3
|
Klamer Z, Haab B. Combined Analysis of Multiple Glycan-Array Datasets: New Explorations of Protein-Glycan Interactions. Anal Chem 2021; 93:10925-10933. [PMID: 34319080 DOI: 10.1021/acs.analchem.1c01739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycan arrays are indispensable for learning about the specificities of glycan-binding proteins. Despite the abundance of available data, the current analysis methods do not have the ability to interpret and use the variety of data types and to integrate information across datasets. Here, we evaluated whether a novel, automated algorithm for glycan-array analysis could meet that need. We developed a regression-tree algorithm with simultaneous motif optimization and packaged it in software called MotifFinder. We applied the software to analyze data from eight different glycan-array platforms with widely divergent characteristics and observed an accurate analysis of each dataset. We then evaluated the feasibility and value of the combined analyses of multiple datasets. In an integrated analysis of datasets covering multiple lectin concentrations, the software determined approximate binding constants for distinct motifs and identified major differences between the motifs that were not apparent from single-concentration analyses. Furthermore, an integrated analysis of data sources with complementary sets of glycans produced broader views of lectin specificity than produced by the analysis of just one data source. MotifFinder, therefore, enables the optimal use of the expanding resource of the glycan-array data and promises to advance the studies of protein-glycan interactions.
Collapse
Affiliation(s)
- Zachary Klamer
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| | - Brian Haab
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
4
|
Chiang AWT, Baghdassarian HM, Kellman BP, Bao B, Sorrentino JT, Liang C, Kuo CC, Masson HO, Lewis NE. Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy. J Biomed Sci 2021; 28:50. [PMID: 34158025 PMCID: PMC8218521 DOI: 10.1186/s12929-021-00746-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding “cancer therapy by inhibition of negative immune regulation” –CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.
Collapse
Affiliation(s)
- Austin W T Chiang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA. .,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Hratch M Baghdassarian
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Benjamin P Kellman
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - James T Sorrentino
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Bioinformatics and Systems Biology Graduate Program, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Chih-Chung Kuo
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Helen O Masson
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, 9500 Gilman Drive MC 0760, La Jolla, San Diego, CA, 92093, USA.,The Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, San Diego, CA, 92093, USA.,Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA.,The National Biologics Facility, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Mehta AY, Heimburg-Molinaro J, Cummings RD. Tools for generating and analyzing glycan microarray data. Beilstein J Org Chem 2020; 16:2260-2271. [PMID: 32983270 PMCID: PMC7492694 DOI: 10.3762/bjoc.16.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Glycans are one of the major biological polymers found in the mammalian body. They play a vital role in a number of physiologic and pathologic conditions. Glycan microarrays allow a plethora of information to be obtained on protein–glycan binding interactions. In this review, we describe the intricacies of the generation of glycan microarray data and the experimental methods for studying binding. We highlight the importance of this knowledge before moving on to the data analysis. We then highlight a number of tools for the analysis of glycan microarray data such as data repositories, data visualization and manual analysis tools, automated analysis tools and structural informatics tools.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
6
|
Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree mining approach. BMC Bioinformatics 2020; 21:42. [PMID: 32019496 PMCID: PMC7001330 DOI: 10.1186/s12859-020-3374-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. Results In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. Conclusions We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation.
Collapse
Affiliation(s)
- Lachlan Coff
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Jeffrey Chan
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.,Department of Immunology, Monash University, 3004, Melbourne, Australia.,Department of Surgery Austin Health, University of Melbourne, 3084, Heidelberg, Australia
| | - Andrew J Guy
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.
| |
Collapse
|
8
|
Abstract
This chapter describes the Multiple Carbohydrate Alignment with Weights (MCAW) tool, which is available as a part of the RINGS (Resource for INformatics of Glycomes at Soka) website. It implements a combination of KCaM (Aoki, Yamaguchi, Ueda, et al., Nucl Acids Res 32:W267-W272, 2004), a pairwise glycan alignment algorithm, and ClustalW (Thompson, Higgins, Gibson, Nucleic Acids Res 22:4673-80, 1994), a weighted multiple protein sequence alignment algorithm. This tool computes the multiple glycan alignment by first computing a guide tree to determine the order by which to progressively add glycans to the multiple alignment. The dynamic programming algorithm results in a glycan profile of the alignment glycans, containing "monosaccharide positions" indicating the ratio of monosaccharides and their glycosidic bonds that are aligned at the corresponding position. This tool has been used to analyze databases of glycan array experimental data, incorporating weights to reflect the biological significance of certain glycans over others. As a result, it has been shown that the alignments obtained are biologically relevant, matching the results as found in the literature.
Collapse
|