1
|
Dai D, Xie C, Zhou Y, Bo D, Zhang S, Mao S, Liao Y, Cui S, Zhu Z, Wang X, Li F, Peng D, Zheng J, Sun M. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization. Nat Commun 2023; 14:7156. [PMID: 37935661 PMCID: PMC10630426 DOI: 10.1038/s41467-023-42700-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/19/2023] [Indexed: 11/09/2023] Open
Abstract
The formation and consequences of polyploidization in animals with clonal reproduction remain largely unknown. Clade I root-knot nematodes (RKNs), characterized by parthenogenesis and allopolyploidy, show a widespread geographical distribution and extensive agricultural destruction. Here, we generated 4 unzipped polyploid RKN genomes and identified a putative novel alternative telomeric element. Then we reconstructed 4 chromosome-level assemblies and resolved their genome structures as AAB for triploid and AABB for tetraploid. The phylogeny of subgenomes revealed polyploid RKN origin patterns as hybridization between haploid and unreduced gametes. We also observed extensive chromosomal fusions and homologous gene expression decrease after polyploidization, which might offset the disadvantages of clonal reproduction and increase fitness in polyploid RKNs. Our results reveal a rare pathway of polyploidization in parthenogenic polyploid animals and provide a large number of high-precision genetic resources that could be used for RKN prevention and control.
Collapse
Affiliation(s)
- Dadong Dai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanshuai Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yayi Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dexin Bo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shurong Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shengqiang Mao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yucheng Liao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Simeng Cui
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaolu Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fanling Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Song K, Minami JK, Huang A, Dehkordi SR, Lomeli SH, Luebeck J, Goodman MH, Moriceau G, Krijgsman O, Dharanipragada P, Ridgley T, Crosson WP, Salazar J, Pazol E, Karin G, Jayaraman R, Balanis NG, Alhani S, Sheu K, Hoeve JT, Palermo A, Motika SE, Senaratne TN, Paraiso KH, Hergenrother PJ, Rao PN, Multani AS, Peeper DS, Bafna V, Lo RS, Graeber TG. Plasticity of Extrachromosomal and Intrachromosomal BRAF Amplifications in Overcoming Targeted Therapy Dosage Challenges. Cancer Discov 2022; 12:1046-1069. [PMID: 34930786 PMCID: PMC9192483 DOI: 10.1158/2159-8290.cd-20-0936] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Focal amplifications (FA) can mediate targeted therapy resistance in cancer. Understanding the structure and dynamics of FAs is critical for designing treatments that overcome plasticity-mediated resistance. We developed a melanoma model of dual MAPK inhibitor (MAPKi) resistance that bears BRAFV600 amplifications through either extrachromosomal DNA (ecDNA)/double minutes (DM) or intrachromosomal homogenously staining regions (HSR). Cells harboring BRAFV600E FAs displayed mode switching between DMs and HSRs, from both de novo genetic changes and selection of preexisting subpopulations. Plasticity is not exclusive to ecDNAs, as cells harboring HSRs exhibit drug addiction-driven structural loss of BRAF amplicons upon dose reduction. FA mechanisms can couple with kinase domain duplications and alternative splicing to enhance resistance. Drug-responsive amplicon plasticity is observed in the clinic and can involve other MAPK pathway genes, such as RAF1 and NRAS. BRAF FA-mediated dual MAPKi-resistant cells are more sensitive to proferroptotic drugs, extending the spectrum of ferroptosis sensitivity in MAPKi resistance beyond cases of dedifferentiation. SIGNIFICANCE Understanding the structure and dynamics of oncogene amplifications is critical for overcoming tumor relapse. BRAF amplifications are highly plastic under MAPKi dosage challenges in melanoma, through involvement of de novo genomic alterations, even in the HSR mode. Moreover, BRAF FA-driven, dual MAPKi-resistant cells extend the spectrum of resistance-linked ferroptosis sensitivity. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA 90095, USA
| | - Jenna K. Minami
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Siavash R. Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shirley H. Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jens Luebeck
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mark H. Goodman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Oscar Krijgsman
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Trevor Ridgley
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
| | - William P. Crosson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jesus Salazar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Eli Pazol
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gabriel Karin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Rachana Jayaraman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas G. Balanis
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Salwan Alhani
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kyle Sheu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Johanna ten Hoeve
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| | - Amelia Palermo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| | - Stephen E. Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA
| | - T. Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Kim H. Paraiso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Paul J. Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA
| | - P. Nagesh Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Asha S. Multani
- Department of Genetics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Daniel S. Peeper
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Roger S. Lo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
- UCLA Metabolomics Center, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Nath S, Shaw DE, White MA. Improved contiguity of the threespine stickleback genome using long-read sequencing. G3-GENES GENOMES GENETICS 2021; 11:6114463. [PMID: 33598708 PMCID: PMC8022941 DOI: 10.1093/g3journal/jkab007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/27/2020] [Indexed: 12/28/2022]
Abstract
While the cost and time for assembling a genome has drastically decreased, it still remains a challenge to assemble a highly contiguous genome. These challenges are rapidly being overcome by the integration of long-read sequencing technologies. Here, we use long-read sequencing to improve the contiguity of the threespine stickleback fish (Gasterosteus aculeatus) genome, a prominent genetic model species. Using Pacific Biosciences sequencing, we assembled a highly contiguous genome of a freshwater fish from Paxton Lake. Using contigs from this genome, we were able to fill over 76.7% of the gaps in the existing reference genome assembly, improving contiguity over fivefold. Our gap filling approach was highly accurate, validated by 10X Genomics long-distance linked-reads. In addition to closing a majority of gaps, we were able to assemble segments of telomeres and centromeres throughout the genome. This highlights the power of using long sequencing reads to assemble highly repetitive and difficult to assemble regions of genomes. This latest genome build has been released through a newly designed community genome browser that aims to consolidate the growing number of genomics datasets available for the threespine stickleback fish.
Collapse
Affiliation(s)
- Shivangi Nath
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Daniel E Shaw
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Raeisi Dehkordi S, Luebeck J, Bafna V. FaNDOM: Fast nested distance-based seeding of optical maps. PATTERNS (NEW YORK, N.Y.) 2021; 2:100248. [PMID: 34027500 PMCID: PMC8134938 DOI: 10.1016/j.patter.2021.100248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
Optical mapping (OM) provides single-molecule readouts of fluorescently labeled sequence motifs on long fragments of DNA, resolved to nucleotide-level coordinates. With the advent of microfluidic technologies for analysis of DNA molecules, it is possible to inexpensively generate long OM data ( > 150 kbp) at high coverage. In addition to scaffolding for de novo assembly, OM data can be aligned to a reference genome for identification of genomic structural variants. We introduce FaNDOM (Fast Nested Distance Seeding of Optical Maps)-an optical map alignment tool that greatly reduces the search space of the alignment process. On four benchmark human datasets, FaNDOM was significantly (4-14×) faster than competing tools while maintaining comparable sensitivity and specificity. We used FaNDOM to map variants in three cancer cell lines and identified many biologically interesting structural variants, including deletions, duplications, gene fusions and gene-disrupting rearrangements. FaNDOM is publicly available at https://github.com/jluebeck/FaNDOM.
Collapse
Affiliation(s)
- Siavash Raeisi Dehkordi
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jens Luebeck
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics & Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, Deshpande V, Pai DA, Zhang C, Rajkumar U, Law JA, Mischel PS, Bafna V. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun 2020; 11:4374. [PMID: 32873787 PMCID: PMC7463033 DOI: 10.1038/s41467-020-18099-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Collapse
Affiliation(s)
- Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joshua T Lange
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Dave A Pai
- Bionano Genomics, Inc., San Diego, CA, 92121, USA
| | - Chao Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Yuan Y, Chung CYL, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020; 18:2051-2062. [PMID: 32802277 PMCID: PMC7419273 DOI: 10.1016/j.csbj.2020.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent advances in optical mapping have allowed the construction of improved genome assemblies with greater contiguity. Optical mapping also enables genome comparison and identification of large-scale structural variations. Association of these large-scale genomic features with biological functions is an important goal in plant and animal breeding and in medical research. Optical mapping has also been used in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we review the development of optical mapping in recent decades to illustrate its importance in genomic research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss the challenges required to facilitate the optimization of optical mapping and improve its future development and application.
Collapse
Key Words
- 3D, three-dimensional
- DBG, de Bruijn graph
- DLS, direct label and strain
- DNA, deoxyribonucleic acid
- Genome assembly
- Hi-C, high-throughput chromosome conformation capture
- Mb, million base pair
- Next generation sequencing
- OLC, overlap-layout-consensus
- Optical mapping
- PCR, polymerase chain reaction
- PacBio, Pacific Biosciences
- SRS, short-read sequencing
- SV, structural variation
- Structural variation
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire Yik-Lok Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|