Affiliation(s)
- Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Stefan Wuchty
- Institute of Data Science and Sylvester Comprehensive Cancer Center at the University of Miami, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Lian X, Yang X, Shao J, Hou F, Yang S, Pan D, Zhang Z. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Khatun MS, Shoombuatong W, Hasan MM, Kurata H. Evolution of Sequence-based Bioinformatics Tools for Protein-protein Interaction Prediction. Curr Genomics 2020; 21:454-463. [PMID: 33093807 PMCID: PMC7536797 DOI: 10.2174/1389202921999200625103936] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein-protein interactions (PPIs) are the physical connections between two or more proteins via electrostatic forces or hydrophobic effects. Identification of the PPIs is pivotal, which contributes to many biological processes including protein function, disease incidence, and therapy design. The experimental identification of PPIs via high-throughput technology is time-consuming and expensive. Bioinformatics approaches are expected to solve such restrictions. In this review, our main goal is to provide an inclusive view of the existing sequence-based computational prediction of PPIs. Initially, we briefly introduce the currently available PPI databases and then review the state-of-the-art bioinformatics approaches, working principles, and their performances. Finally, we discuss the caveats and future perspective of the next generation algorithms for the prediction of PPIs.
Collapse
Affiliation(s)
| | | | - Md. Mehedi Hasan
- Address correspondence to these authors at the Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Tel: +81-948-297-828; E-mail: and Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Tel: +81-948-297-828; E-mail:
| | - Hiroyuki Kurata
- Address correspondence to these authors at the Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Tel: +81-948-297-828; E-mail: and Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Tel: +81-948-297-828; E-mail:
| |
Collapse
|
49
|
Khorsand B, Savadi A, Naghibzadeh M. SARS-CoV-2-human protein-protein interaction network. INFORMATICS IN MEDICINE UNLOCKED 2020; 20:100413. [PMID: 32838020 PMCID: PMC7425553 DOI: 10.1016/j.imu.2020.100413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus which caused the coronavirus disease 2019 pandemic and infected more than 12 million victims and resulted in over 560,000 deaths in 213 countries around the world. Having no symptoms in the first week of infection increases the rate of spreading the virus. The increasing rate of the number of infected individuals and its high mortality necessitates an immediate development of proper diagnostic methods and effective treatments. SARS-CoV-2, similar to other viruses, needs to interact with the host proteins to reach the host cells and replicate its genome. Consequently, virus-host protein-protein interaction (PPI) identification could be useful in predicting the behavior of the virus and the design of antiviral drugs. Identification of virus-host PPIs using experimental approaches are very time consuming and expensive. Computational approaches could be acceptable alternatives for many preliminary investigations. In this study, we developed a new method to predict SARS-CoV-2-human PPIs. Our model is a three-layer network in which the first layer contains the most similar Alphainfluenzavirus proteins to SARS-CoV-2 proteins. The second layer contains protein-protein interactions between Alphainfluenzavirus proteins and human proteins. The last layer reveals protein-protein interactions between SARS-CoV-2 proteins and human proteins by using the clustering coefficient network property on the first two layers. To further analyze the results of our prediction network, we investigated human proteins targeted by SARS-CoV-2 proteins and reported the most central human proteins in human PPI network. Moreover, differentially expressed genes of previous researches were investigated and PPIs of SARS-CoV-2-human network, the human proteins of which were related to upregulated genes, were reported.
Collapse
Affiliation(s)
- Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abdorreza Savadi
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Naghibzadeh
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
50
|
Chen H, Li F, Wang L, Jin Y, Chi CH, Kurgan L, Song J, Shen J. Systematic evaluation of machine learning methods for identifying human-pathogen protein-protein interactions. Brief Bioinform 2020; 22:5847611. [PMID: 32459334 DOI: 10.1093/bib/bbaa068] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, high-throughput experimental techniques have significantly enhanced the accuracy and coverage of protein-protein interaction identification, including human-pathogen protein-protein interactions (HP-PPIs). Despite this progress, experimental methods are, in general, expensive in terms of both time and labour costs, especially considering that there are enormous amounts of potential protein-interacting partners. Developing computational methods to predict interactions between human and bacteria pathogen has thus become critical and meaningful, in both facilitating the detection of interactions and mining incomplete interaction maps. In this paper, we present a systematic evaluation of machine learning-based computational methods for human-bacterium protein-protein interactions (HB-PPIs). We first reviewed a vast number of publicly available databases of HP-PPIs and then critically evaluate the availability of these databases. Benefitting from its well-structured nature, we subsequently preprocess the data and identified six bacterium pathogens that could be used to study bacterium subjects in which a human was the host. Additionally, we thoroughly reviewed the literature on 'host-pathogen interactions' whereby existing models were summarized that we used to jointly study the impact of different feature representation algorithms and evaluate the performance of existing machine learning computational models. Owing to the abundance of sequence information and the limited scale of other protein-related information, we adopted the primary protocol from the literature and dedicated our analysis to a comprehensive assessment of sequence information and machine learning models. A systematic evaluation of machine learning models and a wide range of feature representation algorithms based on sequence information are presented as a comparison survey towards the prediction performance evaluation of HB-PPIs.
Collapse
|