1
|
Sharma S, Hassan MY, Barbhuiya NH, Mansukhbhai RH, Shukla C, Singh D, Datta B. A Dataset Curated for the Assessment of G4s in the LncRNAs Dysregulated in Various Human Cancers. Sci Data 2025; 12:849. [PMID: 40410205 PMCID: PMC12102360 DOI: 10.1038/s41597-025-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 05/09/2025] [Indexed: 05/25/2025] Open
Abstract
Dysregulated expression of long non-coding RNAs (lncRNAs) in cancer contributes to various hallmarks of the disease, presenting novel opportunities for diagnosis and therapy. G-quadruplexes (G4s) within lncRNAs have gained attention recently; however, their systematic evaluation in cancer biology is yet to be performed. In this work, we have formulated a comprehensive dataset integrating experimentally-validated associations between lncRNAs and cancer, and detailed predictions of their G4-forming potential. The dataset categorizes predicted G4-motifs into anticipated G4 types (2 G, 3 G, and 4 G) and provides information about the subcellular localization of the corresponding lncRNAs. It describes lncRNA-RNA and lncRNA-protein interactions, together with the RNA G4-binding capabilities of these proteins. The dataset facilitates the investigation of G4-mediated lncRNA functions in diverse human cancers and provides distinctive leads about G4-mediated lncRNA-protein interactions.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Muhammad Yusuf Hassan
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Noman Hanif Barbhuiya
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Ramolia Harshit Mansukhbhai
- Department of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
- Department of Computer Science and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Deepshikha Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382055, India.
| |
Collapse
|
2
|
Shaposhnikov M, Thakar J, Berk BC. Value of Bioinformatics Models for Predicting Translational Control of Angiogenesis. Circ Res 2025; 136:1147-1165. [PMID: 40339045 DOI: 10.1161/circresaha.125.325438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Angiogenesis, the formation of new blood vessels, is a fundamental biological process with implications for both physiological functions and pathological conditions. While the transcriptional regulation of angiogenesis, mediated by factors such as HIF-1α (hypoxia-inducible factor 1-alpha) and VEGF (vascular endothelial growth factor), is well-characterized, the translational regulation of this process remains underexplored. Bioinformatics has emerged as an indispensable tool for advancing our understanding of translational regulation, offering predictive models that leverage large data sets to guide research and optimize experimental approaches. However, a significant gap persists between bioinformatics experts and other researchers, limiting the accessibility and utility of these tools in the broader scientific community. To address this divide, user-friendly bioinformatics platforms are being developed to democratize access to predictive analytics and empower researchers across disciplines. Translational control, compared with transcriptional control, offers a more energy-efficient mechanism that facilitates rapid cellular responses to environmental changes. Furthermore, transcriptional regulators themselves are often subject to translational control, emphasizing the interconnected nature of these regulatory layers. Investigating translational regulation requires advanced, accessible bioinformatics tools to analyze RNA structures, interacting micro-RNAs, long noncoding RNAs, and RBPs (RNA-binding proteins). Predictive platforms such as RNA structure, human internal ribosome entry site Atlas, and RBPSuite enable the study of RNA motifs and RNA-protein interactions, shedding light on these critical regulatory mechanisms. This review highlights the transformative role of bioinformatics using widely accessible user-friendly tools with a Web-browser interface to elucidate translational regulation in angiogenesis. The bioinformatics tools discussed extend beyond angiogenesis, with applications in diverse fields, including clinical care. By integrating predictive models and experimental insights, researchers can streamline hypothesis generation, reduce experimental costs, and find novel translational regulators. By bridging the bioinformatics knowledge gap, this review aims to empower researchers worldwide to adopt bioinformatics tools in their work, fostering innovation and accelerating scientific discovery.
Collapse
Affiliation(s)
- Michal Shaposhnikov
- Department of Cellular and Molecular Pharmacology and Physiology (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine, Aab Cardiovascular Research Institute (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| | - Juilee Thakar
- Department of Microbiology and Immunology (J.T.), University of Rochester School of Medicine and Dentistry, NY
- Department of Biomedical Genetics, Biostatistics and Computational Biology (J.T.), University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C Berk
- Department of Cellular and Molecular Pharmacology and Physiology (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine, Aab Cardiovascular Research Institute (M.S., B.C.B.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
3
|
Lau HL, Zhao H, Feng H, Kwok CK. Specific Targeting and Imaging of RNA G-Quadruplex (rG4) Structure Using Non-G4-Containing l-RNA Aptamer and Fluorogenic l-Aptamer. SMALL METHODS 2025; 9:e2401097. [PMID: 39224911 PMCID: PMC11926469 DOI: 10.1002/smtd.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Indexed: 09/04/2024]
Abstract
RNA G-quadruplex structures (rG4s) play important roles in the regulation of biological processes. So far, all the l-RNA aptamers developed to target rG4 of interest contain G4 motif itself, raising the question of whether non-G4-containing l-RNA aptamer can be developed to target rG4. Furthermore, it is unclear whether an l-Aptamer-based tool can be generated for G4 detection in vitro and imaging in cells. Herein, a new strategy is designed using a low GC content template library to develop a novel non-G4-containing l-RNA aptamer with strong binding affinity and improved binding specificity to rG4 of interest. The first non-G4-containing l-Aptamer, l-Apt.1-1, is identified with nanomolar binding affinity to amyloid precursor protein (APP) D-rG4. l-Apt.1-1 is applied to control APP gene expression in cells via targeting APP D-rG4 structure. Moreover, the first l-RNA-based fluorogenic bi-functional aptamer (FLAP) system is developed, and l-Apt.1-1_Pepper is engineered for in vitro detection and cellular imaging of APP D-rG4. This work provides an original approach for developing non-G4-containing l-RNA aptamer for rG4 targeting, and the novel l-Apt.1-1 developed for APP gene regulation, as well as the l-Apt.1-1_Pepper generated for imaging of APP rG4 structure can be further used in other applications in vitro and in cells.
Collapse
Affiliation(s)
- Hill Lam Lau
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongKowloon TongHong KongSARChina
| | - Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongKowloon TongHong KongSARChina
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongKowloon TongHong KongSARChina
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine PollutionCity University of Hong KongKowloon TongHong KongSARChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
| |
Collapse
|
4
|
Liew SW, Cao D, Petersen R, Butcher S, Kennedy S, Kwok CK. A novel L-RNA aptamer to regulate the pUG fold RNA-induced gene expression in vivo. Nucleic Acids Res 2025; 53:gkaf137. [PMID: 40057375 PMCID: PMC11890061 DOI: 10.1093/nar/gkaf137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/23/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
G-quadruplex (G4) is a guanine-rich secondary structure found in DNA and RNA involved in various biological roles. Recently, a non-canonical RNA G-quadruplex (rG4), known as poly(UG) (pUG) fold, was discovered in Caenorhabditis elegans. This unique structure was found to induce RNA interference (RNAi) upon recruitment of RNA-dependent RNA polymerase (RdRP), resulting in trans-generational gene silencing. Herein, we develop a novel L-RNA aptamer, L-apt3.1, that binds to the pUG fold. We uncover that L-apt3.1 consists of a parallel rG4 structural motif, and mutagenesis analysis illustrates that the rG4 motif in L-apt3.1 is essential for pUG fold recognition. We show that L-apt3.1 interacts strongly with pUG fold, and notably, it is the first reported aptamer that can bind to pUG fold in vitro. We also demonstrate that L-apt3.1 possesses great biostability in cellular environments and negligible toxicity in vivo. Furthermore, we report that L-apt3.1 can interact with pUG fold in vivo, and with a comparable performance to the G4 ligand, N-methyl mesoporphyrin, in inhibiting gene silencing in C. elegans. Overall, we demonstrate the development of pUG fold-targeting L-RNA aptamer for the first time, and show that this new aptamer tool can be applied to control pUG fold-mediated gene expression in vivo.
Collapse
Affiliation(s)
- Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, China
| | - Dong Cao
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Riley J Petersen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Scott G Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, United States
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
5
|
Kamzeeva PN, Alferova VA, Korshun VA, Varizhuk AM, Aralov AV. 5'-UTR G-Quadruplex-Mediated Translation Regulation in Eukaryotes: Current Understanding and Methodological Challenges. Int J Mol Sci 2025; 26:1187. [PMID: 39940956 PMCID: PMC11818886 DOI: 10.3390/ijms26031187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
RNA G-quadruplexes (rG4s) in 5'-UTRs represent complex regulatory elements capable of both inhibiting and activating mRNA translation through diverse mechanisms in eukaryotes. This review analyzes the evolution of our understanding of 5'-UTR rG4-mediated translation regulation, from early discoveries of simple translation inhibitors to the current recognition of their multifaceted regulatory roles. We discuss canonical and non-canonical rG4 structures, their interactions with regulatory proteins, including helicases and FMRP, and their function in both cap-dependent and IRES-mediated translation. Special attention is given to the synergistic effects between rG4s and upstream open reading frames (uORFs), stress-responsive translation regulation, and their role in repeat-associated non-AUG (RAN) translation linked to neurodegenerative diseases. We critically evaluate methodological challenges in the field, including limitations of current detection methods, reporter system artifacts, and the necessity to verify rG4 presence in endogenous transcripts. Recent technological advances, including genome editing and high-throughput sequencing approaches, have revealed that rG4 effects are more complex and context-dependent than initially thought. This review highlights the importance of developing more robust methodologies for studying rG4s at endogenous levels and carefully reevaluating previously identified targets, while emphasizing their potential as therapeutic targets in various diseases.
Collapse
Affiliation(s)
- Polina N. Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna M. Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
| |
Collapse
|
6
|
Kledus F, Dobrovolná M, Mergny JL, Brázda V. Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses. Sci Rep 2025; 15:76. [PMID: 39747944 PMCID: PMC11696869 DOI: 10.1038/s41598-024-82613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Collapse
Affiliation(s)
- Filip Kledus
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Science , National Centre for Biomolecular Research Masaryk University , Kamenice 5, Brno, 625 00, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Laboratoire d'Optique et Biosciences (LOB) , Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris , Palaiseau, 91120, France
| | - Václav Brázda
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic.
| |
Collapse
|
7
|
Liew D, Lim ZW, Yong EH. Machine learning-based prediction of DNA G-quadruplex folding topology with G4ShapePredictor. Sci Rep 2024; 14:24238. [PMID: 39414858 PMCID: PMC11484705 DOI: 10.1038/s41598-024-74826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Deoxyribonucleic acid (DNA) is able to form non-canonical four-stranded helical structures with diverse folding patterns known as G-quadruplexes (G4s). G4 topologies are classified based on their relative strand orientation following the 5' to 3' phosphate backbone polarity. Broadly, G4 topologies are either parallel (4+0), antiparallel (2+2), or hybrid (3+1). G4s play crucial roles in biological processes such as DNA repair, DNA replication, transcription and have thus emerged as biological targets in drug design. While computational models have been developed to predict G4 formation, there is currently no existing model capable of predicting G4 folding topology based on its nucleic acid sequence. Therefore, we introduce G4ShapePredictor (G4SP), an application featuring a collection of multi-classification machine learning models that are trained on a custom G4 dataset combining entries from existing literature and in-house circular dichroism experiments. G4ShapePredictor is designed to accurately predict G4 folding topologies in potassium ( K + ) buffer based on its primary sequence and is able to incorporate a threshold optimization strategy allowing users to maximise precision. Furthermore, we have identified three topological sequence motifs that suggest specific G4 folding topologies of (4+0), (2+2) or (3+1) when utilising the decision-making mechanisms of G4ShapePredictor.
Collapse
Affiliation(s)
- Donn Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
| | - Zi Way Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore
| | - Ee Hou Yong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore.
| |
Collapse
|
8
|
Gómez-Del Arco P, Isern J, Jimenez-Carretero D, López-Maderuelo D, Piñeiro-Sabarís R, El Abdellaoui-Soussi F, Torroja C, Vera-Pedrosa ML, Grima-Terrén M, Benguria A, Simón-Chica A, Queiro-Palou A, Dopazo A, Sánchez-Cabo F, Jalife J, de la Pompa JL, Filgueiras-Rama D, Muñoz-Cánoves P, Redondo JM. The G4 resolvase Dhx36 modulates cardiomyocyte differentiation and ventricular conduction system development. Nat Commun 2024; 15:8602. [PMID: 39366945 PMCID: PMC11452623 DOI: 10.1038/s41467-024-52809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes. Dhx36 deficiency directly influences cardiomyocyte gene networks by disrupting the resolution of promoter G-quadruplexes in key cardiac genes, impacting cardiomyocyte differentiation and CCS morphogenesis, and ultimately leading to dilated cardiomyopathy and atrioventricular block. These findings further identify crucial genes and pathways that regulate the development and function of the VCS/Purkinje fiber (PF) network.
Collapse
Affiliation(s)
- Pablo Gómez-Del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain.
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Joan Isern
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Linarejos Vera-Pedrosa
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mercedes Grima-Terrén
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Antonio Queiro-Palou
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- University of Michigan, Ann Arbor, MI, USA
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Filgueiras-Rama
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pura Muñoz-Cánoves
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA.
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF)/CIBERNED, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Ajit K, Alagia A, Burger K, Gullerova M. Tyrosine 1-phosphorylated RNA polymerase II transcribes PROMPTs to facilitate proximal promoter pausing and induce global transcriptional repression in response to DNA damage. Genome Res 2024; 34:201-216. [PMID: 38467418 PMCID: PMC10984383 DOI: 10.1101/gr.278644.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
DNA damage triggers a complex transcriptional response that involves both activation and repression of gene expression. In this study, we investigated global changes in transcription in response to ionizing irradiation (IR), which induces double-strand breaks in DNA. We used mNET-seq to profile nascent transcripts bound to different phosphorylated forms of the RNA polymerase II (RNA Pol II) C-terminal domain (CTD). We found that IR leads to global transcriptional repression of protein-coding genes, accompanied by an increase in antisense transcripts near promoters, called PROMPTs, transcribed by RNA Pol II phosphorylated on tyrosine 1 (Y1P) residue of the CTD. These Y1P-transcribed PROMPTs are enriched for PRC2 binding sites and associated with RNA Pol II proximal promoter pausing. We show the interaction between Y1P RNA Pol II and PRC2, as well as PRC2 binding to PROMPTs. Inhibition of PROMPTs or depletion of PRC2 leads to loss of transcriptional repression. Our results reveal a novel function of Y1P-dependent PROMPTs in mediating PRC2 recruitment to chromatin and RNA Pol II promoter pausing in response to DNA damage.
Collapse
Affiliation(s)
- Kamal Ajit
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Adele Alagia
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, 97074 Würzburg, Germany
| | - Monika Gullerova
- Sir William Dunn School of Pathology, Oxford, OX1 3RE, United Kingdom;
| |
Collapse
|
10
|
Bhatt U, Cucchiarini A, Luo Y, Evans CW, Mergny JL, Iyer KS, Smith NM. Preferential formation of Z-RNA over intercalated motifs in long noncoding RNA. Genome Res 2024; 34:217-230. [PMID: 38355305 PMCID: PMC10984386 DOI: 10.1101/gr.278236.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.
Collapse
Affiliation(s)
- Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
| |
Collapse
|
11
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Vannutelli A, Ouangraoua A, Perreault JP. Toward a Better Understanding of G4 Evolution in the 3 Living Kingdoms. Evol Bioinform Online 2023; 19:11769343231212075. [PMID: 38046653 PMCID: PMC10693206 DOI: 10.1177/11769343231212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Background G-quadruplexes (G4s) are secondary structures in DNA and RNA that impact various cellular processes, such as transcription, splicing, and translation. Due to their numerous functions, G4s are involved in many diseases, making their study important. Yet, G4s evolution remains largely unknown, due to their low sequence similarity and the poor quality of their sequence alignments across several species. To address this, we designed a strategy that avoids direct G4s alignment to study G4s evolution in the 3 species kingdoms. We also explored the coevolution between RBPs and G4s. Methods We retrieved one-to-one orthologous genes from the Ensembl Compara database and computed groups of one-to-one orthologous genes. For each group, we aligned gene sequences and identified G4 families as groups of overlapping G4s in the alignment. We analyzed these G4 families using Count, a tool to infer feature evolution into a gene or a species tree. Additionally, we utilized these G4 families to predict G4s by homology. To establish a control dataset, we performed mono-, di- and tri-nucleotide shuffling. Results Only a few conserved G4s occur among all living kingdoms. In eukaryotes, G4s exhibit slight conservation among vertebrates, and few are conserved between plants. In archaea and bacteria, at most, only 2 G4s are common. The G4 homology-based prediction increases the number of conserved G4s in common ancestors. The coevolution between RNA-binding proteins and G4s was investigated and revealed a modest impact of RNA-binding proteins evolution on G4 evolution. However, the details of this relationship remain unclear. Conclusion Even if G4 evolution still eludes us, the present study provides key information to compute groups of homologous G4 and to reveal the evolution history of G4 families.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Aïda Ouangraoua
- Département d’informatique, faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- Département de biochimie et de génomique fonctionnelle, faculté de médecine et des sciences de la santé, pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Ji D, Yuan JH, Chen SB, Tan JH, Kwok C. Selective targeting of parallel G-quadruplex structure using L-RNA aptamer. Nucleic Acids Res 2023; 51:11439-11452. [PMID: 37870474 PMCID: PMC10681708 DOI: 10.1093/nar/gkad900] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
G-quadruplexes (G4) are special nucleic acid structures with diverse conformational polymorphisms. Selective targeting of G-quadruplex conformations and regulating their biological functions provide promising therapeutic intervention. Despite the large repertoire of G4-binding tools, only a limited number of them can specifically target a particular G4 conformation. Here, we introduce a novel method, G4-SELEX-Seq and report the development of the first L-RNA aptamer, L-Apt12-6, with high binding selectivity to parallel G4 over other nucleic acid structures. Using parallel dG4 c-kit 1 as an example, we demonstrate the strong binding affinity between L-Apt12-6 and c-kit 1 dG4 in vitro and in cells, and notably report the applications of L-Apt12-6 in controlling DNA replication and gene expression. Our results suggest that L-Apt12-6 is a valuable tool for targeting parallel G-quadruplex conformation and regulating G4-mediated biological processes. Furthermore, G4-SELEX-Seq can be used as a general platform for G4-targeting L-RNA aptamers selection and should be applicable to other nucleic acid structures.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jia-Hao Yuan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
14
|
Turcotte MA, Bolduc F, Vannutelli A, Mitteaux J, Monchaud D, Perreault JP. Development of a highly optimized procedure for the discovery of RNA G-quadruplexes by combining several strategies. Biochimie 2023; 214:24-32. [PMID: 37479077 DOI: 10.1016/j.biochi.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
RNA G-quadruplexes (rG4s) are non-canonical secondary structures that are formed by the self-association of guanine quartets and that are stabilized by monovalent cations (e.g. potassium). rG4s are key elements in several post-transcriptional regulation mechanisms, including both messenger RNA (mRNA) and microRNA processing, mRNA transport and translation, to name but a few examples. Over the past few years, multiple high-throughput approaches have been developed in order to identify rG4s, including bioinformatic prediction, in vitro assays and affinity capture experiments coupled to RNA sequencing. Each individual approach had its limits, and thus yielded only a fraction of the potential rG4 that are further confirmed (i.e., there is a significant level of false positive). This report aims to benefit from the strengths of several existing approaches to identify rG4s with a high potential of being folded in cells. Briefly, rG4s were pulled-down from cell lysates using the biotinylated biomimetic G4 ligand BioTASQ and the sequences thus isolated were then identified by RNA sequencing. Then, a novel bioinformatic pipeline that included DESeq2 to identify rG4 enriched transcripts, MACS2 to identify rG4 peaks, rG4-seq to increase rG4 formation probability and G4RNA Screener to detect putative rG4s was performed. This workflow uncovers new rG4 candidates whose rG4-folding was then confirmed in vitro using an array of established biophysical methods. Clearly, this workflow led to the identification of novel rG4s in a highly specific and reliable manner.
Collapse
Affiliation(s)
- Marc-Antoine Turcotte
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - François Bolduc
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, CNRS, UMR 6302, Dijon, 21078, France
| | - Jean-Pierre Perreault
- Department of Biochemistry and Functional Genomics, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
15
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
16
|
Kaur B, Sharma P, Arora P, Sood V. QUFIND: tool for comparative prediction and mining of G4 quadruplexes overlapping with CpG islands. Front Genet 2023; 14:1265808. [PMID: 37953924 PMCID: PMC10634401 DOI: 10.3389/fgene.2023.1265808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures in DNA that have been shown to be involved in gene regulation. They play a vital role in the cellular processes and several pathogens including bacteria, fungi, and viruses have also been shown to possess G4s that help them in their pathogenesis. Additionally, cross-talk among the CpG islands and G4s has been shown to influence biological processes. The virus-encoded G4s are affected by the mutational landscape leading to the formation/deletion of these G4s. Therefore, understanding and predicting these multivariate effects on traditional and non-traditional quadruplexes forms an important area of research, that is, yet to be investigated. We have designed a user-friendly webserver QUFIND (http://soodlab.com/qufinder/) that can predict traditional as well as non-traditional quadruplexes in a given sequence. QUFIND is connected with ENSEMBL and NCBI so that the sequences can be fetched in a real-time manner. The algorithm is designed in such a way that the user is provided with multiple options to customize the base (A, T, G, or C), size of the stem (2-5), loop length (1-30), number of bulges (1-5) as well as the number of mismatches (0-2) enabling the identification of any of the secondary structure as per their interest. QUFIND is designed to predict both CpG islands as well as G4s in a given sequence. Since G4s are very short as compared to the CpG islands, hence, QUFIND can also predict the overlapping G4s within CpG islands. Therefore, the user has the flexibility to identify either overlapping or non-overlapping G4s along with the CpG islands. Additionally, one section of QUFIND is dedicated to comparing the G4s in two viral sequences. The visualization is designed in such a manner that the user is able to see the unique quadruplexes in both the input sequences. The efficiency of QUFIND is calculated on G4s obtained from G4 high throughput sequencing data (n = 1000) or experimentally validated G4s (n = 329). Our results revealed that QUFIND is able to predict G4-quadruplexes obtained from G4-sequencing data with 90.06% prediction accuracy whereas experimentally validated quadruplexes were predicted with 97.26% prediction accuracy.
Collapse
Affiliation(s)
- Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Malka Ganj, India
| | - Priya Sharma
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Malka Ganj, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| |
Collapse
|
17
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
18
|
Korsakova A, Phan AT. Prediction of G4 formation in live cells with epigenetic data: a deep learning approach. NAR Genom Bioinform 2023; 5:lqad071. [PMID: 37636021 PMCID: PMC10448861 DOI: 10.1093/nargab/lqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures abundant in DNA that may play regulatory roles in cells. Despite the ubiquity of the putative G-quadruplex-forming sequences (PQS) in the human genome, only a small fraction forms G4 structures in cells. Folded G4, histone methylation and chromatin accessibility are all parts of the complex cis regulatory landscape. We propose an approach for prediction of G4 formation in cells that incorporates epigenetic and chromatin accessibility data. The novel approach termed epiG4NN efficiently predicts cell-specific G4 formation in live cells based on a local epigenomic snapshot. Our results confirm the close relationship between H3K4me3 histone methylation, chromatin accessibility and G4 structure formation. Trained on A549 cell data, epiG4NN was then able to predict G4 formation in HEK293T and K562 cell lines. We observe the dependency of model performance with different epigenetic features on the underlying experimental condition of G4 detection. We expect that this approach will contribute to the systematic understanding of correlations between structural and epigenomic feature landscape.
Collapse
Affiliation(s)
- Anna Korsakova
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
19
|
Pereira HS, Gemmill DL, Siddiqui MQ, Vasudeva G, Patel TR. Mapping and characterization of G-quadruplexes in monkeypox genomes. J Med Virol 2023; 95:e28783. [PMID: 37212309 DOI: 10.1002/jmv.28783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
Monkeypox virus (MPXV) is a double-stranded DNA virus from the family Poxviridae, which is endemic in West and Central Africa. Various human outbreaks occurred in the 1980s, resulting from a cessation of smallpox vaccination. Recently, MPXV cases have reemerged in non-endemic nations, and the 2022 outbreak has been declared a public health emergency. Treatment optionsare limited, and many countries lack the infrastructure to provide symptomatic treatments. The development of cost-effective antivirals could ease severe health outcomes. G-quadruplexes have been a target of interest in treating viral infections with different chemicals. In the present work, a genomic-scale mapping of different MPXV isolates highlighted two conserved putative quadruplex-forming sequences MPXV-exclusive in 590 isolates. Subsequently, we assessed the G-quadruplex formation using circular dichroism spectroscopy and solution small-angle X-ray scattering. Furthermore, biochemical assays indicated the ability of MPXV quadruplexes to be recognized by two specific G4-binding partners-Thioflavin T and DHX36. Additionally, our work also suggests that a quadruplex binding small-molecule with previously reported antiviral activity, TMPyP4, interacts with MPXV G-quadruplexes with nanomolar affinity in the presence and absence of DHX36. Finally, cell biology experiments suggests that TMPyP4 treatment substantially reduced gene expression of MPXV proteins. In summary, our work provides insights into the G-quadruplexes from the MPXV genome that can be further exploited to develop therapeutics.
Collapse
Affiliation(s)
- Higor Sette Pereira
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Darren L Gemmill
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - M Quadir Siddiqui
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gunjan Vasudeva
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Trizna L, Osif B, Víglaský V. G-QINDER Tool: Bioinformatically Predicted Formation of Different Four-Stranded DNA Motifs from (GT) n and (GA) n Repeats. Int J Mol Sci 2023; 24:ijms24087565. [PMID: 37108727 DOI: 10.3390/ijms24087565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The recently introduced semi-orthogonal system of nucleic acid imaging offers a greatly improved method of identifying DNA sequences that are capable of adopting noncanonical structures. This paper uses our newly developed G-QINDER tool to identify specific repeat sequences that adopt unique structural motifs in DNA: TG and AG repeats. The structures were found to adopt a left-handed G-quadruplex form under extreme crowding conditions and a unique tetrahelical motif under certain other conditions. The tetrahelical structure likely consists of stacked AGAG-tetrads but, unlike G-quadruplexes, their stability does not appear to be dependent on the type of monovalent cation present. The occurrence of TG and AG repeats in genomes is not rare, and they are also found frequently in the regulatory regions of nucleic acids, so it is reasonable to assume that putative structural motifs, like other noncanonical forms, could play an important regulatory role in cells. This hypothesis is supported by the structural stability of the AGAG motif; its unfolding can occur even at physiological temperatures since the melting temperature is primarily dependent on the number of AG repeats in the sequence.
Collapse
Affiliation(s)
- Lukáš Trizna
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Branislav Osif
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| |
Collapse
|
21
|
Li F, Zhou J. G-quadruplexes from non-coding RNAs. J Mol Med (Berl) 2023:10.1007/s00109-023-02314-7. [PMID: 37069370 DOI: 10.1007/s00109-023-02314-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Non-coding RNAs (ncRNAs) are significant regulators of gene expression in a wide range of biological processes, such as transcription, RNA maturation, or translation. ncRNAs interplay with proteins or other RNAs through not only classical sequence-based mechanisms but also unique higher-order structures such as RNA G-quadruplexes (rG4s). rG4s are predictably formed in guanine-rich sequences and are closely related to various human diseases, such as tumors, neurodegenerative diseases, and infections. This review focuses on the vital role of rG4s in ncRNAs, particularly lncRNAs and miRNAs. We outline the dynamic balance between rG4s and RNA stem-loop/hairpin structures and the interplay between ncRNAs and interactors, thereby modulating gene expression and disease progression. A complete understanding of the biological regulatory role and mechanism of rG4s in ncRNAs affirms the critical importance of folding into the appropriate three-dimensional structure in maintaining or modulating the functions of ncRNAs. It makes them novel therapeutic targets for adjusting potential-G4-containing-ncRNAs-associated diseases.
Collapse
Affiliation(s)
- Fangyuan Li
- Department Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
22
|
Roy SS, Sharma S, Rizvi ZA, Sinha D, Gupta D, Rophina M, Sehgal P, Sadhu S, Tripathy MR, Samal S, Maiti S, Scaria V, Sivasubbu S, Awasthi A, Harshan KH, Jain S, Chowdhury S. G4-binding drugs, chlorpromazine and prochlorperazine, repurposed against COVID-19 infection in hamsters. Front Mol Biosci 2023; 10:1133123. [PMID: 37006620 PMCID: PMC10061221 DOI: 10.3389/fmolb.2023.1133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.
Collapse
Affiliation(s)
- Shuvra Shekhar Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalu Sharma
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Zaigham Abbas Rizvi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Dipanjali Sinha
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Divya Gupta
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Mercy Rophina
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanth Sadhu
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Manas Ranjan Tripathy
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Sweety Samal
- Translational Health Science and Technology Institute, Faridabad, 411008, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Chemical Laboratory, Pune, 121001, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Awasthi
- Immuno-biology Laboratory, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, 121001, India
| | - Krishnan H. Harshan
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Shantanu Chowdhury
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- *Correspondence: Shantanu Chowdhury,
| |
Collapse
|
23
|
Neupane A, Chariker JH, Rouchka EC. Structural and Functional Classification of G-Quadruplex Families within the Human Genome. Genes (Basel) 2023; 14:genes14030645. [PMID: 36980918 PMCID: PMC10048163 DOI: 10.3390/genes14030645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
G-quadruplexes (G4s) are short secondary DNA structures located throughout genomic DNA and transcribed RNA. Although G4 structures have been shown to form in vivo, no current search tools that examine these structures based on previously identified G-quadruplexes and filter them based on similar sequence, structure, and thermodynamic properties are known to exist. We present a framework for clustering G-quadruplex sequences into families using the CD-HIT, MeShClust, and DNACLUST methods along with a combination of Starcode and BLAST. Utilizing this framework to filter and annotate clusters, 95 families of G-quadruplex sequences were identified within the human genome. Profiles for each family were created using hidden Markov models to allow for the identification of additional family members and generate homology probability scores. The thermodynamic folding energy properties, functional annotation of genes associated with the sequences, scores from different prediction algorithms, and transcription factor binding motifs within a family were used to annotate and compare the diversity within and across clusters. The resulting set of G-quadruplex families can be used to further understand how different regions of the genome are regulated by factors targeting specific structures common to members of a specific cluster.
Collapse
Affiliation(s)
- Aryan Neupane
- School of Graduate and Interdisciplinary Studies, University of Louisville, Louisville, KY 40292, USA
| | - Julia H. Chariker
- Department of Neuroscience Training, University of Louisville, Louisville, KY 40292, USA
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
| | - Eric C. Rouchka
- Kentucky IDeA Network of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY 40292, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA
- Correspondence: ; Tel.: +1-(502)-852-3060
| |
Collapse
|
24
|
Bohnsack KS, Kaden M, Abel J, Villmann T. Alignment-Free Sequence Comparison: A Systematic Survey From a Machine Learning Perspective. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:119-135. [PMID: 34990369 DOI: 10.1109/tcbb.2022.3140873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The encounter of large amounts of biological sequence data generated during the last decades and the algorithmic and hardware improvements have offered the possibility to apply machine learning techniques in bioinformatics. While the machine learning community is aware of the necessity to rigorously distinguish data transformation from data comparison and adopt reasonable combinations thereof, this awareness is often lacking in the field of comparative sequence analysis. With realization of the disadvantages of alignments for sequence comparison, some typical applications use more and more so-called alignment-free approaches. In light of this development, we present a conceptual framework for alignment-free sequence comparison, which highlights the delineation of: 1) the sequence data transformation comprising of adequate mathematical sequence coding and feature generation, from 2) the subsequent (dis-)similarity evaluation of the transformed data by means of problem-specific but mathematically consistent proximity measures. We consider coding to be an information-loss free data transformation in order to get an appropriate representation, whereas feature generation is inevitably information-lossy with the intention to extract just the task-relevant information. This distinction sheds light on the plethora of methods available and assists in identifying suitable methods in machine learning and data analysis to compare the sequences under these premises.
Collapse
|
25
|
Advances in
G
‐quadruplexes‐based fluorescent imaging. Biopolymers 2022; 113:e23528. [DOI: 10.1002/bip.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
26
|
Turner M, Danino YM, Barshai M, Yacovzada NS, Cohen Y, Olender T, Rotkopf R, Monchaud D, Hornstein E, Orenstein Y. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res 2022; 50:11426-11441. [PMID: 36350614 PMCID: PMC9723610 DOI: 10.1093/nar/gkac950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.
Collapse
Affiliation(s)
- Maor Turner
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mira Barshai
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Nancy S Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
27
|
Zhao H, Wong HY, Ji D, Lyu K, Kwok CK. Novel L-RNA Aptamer Controls APP Gene Expression in Cells by Targeting RNA G-Quadruplex Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30582-30594. [PMID: 35762921 DOI: 10.1021/acsami.2c06390] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Guanine quadruplex (G4) structure is a four-stranded nucleic acid secondary structure motif with unique chemical properties and important biological roles. Amyloid precursor protein (APP) is an Alzheimer's disease (AD)-related gene, and recently, we reported the formation of RNA G4 (rG4) at the 3'UTR of APP mRNA and demonstrated its repressive role in translation. Herein, we apply rG4-SELEX to develop a novel L-RNA aptamer, L-Apt.8f, which binds to APP 3'UTR D-rG4 strongly with subnanomolar affinity. We structurally characterize the aptamer and find that it contains a thermostable and parallel G4 motif, and mutagenesis analysis identifies the key nucleotides that are involved in the target recognition. We also reveal that the L-Apt.8f-APP D-rG4 interaction is enantiomeric-, magnesium ion-, and potassium ion-dependent. Notably, L-Apt.8f preferentially recognizes APP rG4 over other structural motifs, and it can control the APP reporter gene and native transcript translation in cells. Our work introduces a novel strategy and reports a new L-aptamer candidate to target APP 3'UTR rG4 structure, which laid the foundation for further applying L-RNA as an important class of biomolecule for practical L-aptamer-based targeting and controlling of gene expression in cells.
Collapse
Affiliation(s)
- Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Hei Yuen Wong
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
28
|
Vořechovský I. Selection of Olduvai Domains during Evolution: A Role for Primate-Specific Splicing Super-Enhancer and RNA Guanine Quadruplex in Bipartite NBPF Exons. Brain Sci 2022; 12:874. [PMID: 35884681 PMCID: PMC9313022 DOI: 10.3390/brainsci12070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Olduvai protein domains (also known as DUF1220 or NBPF) have undergone the greatest human-specific increase in the copy number of any coding region in the genome. Their repeat number was strongly associated with the evolutionary expansion of brain volumes, neuron counts and cognitive abilities, as well as with disorders of the autistic spectrum. Nevertheless, the domain function and cellular mechanisms underlying the positive selection of Olduvai DNA sequences in higher primates remain obscure. Here, I show that the inclusion of Olduvai exon doublets in mature transcripts is facilitated by a potent splicing enhancer that was created through duplication within the first exon. The enhancer is the strongest among the NBPF transcripts and further promotes the already high splicing activity of the unexpanded first exons of the two-exon domains, safeguarding the expanded Olduvai exon doublets in the mature transcriptome. The duplication also creates a predicted RNA guanine quadruplex that may regulate the access to spliceosomal components of the super-enhancer and influence the splicing of adjacent exons. Thus, positive Olduvai selection during primate evolution is likely to result from a combination of multiple targets in gene expression pathways, including RNA splicing.
Collapse
Affiliation(s)
- Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, UK
| |
Collapse
|
29
|
Yu H, Qi Y, Ding Y. Deep Learning in RNA Structure Studies. Front Mol Biosci 2022; 9:869601. [PMID: 35677883 PMCID: PMC9168262 DOI: 10.3389/fmolb.2022.869601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Deep learning, or artificial neural networks, is a type of machine learning algorithm that can decipher underlying relationships from large volumes of data and has been successfully applied to solve structural biology questions, such as RNA structure. RNA can fold into complex RNA structures by forming hydrogen bonds, thereby playing an essential role in biological processes. While experimental effort has enabled resolving RNA structure at the genome-wide scale, deep learning has been more recently introduced for studying RNA structure and its functionality. Here, we discuss successful applications of deep learning to solve RNA problems, including predictions of RNA structures, non-canonical G-quadruplex, RNA-protein interactions and RNA switches. Following these cases, we give a general guide to deep learning for solving RNA structure problems.
Collapse
Affiliation(s)
- Haopeng Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
30
|
Umar MI, Chan CY, Kwok CK. Development of RNA G-quadruplex (rG4)-targeting L-RNA aptamers by rG4-SELEX. Nat Protoc 2022; 17:1385-1414. [PMID: 35444329 DOI: 10.1038/s41596-022-00679-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
RNA G-quadruplex (rG4)-SELEX is a method that generates L-RNA aptamers to target an rG4 structure of interest, which can be applied to inhibit G-quadruplex-mediated interactions that have important roles in gene regulation and function. Here we present a Protocol Extension substantially modifying an existing SELEX protocol to describe in detail the procedures involved in performing rG4-SELEX to identify rG4-specific binders that can effectively suppress rG4-peptide and rG4-protein associations. This Protocol Extension improves the speed of aptamer discovery and identification, offering a suite of techniques to characterize the aptamer secondary structure and monitor binding affinity and specificity, and demonstrating the utility of the L-RNA aptamer. The previous protocol mainly describes the identification of RNA aptamers against proteins of interest, whereas in this Protocol Extension we present the development of an unnatural RNA aptamer against an RNA structure of interest, with the potential to be applicable to other nucleic acid motifs or biomolecules. rG4-SELEX starts with a random D-RNA library incubated with the L-rG4 target of interest, followed by binding, washing and elution of the library. Enriched D-aptamer candidates are sequenced and structurally characterized. Then, the L-aptamer is synthesized and used for different applications. rG4-SELEX can be carried out by an experienced molecular biologist with a basic understanding of nucleic acids. The development of rG4-targeting L-RNA aptamers expands the current rG4 toolkit to explore innovative rG4-related applications, and opens new doors to discovering novel rG4 biology in the near future. The duration of each selection cycle as outlined in the protocol is ~2 d.
Collapse
Affiliation(s)
- Mubarak I Umar
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD, USA
| | - Chun-Yin Chan
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Institut für Chemische Epigenetik München (ICEM), Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
31
|
Holoubek J, Bednářová K, Haviernik J, Huvarová I, Dvořáková Z, Černý J, Outlá M, Salát J, Konkol'ová E, Boura E, Růžek D, Vorlíčková M, Eyer L, Renčiuk D. Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology. Nucleic Acids Res 2022; 50:4574-4600. [PMID: 35420134 PMCID: PMC9071444 DOI: 10.1093/nar/gkac225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
Collapse
Affiliation(s)
- Jiří Holoubek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Ivana Huvarová
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic
| | - Zuzana Dvořáková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jiří Černý
- Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, CZ-16500 Prague, Czech Republic
| | - Martina Outlá
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eva Konkol'ová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Luděk Eyer
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| |
Collapse
|
32
|
Stability and context of intercalated motifs (i-motifs) for biological applications. Biochimie 2022; 198:33-47. [PMID: 35259471 DOI: 10.1016/j.biochi.2022.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
DNA is naturally dynamic and can self-assemble into alternative secondary structures including the intercalated motif (i-motif), a four-stranded structure formed in cytosine-rich DNA sequences. Until recently, i-motifs were thought to be unstable in physiological cellular environments. Studies demonstrating their existence in the human genome and role in gene regulation are now shining light on their biological relevance. Herein, we review the effects of epigenetic modifications on i-motif structure and stability, and biological factors that affect i-motif formation within cells. Furthermore, we highlight recent progress in targeting i-motifs with structure-specific ligands for biotechnology and therapeutic purposes.
Collapse
|
33
|
Vannutelli A, Perreault JP, Ouangraoua A. G-quadruplex occurrence and conservation: more than just a question of guanine–cytosine content. NAR Genom Bioinform 2022; 4:lqac010. [PMID: 35261973 PMCID: PMC8896161 DOI: 10.1093/nargab/lqac010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/06/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
G-quadruplexes are motifs found in DNA and RNA that can fold into tertiary structures. Until now, they have been studied experimentally mainly in humans and a few other species. Recently, predictions have been made with bacterial and archaeal genomes. Nevertheless, a global comparison of predicted G4s (pG4s) across and within the three living kingdoms has not been addressed. In this study, we aimed to predict G4s in genes and transcripts of all kingdoms of living organisms and investigated the differences in their distributions. The relation of the predictions with GC content was studied. It appears that GC content is not the only parameter impacting G4 predictions and abundance. The distribution of pG4 densities varies depending on the class of transcripts and the group of species. Indeed, we have observed that, in coding transcripts, there are more predicted G4s than expected for eukaryotes but not for archaea and bacteria, while in noncoding transcripts, there are as many or fewer predicted G4s in all species groups. We even noticed that some species with the same GC content presented different pG4 profiles. For instance, Leishmania major and Chlamydomonas reinhardtii both have 60% of GC content, but the former has a pG4 density of 0.07 and the latter 1.16.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
- Department of Biochemistry and Functional Genomics, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, QC J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
| | - Aïda Ouangraoua
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
34
|
Rossi F, Paiardini A. A Machine Learning Perspective on DNA and RNA G-quadruplexes. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220224105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
G-quadruplexes (G4s) are particular structures found in guanine-rich DNA and RNA sequences that exhibit a wide diversity of three-dimensional conformations and exert key functions in the control of gene expression. G4s are able to interact with numerous small molecules and endogenous proteins, and their dysregulation can lead to a variety of disorders and diseases. Characterization and prediction of G4-forming sequences could elucidate their mechanism of action and could thus represent an important step in the discovery of potential therapeutic drugs. In this perspective, we propose an overview of G4s, discussing the state of the art of methodologies and tools developed to characterize and predict the presence of these structures in genomic sequences. In particular, we report on machine learning (ML) approaches and artificial neural networks (ANNs) that could open new avenues for the accurate analysis of quadruplexes, given their potential to derive informative features by learning from large, high-density datasets.
Collapse
Affiliation(s)
- Fabiana Rossi
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
35
|
Hoque ME, Mahendran T, Basu S. Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022; 12:314. [PMID: 35204814 PMCID: PMC8869680 DOI: 10.3390/biom12020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
G-quadruplexes (GQs) are secondary nucleic acid structures that play regulatory roles in various cellular processes. G-quadruplex-forming sequences present within the 5' UTR of mRNAs can function not only as repressors of translation but also as elements required for optimum function. Based upon previous reports, the majority of the 5' UTR GQ structures inhibit translation, presumably by blocking the ribosome scanning process that is essential for detection of the initiation codon. However, there are certain mRNAs containing GQs that have been identified as positive regulators of translation, as they are needed for translation initiation. While most cellular mRNAs utilize the 5' cap structure to undergo cap-dependent translation initiation, many rely on cap-independent translation under certain conditions in which the cap-dependent initiation mechanism is not viable or slowed down, for example, during development, under stress and in many diseases. Cap-independent translation mainly occurs via Internal Ribosomal Entry Sites (IRESs) that are located in the 5' UTR of mRNAs and are equipped with structural features that can recruit the ribosome or other factors to initiate translation without the need for a 5' cap. In this review, we will focus only on the role of RNA GQs present in the 5' UTR of mRNAs, where they play a critical role in translation initiation, and discuss the potential mechanism of this phenomenon, which is yet to be fully delineated.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (M.E.H.); (T.M.)
| |
Collapse
|
36
|
Santos T, Miranda A, Imbert L, Jardim A, Caneira CRF, Chu V, Conde JP, Campello MPC, Paulo A, Salgado G, Cabrita EJ, Cruz C. Pre-miRNA-149 G-quadruplex as a molecular agent to capture nucleolin. Eur J Pharm Sci 2022; 169:106093. [PMID: 34922315 DOI: 10.1016/j.ejps.2021.106093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
One of the most significant challenges in capturing and detecting biomarkers is the choice of an appropriate biomolecular receptor. Recently, RNA G-quadruplexes emerged as plausible receptors due to their ability to recognize with high-affinity proteins. Herein, we have unveiled and characterized the capability of the precursor microRNA 149 to form a G-quadruplex structure and determined the role that some ligands may have in its folding and binding capacity to nucleolin. The G-quadruplex formation was induced by K+ ions and stabilized by ligands, as demonstrated by nuclear magnetic resonance and circular dichroism experiments. Surface plasmon resonance measurements showed a binding affinity of precursor microRNA 149 towards ligands in the micromolar range (10-5-10-6 M) and a strong binding affinity to nucleolin RNA-binding domains 1 and 2 (8.38 × 10-10 M). Even in the presence of the ligand PhenDC3, the binding remains almost identical and in the same order of magnitude (4.46 × 10-10 M). The molecular interactions of the RNA G-quadruplex motif found in precursor miRNA 149 (5'-GGGAGGGAGGGACGGG- 3') and nucleolin RNA-binding domains 1 and 2 were explored by means of molecular docking and molecular dynamics studies. The results showed that RNA G-quadruplex binds to a cavity between domains 1 and 2 of the protein. Then, complex formation was also evaluated through polyacrylamide gel electrophoresis. The results suggest that precursor microRNA 149/ligands and precursor microRNA 149/nucleolin RNA-binding domains 1 and 2 form stable molecular complexes. The in vitro co-localization of precursor microRNA 149 and nucleolin in PC3 cells was demonstrated using confocal microscopy. Finally, a rapid and straightforward microfluidic strategy was employed to check the ability of precursor microRNA 149 to capture nucleolin RNA-binding domains 1 and 2. The results revealed that precursor microRNA 149 can capture nucleolin RNA-binding domains 1 and 2 labeled with Fluorescein 5-isothiocyanate in a concentration-dependent manner, but PhenDC3 complexation seems to decrease the ability of precursor microRNA 149 to capture the protein. Overall, our results proved the formation of the G-quadruplex structure in the precursor microRNA 149 and the ability to recognize and detect nucleolin. This proof-of-concept study could open up a new framework for developing new strategies to design improved molecular receptors for capture and detection of nucleolin in complex biological samples.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - André Miranda
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France; Univ. Grenoble Alpes, CNRS, CEA, EMBL Integrated Structural Biology Grenoble (ISBG), Grenoble, France
| | - Andreia Jardim
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Catarina R F Caneira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Virgínia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal; DECN -Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 1397), 2695-066 Bobadela LRS, Portugal; DECN -Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Gilmar Salgado
- Univ. Bordeaux, ARNA Laboratory INSERM, U1212, CNRS UMR 5320, IECB, Pessac, France
| | - Eurico J Cabrita
- UCIBIO, REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
37
|
Mou X, Liew SW, Kwok CK. Identification and targeting of G-quadruplex structures in MALAT1 long non-coding RNA. Nucleic Acids Res 2022; 50:397-410. [PMID: 34904666 PMCID: PMC8754639 DOI: 10.1093/nar/gkab1208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
RNA G-quadruplexes (rG4s) have functional roles in many cellular processes in diverse organisms. While a number of rG4 examples have been reported in coding messenger RNAs (mRNA), so far only limited works have studied rG4s in non-coding RNAs (ncRNAs), especially in long non-coding RNAs (lncRNAs) that are of emerging interest and significance in biology. Herein, we report that MALAT1 lncRNA contains conserved rG4 motifs, forming thermostable rG4 structures with parallel topology. We also show that rG4s in MALAT1 lncRNA can interact with NONO protein with high specificity and affinity in vitro and in nuclear cell lysate, and we provide cellular data to support that NONO protein recognizes MALAT1 lncRNA via rG4 motifs. Notably, we demonstrate that rG4s in MALAT1 lncRNA can be targeted by the rG4-specific small molecule, peptide, and L-aptamer, leading to the dissociation of MALAT1 rG4-NONO protein interaction. Altogether, this study uncovers new and important rG4s in MALAT1 lncRNAs, reveals their specific interactions with NONO protein, offers multiple strategies for targeting MALAT1 and its RNA-protein complex via its rG4 structure and illustrates the prevalence and significance of rG4s in ncRNAs.
Collapse
Affiliation(s)
- Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
- Shenzhen Research Institute of City University of Hong Kong,
Shenzhen, China
| |
Collapse
|
38
|
Detecting G4 unwinding. Methods Enzymol 2022; 672:261-281. [DOI: 10.1016/bs.mie.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Xu J, Huang H, Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS AU 2021; 1:2146-2161. [PMID: 34977886 PMCID: PMC8715485 DOI: 10.1021/jacsau.1c00451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 05/11/2023]
Abstract
A G-quadruplex (G4) is a four-stranded nucleic acid secondary structure maintained by Hoogsteen hydrogen bonds established between four guanines. Experimental studies and bioinformatics predictions support the hypothesis that these structures are involved in different cellular functions associated with both DNA and RNA processes. An increasing number of diseases have been shown to be associated with abnormal G4 regulation. Here, we describe the existence of G4 and then discuss G4-related pathogenic mechanisms in neurodegenerative diseases and the viral life cycle. Furthermore, we focus on the role of G4s in the design of antiviral therapy and neuropharmacology, including G4 ligands, G4-based aptamers, G4-related proteins, and CRISPR-based sequence editing, along with a discussion of limitations and insights into the prospects of this unusual nucleic acid secondary structure in therapeutics. Finally, we highlight progress and challenges in this field and the potential G4-related research fields.
Collapse
Affiliation(s)
- Jinglei Xu
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Haiyan Huang
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiang Zhou
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- Email to X.Z.:
| |
Collapse
|
40
|
Bohnsack KS, Kaden M, Abel J, Saralajew S, Villmann T. The Resolved Mutual Information Function as a Structural Fingerprint of Biomolecular Sequences for Interpretable Machine Learning Classifiers. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1357. [PMID: 34682081 PMCID: PMC8534762 DOI: 10.3390/e23101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
In the present article we propose the application of variants of the mutual information function as characteristic fingerprints of biomolecular sequences for classification analysis. In particular, we consider the resolved mutual information functions based on Shannon-, Rényi-, and Tsallis-entropy. In combination with interpretable machine learning classifier models based on generalized learning vector quantization, a powerful methodology for sequence classification is achieved which allows substantial knowledge extraction in addition to the high classification ability due to the model-inherent robustness. Any potential (slightly) inferior performance of the used classifier is compensated by the additional knowledge provided by interpretable models. This knowledge may assist the user in the analysis and understanding of the used data and considered task. After theoretical justification of the concepts, we demonstrate the approach for various example data sets covering different areas in biomolecular sequence analysis.
Collapse
Affiliation(s)
- Katrin Sophie Bohnsack
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (M.K.); (J.A.)
| | - Marika Kaden
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (M.K.); (J.A.)
| | - Julia Abel
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (M.K.); (J.A.)
| | - Sascha Saralajew
- Bosch Center for Artificial Intelligence, 71272 Renningen, Germany;
| | - Thomas Villmann
- Saxon Institute for Computational Intelligence and Machine Learning, University of Applied Sciences Mittweida, 09648 Mittweida, Germany; (M.K.); (J.A.)
| |
Collapse
|
41
|
Horiuchi K, Kawamura T, Hamakubo T. Wilms' Tumor 1-Associating Protein complex regulates alternative splicing and polyadenylation at potential G-quadruplex-forming splice site sequences. J Biol Chem 2021; 297:101248. [PMID: 34582888 PMCID: PMC8605363 DOI: 10.1016/j.jbc.2021.101248] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Wilms’ tumor 1-associating protein (WTAP) is a core component of the N6-methyladenosine (m6A)-methyltransferase complex, along with VIRMA, CBLL1, ZC3H13 (KIAA0853), RBM15/15B, and METTL3/14, which generate m6A, a key RNA modification that affects various processes of RNA metabolism. WTAP also interacts with splicing factors; however, despite strong evidence suggesting a role of Drosophila WTAP homolog fl(2)d in alternative splicing (AS), its role in splicing regulation in mammalian cells remains elusive. Here we demonstrate using RNAi coupled with RNA-seq that WTAP, VIRMA, CBLL1, and ZC3H13 modulate AS, promoting exon skipping and intron retention in AS events that involve short introns/exons with higher GC content and introns with weaker polypyrimidine-tract and branch points. Further analysis of GC-rich sequences involved in AS events regulated by WTAP, together with minigene assay analysis, revealed potential G-quadruplex formation at splice sites where WTAP has an inhibitory effect. We also found that several AS events occur in the last exon of one isoform of MSL1 and WTAP, leading to competition for polyadenylation. Proteomic analysis also suggested that WTAP/CBLL1 interaction promotes recruitment of the 3′-end processing complex. Taken together, our results indicate that the WTAP complex regulates AS and alternative polyadenylation via inhibitory mechanisms in GC-rich sequences.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-0011, Japan.
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-0011, Japan.
| |
Collapse
|
42
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
43
|
G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int J Mol Sci 2021; 22:ijms22147381. [PMID: 34299001 PMCID: PMC8306923 DOI: 10.3390/ijms22147381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
G-quadruplexes have long been perceived as rare and physiologically unimportant nucleic acid structures. However, several studies have revealed their importance in molecular processes, suggesting their possible role in replication and gene expression regulation. Pathways involving G-quadruplexes are intensively studied, especially in the context of human diseases, while their involvement in gene expression regulation in plants remains largely unexplored. Here, we conducted a bioinformatic study and performed a complex circular dichroism measurement to identify a stable G-quadruplex in the gene RPB1, coding for the RNA polymerase II large subunit. We found that this G-quadruplex-forming locus is highly evolutionarily conserved amongst plants sensu lato (Archaeplastida) that share a common ancestor more than one billion years old. Finally, we discussed a new hypothesis regarding G-quadruplexes interacting with UV light in plants to potentially form an additional layer of the regulatory network.
Collapse
|
44
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
45
|
Tomaszewska M, Szabat M, Zielińska K, Kierzek R. Identification and Structural Aspects of G-Quadruplex-Forming Sequences from the Influenza A Virus Genome. Int J Mol Sci 2021; 22:6031. [PMID: 34199658 PMCID: PMC8199785 DOI: 10.3390/ijms22116031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus (IAV) causes seasonal epidemics and sporadic pandemics, therefore is an important research subject for scientists around the world. Despite the high variability of its genome, the structure of viral RNA (vRNA) possesses features that remain constant between strains and are biologically important for virus replication. Therefore, conserved structural motifs of vRNA can represent a novel therapeutic target. Here, we focused on the presence of G-rich sequences within the influenza A/California/07/2009(H1N1) genome and their ability to form RNA G-quadruplex structures (G4s). We identified 12 potential quadruplex-forming sequences (PQS) and determined their conservation among the IAV strains using bioinformatics tools. Then we examined the propensity of PQS to fold into G4s by various biophysical methods. Our results revealed that six PQS oligomers could form RNA G-quadruplexes. However, three of them were confirmed to adopt G4 structures by all utilized methods. Moreover, we showed that these PQS motifs are present within segments encoding polymerase complex proteins indicating their possible role in the virus biology.
Collapse
Affiliation(s)
- Maria Tomaszewska
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Marta Szabat
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Karolina Zielińska
- Department of Biomolecular NMR, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| |
Collapse
|
46
|
Tassinari M, Richter SN, Gandellini P. Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Res 2021; 49:3617-3633. [PMID: 33721024 PMCID: PMC8053107 DOI: 10.1093/nar/gkab127] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are functional transcripts that are not translated into proteins. They represent the largest portion of the human transcriptome and have been shown to regulate gene expression networks in both physiological and pathological cell conditions. Research in this field has made remarkable progress in the comprehension of how aberrations in noncoding RNA drive relevant disease-associated phenotypes; however, the biological role and mechanism of action of several noncoding RNAs still need full understanding. Besides fulfilling its function through sequence-based mechanisms, RNA can form complex secondary and tertiary structures which allow non-canonical interactions with proteins and/or other nucleic acids. In this context, the presence of G-quadruplexes in microRNAs and long noncoding RNAs is increasingly being reported. This evidence suggests a role for RNA G-quadruplexes in controlling microRNA biogenesis and mediating noncoding RNA interaction with biological partners, thus ultimately regulating gene expression. Here, we review the state of the art of G-quadruplexes in the noncoding transcriptome, with their structural and functional characterization. In light of the existence and further possible development of G-quadruplex binders that modulate G-quadruplex conformation and protein interactions, we also discuss the therapeutic potential of G-quadruplexes as targets to interfere with disease-associated noncoding RNAs.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padova, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
47
|
Zhu M, Gao J, Lin XJ, Gong YY, Qi YC, Ma YL, Song YX, Tan W, Li FY, Ye M, Gong J, Cui QH, Huang ZH, Zhang YY, Wang XJ, Lan F, Wang SQ, Yuan G, Feng Y, Xu M. Novel roles of an intragenic G-quadruplex in controlling microRNA expression and cardiac function. Nucleic Acids Res 2021; 49:2522-2536. [PMID: 33561291 PMCID: PMC7969000 DOI: 10.1093/nar/gkab055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Simultaneous dysregulation of multiple microRNAs (miRs) affects various pathological pathways related to cardiac failure. In addition to being potential cardiac disease-specific markers, miR-23b/27b/24-1 were reported to be responsible for conferring cardiac pathophysiological processes. In this study, we identified a conserved guanine-rich RNA motif within the miR-23b/27b/24-1 cluster that can form an RNA G-quadruplex (rG4) in vitro and in cells. Disruption of this intragenic rG4 significantly increased the production of all three miRs. Conversely, a G4-binding ligand tetrandrine (TET) stabilized the rG4 and suppressed miRs production in human and rodent cardiomyocytes. Our further study showed that the rG4 prevented Drosha-DGCR8 binding and processing of the pri-miR, suppressing the biogenesis of all three miRs. Moreover, CRISPR/Cas9-mediated G4 deletion in the rat genome aberrantly elevated all three miRs in the heart in vivo, leading to cardiac contractile dysfunction. Importantly, loss of the G4 resulted in reduced targets for the aforementioned miRs critical for normal heart function and defects in the L-type Ca2+ channel-ryanodine receptor (LCC-RyR) coupling in cardiomyocytes. Our results reveal a novel mechanism for G4-dependent regulation of miR biogenesis, which is essential for maintaining normal heart function.
Collapse
Affiliation(s)
- Min Zhu
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Juan Gao
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Xian-Juan Lin
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Yun-Yun Gong
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Engineering and College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan-Chao Qi
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Yuan-Liang Ma
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Yuan-Xiu Song
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Wei Tan
- Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, China
| | - Fang-Yuan Li
- Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jun Gong
- College of Life Sciences, Institute of Model Animal of Wuhan University, Wuhan 430072, China
| | - Qing-Hua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing 100191, China
| | - Zeng-Hui Huang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - You-Yi Zhang
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Lan
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing 10029, China
| | - Shi-Qiang Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Engineering and College of Life Sciences, Peking University, Beijing 100871, China
| | - Gu Yuan
- Department of Chemical Biology, College of Chemistry, Peking University, Beijing 100871, China
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and RegulatoryPeptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Third Hospital, Beijing 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
48
|
CNBP Binds and Unfolds In Vitro G-Quadruplexes Formed in the SARS-CoV-2 Positive and Negative Genome Strands. Int J Mol Sci 2021; 22:ijms22052614. [PMID: 33807682 PMCID: PMC7961906 DOI: 10.3390/ijms22052614] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has become a global health emergency with no effective medical treatment and with incipient vaccines. It is caused by a new positive-sense RNA virus called severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). G-quadruplexes (G4s) are nucleic acid secondary structures involved in the control of a variety of biological processes including viral replication. Using several G4 prediction tools, we identified highly putative G4 sequences (PQSs) within the positive-sense (+gRNA) and negative-sense (−gRNA) RNA strands of SARS-CoV-2 conserved in related betacoronaviruses. By using multiple biophysical techniques, we confirmed the formation of two G4s in the +gRNA and provide the first evidence of G4 formation by two PQSs in the −gRNA of SARS-CoV-2. Finally, biophysical and molecular approaches were used to demonstrate for the first time that CNBP, the main human cellular protein bound to SARS-CoV-2 RNA genome, binds and promotes the unfolding of G4s formed by both strands of SARS-CoV-2 RNA genome. Our results suggest that G4s found in SARS-CoV-2 RNA genome and its negative-sense replicative intermediates, as well as the cellular proteins that interact with them, are relevant factors for viral genes expression and replication cycle, and may constitute interesting targets for antiviral drugs development.
Collapse
|
49
|
Dey U, Sarkar S, Teronpi V, Yella VR, Kumar A. G-quadruplex motifs are functionally conserved in cis-regulatory regions of pathogenic bacteria: An in-silico evaluation. Biochimie 2021; 184:40-51. [PMID: 33548392 DOI: 10.1016/j.biochi.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The role of G-quadruplexes in the cellular physiology of human pathogenesis is an intriguing area of research. Nonetheless, their functional roles and evolutionary conservation have not been compared comprehensively in pathogenic forms of various bacterial genera and species. In the current in silico study, we addressed the role of G-quadruplex-forming sequences (G4 motifs) in the context of cis-regulation, expression variation, regulatory networks, gene orthology and ontology. Genome-wide screening across seven pathogenic genomes using the G4Hunter tool revealed the significant prevalence of G4 motifs in cis-regulatory regions compared to the intragenic regions. Significant conservation of G4 motifs was observed in the regulatory region of 300 orthologous genes. Further analysis of published ChIP-Seq data (Minch et al., 2015) of 91 DNA-binding proteins of the M. tuberculosis genome revealed significant links between G4 motifs and target sites of transcriptional regulators. Interestingly, the transcription factors entangled with virulence, in specific, CsoR, Rv0081, DevR/DosR, and TetR family are found to have G4 motifs in their target regulatory regions. Overall the current study applies positional-functional relationship computation to delve into the cis-regulation of G-quadruplex structures in the context of gene orthology in pathogenic bacteria.
Collapse
Affiliation(s)
- Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Valentina Teronpi
- Department of Zoology, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Behali, Biswanath, 784184, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522502, Andhra Pradesh, India.
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
50
|
Rosenberg M, Blum R, Kesner B, Aeby E, Garant JM, Szanto A, Lee JT. Motif-driven interactions between RNA and PRC2 are rheostats that regulate transcription elongation. Nat Struct Mol Biol 2021; 28:103-117. [PMID: 33398172 PMCID: PMC8050941 DOI: 10.1038/s41594-020-00535-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/20/2020] [Indexed: 01/30/2023]
Abstract
Although Polycomb repressive complex 2 (PRC2) is now recognized as an RNA-binding complex, the full range of binding motifs and why PRC2-RNA complexes often associate with active genes have not been elucidated. Here we identify high-affinity RNA motifs whose mutations weaken PRC2 binding and attenuate its repressive function in mouse embryonic stem cells. Interactions occur at promoter-proximal regions and frequently coincide with pausing of RNA Polymerase II (POL-II). Surprisingly, while PRC2-associated nascent transcripts are highly expressed, ablating PRC2 further upregulates expression via loss of pausing and enhanced transcription elongation. Thus, PRC2-nascent RNA complexes operate as rheostats to fine-tune transcription by regulating transitions between pausing and elongation, explaining why PRC2-RNA complexes frequently occur within active genes. Nascent RNA also targets PRC2 in cis and downregulates neighboring genes. We propose a unifying model in which RNA specifically recruits PRC2 to repress genes through POL-II pausing and, more classically, H3K27-trimethylation.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Eric Aeby
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Attila Szanto
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|