1
|
Fu C, Xu W, Xu X, Zhao F, Zheng C, Yin Z. Plasma proteins and herpes simplex virus infection: a proteome-wide Mendelian randomization study. Virus Genes 2025; 61:303-312. [PMID: 39992613 PMCID: PMC12053213 DOI: 10.1007/s11262-025-02145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Proteomics plays a pivotal role in clinical diagnostics and monitoring. We conducted proteome-wide Mendelian randomization (MR) study to estimate the causal association between plasma proteins and Herpes simplex virus (HSV) infection. Data for 2,923 plasma protein levels were obtained from a large-scale protein quantitative trait loci study involving 54,219 individuals, conducted by the UK Biobank Pharma Proteomics Project. HSV-associated SNPs were derived from the FinnGen study, which included a total of 400,098 subjects infected with HSV. MR analysis was performed to assess the links between protein levels and the risk of HSV infection. Furthermore, a Phenome-wide MR analysis was utilized to explore potential alternative indications or predict adverse drug events. Finally, we evaluated the impact of 1,949 plasma proteins on HSV infection, identifying 48 proteins that were negatively associated with HSV infection and 54 proteins that were positively associated. Genetically higher HLA-E levels were significantly associated with increased HSV infection risk (OR = 1.39, 95% CI: 1.17-1.65, P = 2.13 × 10-4, while ULBP2 showed a significant negative association with HSV infection risk (OR = 0.81, 95% CI: 0.73-0.90, P = 6.25 × 10-5) in the primary analysis. No significant heterogeneity or pleiotropy was observed in any of the results. Additionally, we found a suggestive association of Lymphotoxin-beta, SMOC1, MICB_MICA, ASGR1, and ANXA10 with HSV infection risk (P < 0.003). In Phenome-wide MR analysis, HLA-E was associated with 214 phenotypes (PFDR < 0.10) while ULBP2 did not show significant associations with any diseases after FDR adjustment. The comprehensive MR analysis established a causal link between multiple plasma proteins and HSV infection, emphasizing the roles of HLA-E and ULBP2. These results provide new insights into the biological mechanisms of HSV and support the potential for early intervention and treatment strategies, although further research is needed to validate these plasma protein biomarkers.
Collapse
Affiliation(s)
- Canya Fu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Department of Immunity, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, Zhejiang, China
| | - Wenjie Xu
- Department of Immunity, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, Zhejiang, China
| | - Xia Xu
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fei Zhao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Department of Immunity, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, Zhejiang, China
| | - Canjie Zheng
- Department of Immunity, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, Zhejiang, China
| | - Zhiying Yin
- Department of Immunity, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
2
|
Rennie ML, Oliver MR. Emerging frontiers in protein structure prediction following the AlphaFold revolution. J R Soc Interface 2025; 22:20240886. [PMID: 40233800 PMCID: PMC11999738 DOI: 10.1098/rsif.2024.0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Models of protein structures enable molecular understanding of biological processes. Current protein structure prediction tools lie at the interface of biology, chemistry and computer science. Millions of protein structure models have been generated in a very short space of time through a revolution in protein structure prediction driven by deep learning, led by AlphaFold. This has provided a wealth of new structural information. Interpreting these predictions is critical to determining where and when this information is useful. But proteins are not static nor do they act alone, and structures of proteins interacting with other proteins and other biomolecules are critical to a complete understanding of their biological function at the molecular level. This review focuses on the application of state-of-the-art protein structure prediction to these advanced applications. We also suggest a set of guidelines for reporting AlphaFold predictions.
Collapse
|
3
|
Srivastava G, Liu M, Ni X, Pu L, Brylinski M. Machine Learning Techniques to Infer Protein Structure and Function from Sequences: A Comprehensive Review. Methods Mol Biol 2025; 2867:79-104. [PMID: 39576576 DOI: 10.1007/978-1-0716-4196-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful tools for predicting protein characteristics from sequences alone. This review provides a comprehensive overview of the importance and application of machine learning in inferring protein structure and function. We discuss various machine learning approaches, primarily focusing on convolutional neural networks and natural language processing, and their utilization in predicting protein secondary and tertiary structures, residue-residue contacts, protein function, and subcellular localization. Furthermore, we highlight the challenges associated with using machine learning techniques in this context, such as the availability of high-quality training datasets and the interpretability of models. We also delve into the latest progress in the field concerning the advancements made in the development of intricate deep learning architectures. Overall, this review underscores the significance of machine learning in advancing our understanding of protein structure and function, and its potential to revolutionize drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mengmeng Liu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xialong Ni
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
4
|
Rahimzadeh F, Mohammad Khanli L, Salehpoor P, Golabi F, PourBahrami S. Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis. Comput Biol Med 2024; 179:108815. [PMID: 38986287 DOI: 10.1016/j.compbiomed.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Predicting protein structure is both fascinating and formidable, playing a crucial role in structure-based drug discovery and unraveling diseases with elusive origins. The Critical Assessment of Protein Structure Prediction (CASP) serves as a biannual battleground where global scientists converge to untangle the intricate relationships within amino acid chains. Two primary methods, Template-Based Modeling (TBM) and Template-Free (TF) strategies, dominate protein structure prediction. The trend has shifted towards Template-Free predictions due to their broader sequence coverage with fewer templates. The predictive process can be broadly classified into contact map, binned-distance, and real-valued distance predictions, each with distinctive strengths and limitations manifested through tailored loss functions. We have also introduced revolutionary end-to-end, and all-atom diffusion-based techniques that have transformed protein structure predictions. Recent advancements in deep learning techniques have significantly improved prediction accuracy, although the effectiveness is contingent upon the quality of input features derived from natural bio-physiochemical attributes and Multiple Sequence Alignments (MSA). Hence, the generation of high-quality MSA data holds paramount importance in harnessing informative input features for enhanced prediction outcomes. Remarkable successes have been achieved in protein structure prediction accuracy, however not enough for what structural knowledge was intended to, which implies need for development in some other aspects of the predictions. In this regard, scientists have opened other frontiers for protein structural prediction. The utilization of subsampling in multiple sequence alignment (MSA) and protein language modeling appears to be particularly promising in enhancing the accuracy and efficiency of predictions, ultimately aiding in drug discovery efforts. The exploration of predicting protein complex structure also opens up exciting opportunities to deepen our knowledge of molecular interactions and design therapeutics that are more effective. In this article, we have discussed the vicissitudes that the scientists have gone through to improve prediction accuracy, and examined the effective policies in predicting from different aspects, including the construction of high quality MSA, providing informative input features, and progresses in deep learning approaches. We have also briefly touched upon transitioning from predicting single-chain protein structures to predicting protein complex structures. Our findings point towards promoting open research environments to support the objectives of protein structure prediction.
Collapse
Affiliation(s)
- Faezeh Rahimzadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | | | - Pedram Salehpoor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Faegheh Golabi
- Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin PourBahrami
- Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
| |
Collapse
|
5
|
Jisna VA, Ajay AP, Jayaraj PB. Using Attention-UNet Models to Predict Protein Contact Maps. J Comput Biol 2024; 31:691-702. [PMID: 38979621 DOI: 10.1089/cmb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Proteins are essential to life, and understanding their intrinsic roles requires determining their structure. The field of proteomics has opened up new opportunities by applying deep learning algorithms to large databases of solved protein structures. With the availability of large data sets and advanced machine learning methods, the prediction of protein residue interactions has greatly improved. Protein contact maps provide empirical evidence of the interacting residue pairs within a protein sequence. Template-free protein structure prediction systems rely heavily on this information. This article proposes UNet-CON, an attention-integrated UNet architecture, trained to predict residue-residue contacts in protein sequences. With the predicted contacts being more accurate than state-of-the-art methods on the PDB25 test set, the model paves the way for the development of more powerful deep learning algorithms for predicting protein residue interactions.
Collapse
Affiliation(s)
- V A Jisna
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing, Kurnool, India
| | | | - P B Jayaraj
- Department of Computer Science and Engineering, NIT Calicut, Calicut, India
| |
Collapse
|
6
|
Zhou T, Ye Y, Zhu Q, Vann W, Du J. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis. Front Hum Neurosci 2024; 18:1338453. [PMID: 38952645 PMCID: PMC11215083 DOI: 10.3389/fnhum.2024.1338453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.
Collapse
Affiliation(s)
- Tianyu Zhou
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Yang Ye
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Qi Zhu
- Communications Technology Laboratory, Public Safety Communications Research Division, Advanced Communications Research Group, National Institute of Standards and Technology, Boulder, CO, United States
| | - William Vann
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Jing Du
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Zheng W. Predicting hotspots for disease-causing single nucleotide variants using sequences-based coevolution, network analysis, and machine learning. PLoS One 2024; 19:e0302504. [PMID: 38743747 PMCID: PMC11093321 DOI: 10.1371/journal.pone.0302504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
To enable personalized medicine, it is important yet highly challenging to accurately predict disease-causing mutations in target proteins at high throughput. Previous computational methods have been developed using evolutionary information in combination with various biochemical and structural features of protein residues to discriminate neutral vs. deleterious mutations. However, the power of these methods is often limited because they either assume known protein structures or treat residues independently without fully considering their interactions. To address the above limitations, we build upon recent progress in machine learning, network analysis, and protein language models, and develop a sequences-based variant site prediction workflow based on the protein residue contact networks: 1. We employ and integrate various methods of building protein residue networks using state-of-the-art coevolution analysis tools (RaptorX, DeepMetaPSICOV, and SPOT-Contact) powered by deep learning. 2. We use machine learning algorithms (Random Forest, Gradient Boosting, and Extreme Gradient Boosting) to optimally combine 20 network centrality scores to jointly predict key residues as hot spots for disease mutations. 3. Using a dataset of 107 proteins rich in disease mutations, we rigorously evaluate the network scores individually and collectively (via machine learning). This work supports a promising strategy of combining an ensemble of network scores based on different coevolution analysis methods (and optionally predictive scores from other methods) via machine learning to predict hotspot sites of disease mutations, which will inform downstream applications of disease diagnosis and targeted drug design.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
8
|
Zhao C, Wang S. AttCON: With better MSAs and attention mechanism for accurate protein contact map prediction. Comput Biol Med 2024; 169:107822. [PMID: 38091726 DOI: 10.1016/j.compbiomed.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Protein contact map prediction is a critical and vital step in protein structure prediction, and its accuracy is highly contingent upon the feature representations of protein sequence information and the efficacy of deep learning models. In this paper, we propose an algorithm, DeepMSA+, to generate protein multiple sequence alignments (MSAs) and to construct feature representations based on co-evolutionary information and sequence information derived from MSAs. We also propose an improved deep learning model, AttCON, for training input features to predict protein contact map. The model incorporates an attention module, and by comparing different attention modules, we find a parameter-free attention module suitable for contact map prediction. Additionally, we use the Focal Loss function to better address the data imbalance issue in protein contact map. We also developed a weighted evaluation index (W score) for model evaluation, which takes into account a wide range of metrics. W score is comprehensive in its scope, with a particular focus on the precision of predictions for medium-range and long-range contacts. Experimental results show that AttCON achieves good precision results on datasets from CASP11 to CASP15. Compared to some state-of-the-art methods, it achieves an average improvement of over 5% in both medium-range and long-range predictions, and W score is improved by an average of 2 points.
Collapse
Affiliation(s)
- Che Zhao
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
9
|
Wang H, Zang Y, Kang Y, Zhang J, Zhang L, Zhang S. ETLD: an encoder-transformation layer-decoder architecture for protein contact and mutation effects prediction. Brief Bioinform 2023; 24:bbad290. [PMID: 37598423 DOI: 10.1093/bib/bbad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The latent features extracted from the multiple sequence alignments (MSAs) of homologous protein families are useful for identifying residue-residue contacts, predicting mutation effects, shaping protein evolution, etc. Over the past three decades, a growing body of supervised and unsupervised machine learning methods have been applied to this field, yielding fruitful results. Here, we propose a novel self-supervised model, called encoder-transformation layer-decoder (ETLD) architecture, capable of capturing protein sequence latent features directly from MSAs. Compared to the typical autoencoder model, ETLD introduces a transformation layer with the ability to learn inter-site couplings, which can be used to parse out the two-dimensional residue-residue contacts map after a simple mathematical derivation or an additional supervised neural network. ETLD retains the process of encoding and decoding sequences, and the predicted probabilities of amino acids at each site can be further used to construct the mutation landscapes for mutation effects prediction, outperforming advanced models such as GEMME, DeepSequence and EVmutation in general. Overall, ETLD is a highly interpretable unsupervised model with great potential for improvement and can be further combined with supervised methods for more extensive and accurate predictions.
Collapse
Affiliation(s)
- He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Li J, Sawhney A, Lee JY, Liao L. Improving Inter-Helix Contact Prediction With Local 2D Topological Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3001-3012. [PMID: 37155404 DOI: 10.1109/tcbb.2023.3274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.
Collapse
|
11
|
Jeong KJ, Jeong S, Lee S, Son CY. Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204272. [PMID: 36373701 DOI: 10.1002/adma.202204272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Indexed: 06/16/2023]
Abstract
Electrostatic interactions play a dominant role in charged materials systems. Understanding the complex correlation between macroscopic properties with microscopic structures is of critical importance to develop rational design strategies for advanced materials. But the complexity of this challenging task is augmented by interfaces present in the charged materials systems, such as electrode-electrolyte interfaces or biological membranes. Over the last decades, predictive molecular simulations that are founded in fundamental physics and optimized for charged interfacial systems have proven their value in providing molecular understanding of physicochemical properties and functional mechanisms for diverse materials. Novel design strategies utilizing predictive models have been suggested as promising route for the rational design of materials with tailored properties. Here, an overview of recent advances in the understanding of charged interfacial systems aided by predictive molecular simulations is presented. Focusing on three types of charged interfaces found in energy materials and biomacromolecules, how the molecular models characterize ion structure, charge transport, morphology relation to the environment, and the thermodynamics/kinetics of molecular binding at the interfaces is discussed. The critical analysis brings two prominent field of energy materials and biological science under common perspective, to stimulate crossover in both research field that have been largely separated.
Collapse
Affiliation(s)
- Kyeong-Jun Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Seungwon Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
12
|
Durairaj J, de Ridder D, van Dijk AD. Beyond sequence: Structure-based machine learning. Comput Struct Biotechnol J 2022; 21:630-643. [PMID: 36659927 PMCID: PMC9826903 DOI: 10.1016/j.csbj.2022.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Recent breakthroughs in protein structure prediction demarcate the start of a new era in structural bioinformatics. Combined with various advances in experimental structure determination and the uninterrupted pace at which new structures are published, this promises an age in which protein structure information is as prevalent and ubiquitous as sequence. Machine learning in protein bioinformatics has been dominated by sequence-based methods, but this is now changing to make use of the deluge of rich structural information as input. Machine learning methods making use of structures are scattered across literature and cover a number of different applications and scopes; while some try to address questions and tasks within a single protein family, others aim to capture characteristics across all available proteins. In this review, we look at the variety of structure-based machine learning approaches, how structures can be used as input, and typical applications of these approaches in protein biology. We also discuss current challenges and opportunities in this all-important and increasingly popular field.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Aalt D.J. van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
13
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Roche R, Bhattacharya S, Shuvo MH, Bhattacharya D. rrQNet: Protein contact map quality estimation by deep evolutionary reconciliation. Proteins 2022; 90:2023-2034. [PMID: 35751651 PMCID: PMC9633355 DOI: 10.1002/prot.26394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022]
Abstract
Protein contact maps have proven to be a valuable tool in the deep learning revolution of protein structure prediction, ushering in the recent breakthrough by AlphaFold2. However, self-assessment of the quality of predicted structures are typically performed at the granularity of three-dimensional coordinates as opposed to directly exploiting the rotation- and translation-invariant two-dimensional (2D) contact maps. Here, we present rrQNet, a deep learning method for self-assessment in 2D by contact map quality estimation. Our approach is based on the intuition that for a contact map to be of high quality, the residue pairs predicted to be in contact should be mutually consistent with the evolutionary context of the protein. The deep neural network architecture of rrQNet implements this intuition by cascading two deep modules-one encoding the evolutionary context and the other performing evolutionary reconciliation. The penultimate stage of rrQNet estimates the quality scores at the interacting residue-pair level, which are then aggregated for estimating the quality of a contact map. This design choice offers versatility at varied resolutions from individual residue pairs to full-fledged contact maps. Trained on multiple complementary sources of contact predictors, rrQNet facilitates generalizability across various contact maps. By rigorously testing using publicly available datasets and comparing against several in-house baseline approaches, we show that rrQNet accurately reproduces the true quality score of a predicted contact map and successfully distinguishes between accurate and inaccurate contact maps predicted by a wide variety of contact predictors. The open-source rrQNet software package is freely available at https://github.com/Bhattacharya-Lab/rrQNet.
Collapse
Affiliation(s)
- Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
15
|
Manriquez‐Sandoval E, Fried SD. DomainMapper: Accurate domain structure annotation including those with non-contiguous topologies. Protein Sci 2022; 31:e4465. [PMID: 36208126 PMCID: PMC9601794 DOI: 10.1002/pro.4465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Automated domain annotation is an important tool for structural informatics. These pipelines typically involve searching query sequences against hidden Markov model (HMM) profiles, yielding matches to profiles for various domains. However, domain annotation can be ambiguous or inaccurate when proteins contain domains with non-contiguous residue ranges, and especially when insertional domains are hosted within them. Here, we present DomainMapper, an algorithm that accurately assigns a unique domain structure annotation to a query sequence, including those with complex topologies. We validate our domain assignments using the AlphaFold database and confirm that non-contiguity is pervasive (10.74% of all domains in yeast and 4.52% in human). Using this resource, we find that certain folds have strong propensities to be non-contiguous or insertional across the Tree of Life. DomainMapper is freely available and can be ran as a single command-line function.
Collapse
Affiliation(s)
| | - Stephen D. Fried
- T. C. Jenkins Department of BiophysicsJohns Hopkins UniversityBaltimoreMDUSA
- Department of ChemistryJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
16
|
Barger J, Adhikari B. New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3586-3594. [PMID: 34559660 DOI: 10.1109/tcbb.2021.3115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction-a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions to reflect inter-residue distances in nature. Despite these promises, the accurate prediction of real-valued distances remains relatively unexplored; possibly due to classification being better suited to machine and deep learning algorithms. METHODS Can regression methods be designed to predict real-valued distances as precise as binary contacts? To investigate this, we propose multiple novel methods of input label engineering, which is different from feature engineering, with the goal of optimizing the distribution of distances to cater to the loss function of the deep-learning model. Since an important utility of predicted contacts or distances is to build three-dimensional models, we also tested if predicted distances can reconstruct more accurate models than contacts. RESULTS Our results demonstrate, for the first time, that deep learning methods for real-valued protein distance prediction can deliver distances as precise as binary classification methods. When using an optimal distance transformation function on the standard PSICOV dataset consisting of 150 representative proteins, the precision of 'top-all' long-range contacts improves from 60.9% to 61.4% when predicting real-valued distances instead of contacts. When building three-dimensional models we observed an average TM-score increase from 0.61 to 0.72, highlighting the advantage of predicting real-valued distances.
Collapse
|
17
|
Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Comput Struct Biotechnol J 2022; 20:6138-6148. [DOI: 10.1016/j.csbj.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
18
|
Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN). Protein J 2022; 41:468-476. [PMID: 36008645 DOI: 10.1007/s10930-022-10067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 10/15/2022]
Abstract
Three-dimensional protein structure prediction is one of the major challenges in bioinformatics. According to recent research findings, real-valued distance prediction plays a vital role in determining the unique three-dimensional protein structure. This paper proposes a novel methodology involving a deep residual dense network (DRDN) for predicting protein real-valued distance. The features extracted from the given query protein sequence and its corresponding homologous sequences are used for training the model. Multi-aligned homologous sequences for each query protein sequence are retrieved from five different databases using DeepMSA, HHblits, and HITS_PR_HHblits methods. The proposed method yielded outcomes of 3.89, 0.23, 0.45, and 0.63, respectively, corresponding to the evaluation metrics such as Absolute Error, Relative Error, High-accuracy Pairwise Distance Test (PDA), and Pairwise Distance Test (PDT). Further, the contact map is computed based on CASP criteria by converting the predicted real-valued distance, and it is evaluated using the precision metric. It is observed that precision of long-range top L/5 contact prediction on the CASP13 dataset by the proposed method, RaptorX, Zhang, trRosetta, JinboXu & JinLu, and Deepdist are 0.834, 0.657, 0.70, 0.785, 0.786, and 0.812, respectively. Also, Top-L/5 contact prediction on the CASP14 dataset evaluated using average precision resulted in 0.847, 0.707, 0.752, 0.783, 0.792, 0.817, and 0.825 respectively, corresponding to the proposed method, Zhang, RaptorX, trRosetta, Deepdist, JinboXu & JinLu, and Alphafold2.
Collapse
|
19
|
Chen S, Li Q, Zhao J, Bin Y, Zheng C. NeuroPred-CLQ: incorporating deep temporal convolutional networks and multi-head attention mechanism to predict neuropeptides. Brief Bioinform 2022; 23:6672901. [DOI: 10.1093/bib/bbac319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Neuropeptides (NPs) are a particular class of informative substances in the immune system and physiological regulation. They play a crucial role in regulating physiological functions in various biological growth and developmental stages. In addition, NPs are crucial for developing new drugs for the treatment of neurological diseases. With the development of molecular biology techniques, some data-driven tools have emerged to predict NPs. However, it is necessary to improve the predictive performance of these tools for NPs. In this study, we developed a deep learning model (NeuroPred-CLQ) based on the temporal convolutional network (TCN) and multi-head attention mechanism to identify NPs effectively and translate the internal relationships of peptide sequences into numerical features by the Word2vec algorithm. The experimental results show that NeuroPred-CLQ learns data information effectively, achieving 93.6% accuracy and 98.8% AUC on the independent test set. The model has better performance in identifying NPs than the state-of-the-art predictors. Visualization of features using t-distribution random neighbor embedding shows that the NeuroPred-CLQ can clearly distinguish the positive NPs from the negative ones. We believe the NeuroPred-CLQ can facilitate drug development and clinical trial studies to treat neurological disorders.
Collapse
Affiliation(s)
- Shouzhi Chen
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Qing Li
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Jianping Zhao
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
| | - Yannan Bin
- School of Computer Science and Technology, Anhui University , Hefei, China
| | - Chunhou Zheng
- School of Mathematics and System Science, Xinjiang University , Urumqi, China
- School of Computer Science and Technology, Anhui University , Hefei, China
| |
Collapse
|
20
|
Nguyen TTD, Chen S, Ho QT, Ou YY. Using multiple convolutional window scanning of convolutional neural network for an efficient prediction of ATP-binding sites in transport proteins. Proteins 2022; 90:1486-1492. [PMID: 35246878 DOI: 10.1002/prot.26329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/31/2022]
Abstract
Protein multiple sequence alignment information has long been important features to know about functions of proteins inferred from related sequences with known functions. It is therefore one of the underlying ideas of Alpha fold 2, a breakthrough study and model for the prediction of three-dimensional structures of proteins from their primary sequence. Our study used protein multiple sequence alignment information in the form of position-specific scoring matrices as input. We also refined the use of a convolutional neural network, a well-known deep-learning architecture with impressive achievement on image and image-like data. Specifically, we revisited the study of prediction of adenosine triphosphate (ATP)-binding sites with more efficient convolutional neural networks. We applied multiple convolutional window scanning filters of a convolutional neural network on position-specific scoring matrices for as much as useful information as possible. Furthermore, only the most specific motifs are retained at each feature map output through the one-max pooling layer before going to the next layer. We assumed that this way could help us retain the most conserved motifs which are discriminative information for prediction. Our experiment results show that a convolutional neural network with not too many convolutional layers can be enough to extract the conserved information of proteins, which leads to higher performance. Our best prediction models were obtained after examining them with different hyper-parameters. Our experiment results showed that our models were superior to traditional use of convolutional neural networks on the same datasets as well as other machine-learning classification algorithms.
Collapse
Affiliation(s)
| | - Syun Chen
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
| | - Quang-Thai Ho
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science and Engineering, Yuan Ze University, Chung-Li, Taiwan
| |
Collapse
|
21
|
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble. Sci Rep 2022; 12:10018. [PMID: 35705565 PMCID: PMC9200820 DOI: 10.1038/s41598-022-13714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we investigate the ability of the residue-residue distance prediction to provide insights into the protein conformational ensemble. We combine deep learning approaches with mechanistic modeling to a set of proteins that experimentally showed conformational changes. The predicted protein models were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest energy structure per cluster. These models were compared to the experimental-Molecular Dynamics (MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally represented by different X-ray conformations for the same sequence as well the conformational space observed with the MD simulations. We show the potential correlation between the experimental structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of improvement.
Collapse
|
22
|
Braberg H, Echeverria I, Kaake RM, Sali A, Krogan NJ. From systems to structure - using genetic data to model protein structures. Nat Rev Genet 2022; 23:342-354. [PMID: 35013567 PMCID: PMC8744059 DOI: 10.1038/s41576-021-00441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Zhang H, Huang Y, Bei Z, Ju Z, Meng J, Hao M, Zhang J, Zhang H, Xi W. Inter-Residue Distance Prediction From Duet Deep Learning Models. Front Genet 2022; 13:887491. [PMID: 35651930 PMCID: PMC9148999 DOI: 10.3389/fgene.2022.887491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Residue distance prediction from the sequence is critical for many biological applications such as protein structure reconstruction, protein–protein interaction prediction, and protein design. However, prediction of fine-grained distances between residues with long sequence separations still remains challenging. In this study, we propose DuetDis, a method based on duet feature sets and deep residual network with squeeze-and-excitation (SE), for protein inter-residue distance prediction. DuetDis embraces the ability to learn and fuse features directly or indirectly extracted from the whole-genome/metagenomic databases and, therefore, minimize the information loss through ensembling models trained on different feature sets. We evaluate DuetDis and 11 widely used peer methods on a large-scale test set (610 proteins chains). The experimental results suggest that 1) prediction results from different feature sets show obvious differences; 2) ensembling different feature sets can improve the prediction performance; 3) high-quality multiple sequence alignment (MSA) used for both training and testing can greatly improve the prediction performance; and 4) DuetDis is more accurate than peer methods for the overall prediction, more reliable in terms of model prediction score, and more robust against shallow multiple sequence alignment (MSA).
Collapse
Affiliation(s)
- Huiling Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhendong Bei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Ju
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jintao Meng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jingjing Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiping Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhui Xi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Wenhui Xi,
| |
Collapse
|
24
|
Weissenow K, Heinzinger M, Rost B. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Structure 2022; 30:1169-1177.e4. [DOI: 10.1016/j.str.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
|
25
|
Gu J, Zhang T, Wu C, Liang Y, Shi X. Refined Contact Map Prediction of Peptides Based on GCN and ResNet. Front Genet 2022; 13:859626. [PMID: 35571037 PMCID: PMC9092020 DOI: 10.3389/fgene.2022.859626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting peptide inter-residue contact maps plays an important role in computational biology, which determines the topology of the peptide structure. However, due to the limited number of known homologous structures, there is still much room for inter-residue contact map prediction. Current models are not sufficient for capturing the high accuracy relationship between the residues, especially for those with a long-range distance. In this article, we developed a novel deep neural network framework to refine the rough contact map produced by the existing methods. The rough contact map is used to construct the residue graph that is processed by the graph convolutional neural network (GCN). GCN can better capture the global information and is therefore used to grasp the long-range contact relationship. The residual convolutional neural network is also applied in the framework for learning local information. We conducted the experiments on four different test datasets, and the inter-residue long-range contact map prediction accuracy demonstrates the effectiveness of our proposed method.
Collapse
Affiliation(s)
- Jiawei Gu
- College of Computer Science and Technology, University of Jilin, Changchun, China
| | - Tianhao Zhang
- College of Computer Science and Technology, University of Jilin, Changchun, China
| | - Chunguo Wu
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
| | - Yanchun Liang
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Xiaohu Shi
- College of Computer Science and Technology, University of Jilin, Changchun, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, China
- *Correspondence: Xiaohu Shi,
| |
Collapse
|
26
|
Gaunt MW, Pettersson JHO, Kuno G, Gaunt B, de Lamballerie X, Gould EA. Widespread Interspecific Phylogenetic Tree Incongruence Between Mosquito-Borne and Insect-Specific Flaviviruses at Hotspots Originally Identified in Zika Virus. Virus Evol 2022; 8:veac027. [PMID: 35591877 PMCID: PMC9113262 DOI: 10.1093/ve/veac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/22/2021] [Accepted: 04/17/2022] [Indexed: 11/16/2022] Open
Abstract
Intraspecies (homologous) phylogenetic incongruence, or ‘tree conflict’ between different loci within the same genome of mosquito-borne flaviviruses (MBFV), was first identified in dengue virus (DENV) and subsequently in Japanese encephalitis virus (JEV), St Louis encephalitis virus, and Zika virus (ZIKV). Recently, the first evidence of phylogenetic incongruence between interspecific members of the MBFV was reported in ZIKV and its close relative, Spondweni virus. Uniquely, these hybrid proteomes were derived from four incongruent trees involving an Aedes-associated DENV node (1 tree) and three different Culex-associated flavivirus nodes (3 trees). This analysis has now been extended across a wider spectrum of viruses within the MBFV lineage targeting the breakpoints between phylogenetic incongruent loci originally identified in ZIKV. Interspecies phylogenetic incongruence at these breakpoints was identified in 10 of 50 viruses within the MBFV lineage, representing emergent Aedes and Culex-associated viruses including JEV, West Nile virus, yellow fever virus, and insect-specific viruses. Thus, interspecies phylogenetic incongruence is widespread amongst the flaviviruses and is robustly associated with the specific breakpoints that coincide with the interspecific phylogenetic incongruence previously identified, inferring they are ‘hotspots’. The incongruence amongst the emergent MBFV group was restricted to viruses within their respective associated epidemiological boundaries. This MBFV group was RY-coded at the third codon position (‘wobble codon’) to remove transition saturation. The resulting ‘wobble codon’ trees presented a single topology for the entire genome that lacked any robust evidence of phylogenetic incongruence between loci. Phylogenetic interspecific incongruence was therefore observed for exactly the same loci between amino acid and the RY-coded ‘wobble codon’ alignments and this incongruence represented either a major part, or the entire genomes. Maximum likelihood codon analysis revealed positive selection for the incongruent lineages. Positive selection could result in the same locus producing two opposing trees. These analyses for the clinically important MBFV suggest that robust interspecific phylogenetic incongruence resulted from amino acid selection. Convergent or parallel evolutions are evolutionary processes that would explain the observation, whilst interspecific recombination is unlikely.
Collapse
Affiliation(s)
- Michael W Gaunt
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John H-O Pettersson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, the University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goro Kuno
- Formerly, Centers for Disease Control, Fort Collins, CO 80521, USA
| | - Bill Gaunt
- Aeon-sys, MBCS Kensington Road, Barnsley S75 2TU, UK
| | - Xavier de Lamballerie
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
- APHM Public Hospitals of Marseille, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Ernest A Gould
- UMR “Unité des Virus Emergents”, Aix-Marseille Université-IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
27
|
Lee D, Xiong D, Wierbowski S, Li L, Liang S, Yu H. Deep learning methods for 3D structural proteome and interactome modeling. Curr Opin Struct Biol 2022; 73:102329. [PMID: 35139457 PMCID: PMC8957610 DOI: 10.1016/j.sbi.2022.102329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein-protein interaction interfaces, and characterization of protein-drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.
Collapse
Affiliation(s)
- Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
28
|
Nguyen TTD, Ho QT, Tarn YC, Ou YY. MFPS_CNN: Multi-filter pattern scanning from position-specific scoring matrix with convolutional neural network for efficient prediction of ion transporters. Mol Inform 2022; 41:e2100271. [PMID: 35322557 DOI: 10.1002/minf.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
In cellular transportation mechanisms, the movement of ions across the cell membrane and its proper control are important for cells, especially for life processes. Ion transporters/pumps and ion channel proteins work as border guards controlling the incessant traffic of ions across cell membranes. We revisited the study of classification of transporters and ion channels from membrane proteins with a more efficient deep learning approach. Specifically, we applied multi-window scanning filters of convolutional neural networks on almost full-length position-specific scoring matrices for extracting useful information. In this way, we were able to retain important evolutionary information of the proteins. Our experiment results show that a convolutional neural network with a minimum number of convolutional layers can be enough to extract the conserved information of proteins which leads to higher performance. Our best prediction models were obtained after examining different data imbalanced handling techniques, and different protein encoding methods. We also showed that our models were superior to traditional deep learning approaches on the same datasets as well as other machine learning classification algorithms.
Collapse
|
29
|
Lin E, Lin CH, Lane HY. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. J Chem Inf Model 2022; 62:761-774. [DOI: 10.1021/acs.jcim.1c01361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, Washington 98195, United States
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
30
|
Singh J, Litfin T, Singh J, Paliwal K, Zhou Y. SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model. Bioinformatics 2022; 38:1888-1894. [PMID: 35104320 PMCID: PMC9113311 DOI: 10.1093/bioinformatics/btac053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/21/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Accurate prediction of protein contact-map is essential for accurate protein structure and function prediction. As a result, many methods have been developed for protein contact map prediction. However, most methods rely on protein-sequence-evolutionary information, which may not exist for many proteins due to lack of naturally occurring homologous sequences. Moreover, generating evolutionary profiles is computationally intensive. Here, we developed a contact-map predictor utilizing the output of a pre-trained language model ESM-1b as an input along with a large training set and an ensemble of residual neural networks. RESULTS We showed that the proposed method makes a significant improvement over a single-sequence-based predictor SSCpred with 15% improvement in the F1-score for the independent CASP14-FM test set. It also outperforms evolutionary-profile-based methods trRosetta and SPOT-Contact with 48.7% and 48.5% respective improvement in the F1-score on the proteins without homologs (Neff = 1) in the independent SPOT-2018 set. The new method provides a much faster and reasonably accurate alternative to evolution-based methods, useful for large-scale prediction. AVAILABILITY AND IMPLEMENTATION Stand-alone-version of SPOT-Contact-LM is available at https://github.com/jas-preet/SPOT-Contact-Single. Direct prediction can also be made at https://sparks-lab.org/server/spot-contact-single. The datasets used in this research can also be downloaded from the GitHub. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Thomas Litfin
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | | | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
31
|
Kandathil SM, Greener JG, Lau AM, Jones DT. Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins. Proc Natl Acad Sci U S A 2022; 119:e2113348119. [PMID: 35074909 PMCID: PMC8795500 DOI: 10.1073/pnas.2113348119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Deep learning-based prediction of protein structure usually begins by constructing a multiple sequence alignment (MSA) containing homologs of the target protein. The most successful approaches combine large feature sets derived from MSAs, and considerable computational effort is spent deriving these input features. We present a method that greatly reduces the amount of preprocessing required for a target MSA, while producing main chain coordinates as a direct output of a deep neural network. The network makes use of just three recurrent networks and a stack of residual convolutional layers, making the predictor very fast to run, and easy to install and use. Our approach constructs a directly learned representation of the sequences in an MSA, starting from a one-hot encoding of the sequences. When supplemented with an approximate precision matrix, the learned representation can be used to produce structural models of comparable or greater accuracy as compared to our original DMPfold method, while requiring less than a second to produce a typical model. This level of accuracy and speed allows very large-scale three-dimensional modeling of proteins on minimal hardware, and we demonstrate this by producing models for over 1.3 million uncharacterized regions of proteins extracted from the BFD sequence clusters. After constructing an initial set of approximate models, we select a confident subset of over 30,000 models for further refinement and analysis, revealing putative novel protein folds. We also provide updated models for over 5,000 Pfam families studied in the original DMPfold paper.
Collapse
Affiliation(s)
- Shaun M Kandathil
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
| | - Joe G Greener
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
| | - Andy M Lau
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
| | - David T Jones
- Department of Computer Science, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
32
|
Holland J, Grigoryan G. Structure‐conditioned amino‐acid couplings: how contact geometry affects pairwise sequence preferences. Protein Sci 2022; 31:900-917. [PMID: 35060221 PMCID: PMC8927866 DOI: 10.1002/pro.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Relating a protein's sequence to its conformation is a central challenge for both structure prediction and sequence design. Statistical contact potentials, as well as their more descriptive versions that account for side‐chain orientation and other geometric descriptors, have served as simplistic but useful means of representing second‐order contributions in sequence–structure relationships. Here we ask what happens when a pairwise potential is conditioned on the fully defined geometry of interacting backbones fragments. We show that the resulting structure‐conditioned coupling energies more accurately reflect pair preferences as a function of structural contexts. These structure‐conditioned energies more reliably encode native sequence information and more highly correlate with experimentally determined coupling energies. Clustering a database of interaction motifs by structure results in ensembles of similar energies and clustering them by energy results in ensembles of similar structures. By comparing many pairs of interaction motifs and showing that structural similarity and energetic similarity go hand‐in‐hand, we provide a tangible link between modular sequence and structure elements. This link is applicable to structural modeling, and we show that scoring CASP models with structured‐conditioned energies results in substantially higher correlation with structural quality than scoring the same models with a contact potential. We conclude that structure‐conditioned coupling energies are a good way to model the impact of interaction geometry on second‐order sequence preferences.
Collapse
Affiliation(s)
- Jack Holland
- Department of Computer Science Dartmouth College Hanover New Hampshire USA
| | - Gevorg Grigoryan
- Department of Computer Science Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
33
|
Yadav NS, Kumar P, Singh I. Structural and functional analysis of protein. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Roy RS, Quadir F, Soltanikazemi E, Cheng J. OUP accepted manuscript. Bioinformatics 2022; 38:1904-1910. [PMID: 35134816 PMCID: PMC8963319 DOI: 10.1093/bioinformatics/btac063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Motivation Deep learning has revolutionized protein tertiary structure prediction recently. The cutting-edge deep learning methods such as AlphaFold can predict high-accuracy tertiary structures for most individual protein chains. However, the accuracy of predicting quaternary structures of protein complexes consisting of multiple chains is still relatively low due to lack of advanced deep learning methods in the field. Because interchain residue–residue contacts can be used as distance restraints to guide quaternary structure modeling, here we develop a deep dilated convolutional residual network method (DRCon) to predict interchain residue–residue contacts in homodimers from residue–residue co-evolutionary signals derived from multiple sequence alignments of monomers, intrachain residue–residue contacts of monomers extracted from true/predicted tertiary structures or predicted by deep learning, and other sequence and structural features. Results Tested on three homodimer test datasets (Homo_std dataset, DeepHomo dataset and CASP-CAPRI dataset), the precision of DRCon for top L/5 interchain contact predictions (L: length of monomer in a homodimer) is 43.46%, 47.10% and 33.50% respectively at 6 Å contact threshold, which is substantially better than DeepHomo and DNCON2_inter and similar to Glinter. Moreover, our experiments demonstrate that using predicted tertiary structure or intrachain contacts of monomers in the unbound state as input, DRCon still performs well, even though its accuracy is lower than using true tertiary structures in the bound state are used as input. Finally, our case study shows that good interchain contact predictions can be used to build high-accuracy quaternary structure models of homodimers. Availability and implementation The source code of DRCon is available at https://github.com/jianlin-cheng/DRCon. The datasets are available at https://zenodo.org/record/5998532#.YgF70vXMKsB. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Elham Soltanikazemi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
35
|
Schwarz D, Georges G, Kelm S, Shi J, Vangone A, Deane CM. Co-evolutionary distance predictions contain flexibility information. Bioinformatics 2021; 38:65-72. [PMID: 34383892 DOI: 10.1093/bioinformatics/btab562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 06/19/2021] [Accepted: 08/10/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Co-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to experimental levels, structure prediction research will move on to other challenges. One of those areas is the prediction of more than one conformation of a protein. Here, we examine the potential of residue-residue distance predictions to be informative of protein flexibility rather than simply static structure. RESULTS We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their predicted distance distributions while flexible residue pairs more often had multiple local maxima. These results suggest that the shape of predicted distance distributions contains information on the rigidity or flexibility of a protein and its constituent residues. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dominik Schwarz
- Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Guy Georges
- Department of Computational Engineering and Data Science, Large Molecule Research, Penzberg 82377, Germany
| | - Sebastian Kelm
- Computer-Aided Drug Design, UCB Pharma, Slough SL1 3WE, UK
| | - Jiye Shi
- Computer-Aided Drug Design, UCB Pharma, Slough SL1 3WE, UK
| | - Anna Vangone
- Department of Computational Engineering and Data Science, Large Molecule Research, Penzberg 82377, Germany
| | | |
Collapse
|
36
|
Sikander R, Wang Y, Ghulam A, Wu X. Identification of Enzymes-specific Protein Domain Based on DDE, and Convolutional Neural Network. Front Genet 2021; 12:759384. [PMID: 34917128 PMCID: PMC8670239 DOI: 10.3389/fgene.2021.759384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Predicting the protein sequence information of enzymes and non-enzymes is an important but a very challenging task. Existing methods use protein geometric structures only or protein sequences alone to predict enzymatic functions. Thus, their prediction results are unsatisfactory. In this paper, we propose a novel approach for predicting the amino acid sequences of enzymes and non-enzymes via Convolutional Neural Network (CNN). In CNN, the roles of enzymes are predicted from multiple sides of biological information, including information on sequences and structures. We propose the use of two-dimensional data via 2DCNN to predict the proteins of enzymes and non-enzymes by using the same fivefold cross-validation function. We also use an independent dataset to test the performance of our model, and the results demonstrate that we are able to solve the overfitting problem. We used the CNN model proposed herein to demonstrate the superiority of our model for classifying an entire set of filters, such as 32, 64, and 128 parameters, with the fivefold validation test set as the independent classification. Via the Dipeptide Deviation from Expected Mean (DDE) matrix, mutation information is extracted from amino acid sequences and structural information with the distance and angle of amino acids is conveyed. The derived feature maps are then encoded in DDE exploitation. The independent datasets are then compared with other two methods, namely, GRU and XGBOOST. All analyses were conducted using 32, 64 and 128 filters on our proposed CNN method. The cross-validation datasets achieved an accuracy score of 0.8762%, whereas the accuracy of independent datasets was 0.7621%. Additional variables were derived on the basis of ROC AUC with fivefold cross-validation was achieved score is 0.95%. The performance of our model and that of other models in terms of sensitivity (0.9028%) and specificity (0.8497%) was compared. The overall accuracy of our model was 0.9133% compared with 0.8310% for the other model.
Collapse
Affiliation(s)
- Rahu Sikander
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yuping Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tando Jam, Pakistan
| | - Xianjuan Wu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
37
|
Li Y, Zhang C, Zheng W, Zhou X, Bell EW, Yu DJ, Zhang Y. Protein inter-residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in CASP14. Proteins 2021; 89:1911-1921. [PMID: 34382712 PMCID: PMC8616805 DOI: 10.1002/prot.26211] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/12/2023]
Abstract
This article reports and analyzes the results of protein contact and distance prediction by our methods in the 14th Critical Assessment of techniques for protein Structure Prediction (CASP14). A new deep learning-based contact/distance predictor was employed based on the ensemble of two complementary coevolution features coupling with deep residual networks. We also improved our multiple sequence alignment (MSA) generation protocol with wholesale meta-genome sequence databases. On 22 CASP14 free modeling (FM) targets, the proposed model achieved a top-L/5 long-range precision of 63.8% and a mean distance bin error of 1.494. Based on the predicted distance potentials, 11 out of 22 FM targets and all of the 14 FM/template-based modeling (TBM) targets have correctly predicted folds (TM-score >0.5), suggesting that our approach can provide reliable distance potentials for ab initio protein folding.
Collapse
Affiliation(s)
- Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
38
|
Hou M, Peng C, Zhou X, Zhang B, Zhang G. Multi contact-based folding method for de novo protein structure prediction. Brief Bioinform 2021; 23:6445108. [PMID: 34849573 DOI: 10.1093/bib/bbab463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 11/12/2022] Open
Abstract
Meta contact, which combines different contact maps into one to improve contact prediction accuracy and effectively reduce the noise from a single contact map, is a widely used method. However, protein structure prediction using meta contact cannot fully exploit the information carried by original contact maps. In this work, a multi contact-based folding method under the evolutionary algorithm framework, MultiCFold, is proposed. In MultiCFold, the thorough information of different contact maps is directly used by populations to guide protein structure folding. In addition, noncontact is considered as an effective supplement to contact information and can further assist protein folding. MultiCFold is tested on a set of 120 nonredundant proteins, and the average TM-score and average RMSD reach 0.617 and 5.815 Å, respectively. Compared with the meta contact-based method, MetaCFold, average TM-score and average RMSD have a 6.62 and 8.82% improvement. In particular, the import of noncontact information increases the average TM-score by 6.30%. Furthermore, MultiCFold is compared with four state-of-the-art methods of CASP13 on the 24 FM targets, and results show that MultiCFold is significantly better than other methods after the full-atom relax procedure.
Collapse
Affiliation(s)
- Minghua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chunxiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Hangzhou 310023, China
| | - Biao Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
39
|
Liu Y, Han K, Zhu YH, Zhang Y, Shen LC, Song J, Yu DJ. Improving protein fold recognition using triplet network and ensemble deep learning. Brief Bioinform 2021; 22:bbab248. [PMID: 34226918 PMCID: PMC8768454 DOI: 10.1093/bib/bbab248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Protein fold recognition is a critical step toward protein structure and function prediction, aiming at providing the most likely fold type of the query protein. In recent years, the development of deep learning (DL) technique has led to massive advances in this important field, and accordingly, the sensitivity of protein fold recognition has been dramatically improved. Most DL-based methods take an intermediate bottleneck layer as the feature representation of proteins with new fold types. However, this strategy is indirect, inefficient and conditional on the hypothesis that the bottleneck layer's representation is assumed as a good representation of proteins with new fold types. To address the above problem, in this work, we develop a new computational framework by combining triplet network and ensemble DL. We first train a DL-based model, termed FoldNet, which employs triplet loss to train the deep convolutional network. FoldNet directly optimizes the protein fold embedding itself, making the proteins with the same fold types be closer to each other than those with different fold types in the new protein embedding space. Subsequently, using the trained FoldNet, we implement a new residue-residue contact-assisted predictor, termed FoldTR, which improves protein fold recognition. Furthermore, we propose a new ensemble DL method, termed FSD_XGBoost, which combines protein fold embedding with the other two discriminative fold-specific features extracted by two DL-based methods SSAfold and DeepFR. The Top 1 sensitivity of FSD_XGBoost increases to 74.8% at the fold level, which is ~9% higher than that of the state-of-the-art method. Together, the results suggest that fold-specific features extracted by different DL methods complement with each other, and their combination can further improve fold recognition at the fold level. The implemented web server of FoldTR and benchmark datasets are publicly available at http://csbio.njust.edu.cn/bioinf/foldtr/.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangning Song
- Corresponding authors: Dong-Jun Yu, School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China. E-mail: ; Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia. E-mail:
| | - Dong-Jun Yu
- Corresponding authors: Dong-Jun Yu, School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China. E-mail: ; Jiangning Song, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia. E-mail:
| |
Collapse
|
40
|
Si Y, Yan C. Improved protein contact prediction using dimensional hybrid residual networks and singularity enhanced loss function. Brief Bioinform 2021; 22:6357883. [PMID: 34448830 DOI: 10.1093/bib/bbab341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Deep residual learning has shown great success in protein contact prediction. In this study, a new deep residual learning-based protein contact prediction model was developed. Comparing with previous models, a new type of residual block hybridizing 1D and 2D convolutions was designed to increase the effective receptive field of the residual network, and a new loss function emphasizing the easily misclassified residue pairs was proposed to enhance the model training. The developed protein contact prediction model referred to as DRN-1D2D was first evaluated on 105 CASP11 targets, 76 CAMEO hard targets and 398 membrane proteins together with two in house-developed reference models based on either the standard 2D residual block or the traditional BCE loss function, from which we confirmed that both the dimensional hybrid residual block and the singularity enhanced loss function can be employed to improve the model performance for protein contact prediction. DRN-1D2D was further evaluated on 39 CASP13 and CASP14 free modeling targets together with the two reference models and six state-of-the-art protein contact prediction models including DeepCov, DeepCon, DeepConPred2, SPOT-Contact, RaptorX-Contact and TripleRes. The result shows that DRN-1D2D consistently achieved the best performance among all these models.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and Technology, China
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and Technology, China
| |
Collapse
|
41
|
Mehrabiani KM, Cheng RR, Onuchic JN. Expanding Direct Coupling Analysis to Identify Heterodimeric Interfaces from Limited Protein Sequence Data. J Phys Chem B 2021; 125:11408-11417. [PMID: 34618469 DOI: 10.1021/acs.jpcb.1c07145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct coupling analysis (DCA) is a global statistical approach that uses information encoded in protein sequence data to predict spatial contacts in a three-dimensional structure of a folded protein. DCA has been widely used to predict the monomeric fold at amino acid resolution and to identify biologically relevant interaction sites within a folded protein. Going beyond single proteins, DCA has also been used to identify spatial contacts that stabilize the interaction in protein complex formation. However, extracting this higher order information necessary to predict dimer contacts presents a significant challenge. A DCA evolutionary signal is much stronger at the single protein level (intraprotein contacts) than at the protein-protein interface (interprotein contacts). Therefore, if DCA-derived information is to be used to predict the structure of these complexes, there is a need to identify statistically significant DCA predictions. We propose a simple Z-score measure that can filter good predictions despite noisy, limited data. This new methodology not only improves our prediction ability but also provides a quantitative measure for the validity of the prediction.
Collapse
Affiliation(s)
- Kareem M Mehrabiani
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Ryan R Cheng
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States.,Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
42
|
Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins 2021; 89:1770-1786. [PMID: 34519095 DOI: 10.1002/prot.26235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, that is, learning on representations such as graphs, three-dimensional (3D) Voronoi tessellations, and point clouds; (ii) pretrained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; and (vi) finally truly end-to-end architectures, that is, differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last 2 years and widely used in CASP14.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Stephan Eismann
- Department of Computer Science and Applied Physics, Stanford University, Stanford, California, USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| |
Collapse
|
43
|
Geethu S, Vimina ER. Improved 3-D Protein Structure Predictions using Deep ResNet Model. Protein J 2021; 40:669-681. [PMID: 34510309 DOI: 10.1007/s10930-021-10016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, along with co-evolutionary relationships, deep learning approaches have been introduced in PSP that lead to significant progress. In this paper a novel methodology using deep ResNet architecture for predicting inter-residue distance and dihedral angles is proposed, that aims to generate 125 homologous sequences in an average from a set of customized sequence database. These sequences are used to generate input features. As an outcome of neural networks, a pool of structures is generated from which the lowest potential structure is chosen as the final predicted 3-D protein structure. The proposed method is trained using 6521 protein sequences extracted from Protein Data Bank (PDB). For testing 48 protein sequences whose residue length is less than 400 residues are chosen from the 13th Critical Assessment of protein Structure Prediction (CASP 13) dataset are used. The model is compared with Alphafold, Zhang, and RaptorX. The template modeling (TM) score is used to evaluate the accuracy of the estimated structure. The proposed method produces better performances for 52% of the target sequences while that of Alphafold, Zhang, RaptorX were 10%, 22.9%, and 6% respectively. Additionally, for 37.5% target sequences, the proposed method was able to achieve accuracy greater than or equal to 0.80. The TM score obtained for the sequences under consideration were 0.69, 0.67, 0.65, and 0.58 respectively for the proposed method, Alphafold, Zhang, and RaptorX.
Collapse
Affiliation(s)
- S Geethu
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India.
| | - E R Vimina
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India
| |
Collapse
|
44
|
Hong Z, Liu J, Chen Y. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction. Biophys Chem 2021; 278:106666. [PMID: 34418678 DOI: 10.1016/j.bpc.2021.106666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022]
Abstract
Protein-protein interaction plays an important role in life activities. A more fine-grained analysis, such as residues and atoms level, will better benefit us to understand the mechanism for inter-protein interaction and drug design. The development of efficient computational methods to reduce trials and errors, as well as assisting experimental researchers to determine the complex structure are some of the ongoing studies in the field. The research of trimer protein interface, especially homotrimer, has been rarely studied. In this paper, we proposed an interpretable machine learning method for homo-trimeric protein interface residue pairs prediction. The structure, sequence, and physicochemical information are intergraded as feature input fed to model for training. Graph model is utilized to present spatial information for intra-protein. Matrix factorization captures the different features' interactions. Kernel function is designed to auto-acquire the adjacent information of our target residue pairs. The accuracy rate achieves 54.5% in an independent test set. Sequence and structure alignment exhibit the ability of model self-study. Our model indicates the biological significance between sequence and structure, and could be auxiliary for reducing trials and errors in the fields of protein complex determination and protein-protein docking, etc. SIGNIFICANCE: Protein complex structures are significant for understanding protein function and promising functional protein design. With data increasing, some computational tools have been developed for protein complex residue contact prediction, which is one of the most significant steps for complex structure prediction. But for homo-trimeric protein, the sequence-based deep learning predictors are infeasible for homologous sequences, and the algorithm black box prevents us from understanding of each step operation. In this way, we propose an interpreting machine learning method for homo-trimeric protein interface residue-residue interaction prediction, and the predictor shows a good performance. Our work provides a computational auxiliary way for determining the homo-trimeric proteins interface residue pairs which will be further verified by wet experiments, and and gives a hand for the downstream works, such as protein-protein docking, protein complex structure prediction and drug design.
Collapse
Affiliation(s)
- Zhonghua Hong
- Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing 314001, PR China.
| | - Jiale Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Yinggao Chen
- Shantou Central Hospital, Shantou 515041, PR China.
| |
Collapse
|
45
|
Mortuza SM, Zheng W, Zhang C, Li Y, Pearce R, Zhang Y. Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nat Commun 2021; 12:5011. [PMID: 34408149 PMCID: PMC8373938 DOI: 10.1038/s41467-021-25316-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Sequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-learning and coevolution-based contact-maps to guide the replica-exchange Monte Carlo fragment assembly simulations. The method was tested on 247 non-redundant proteins, where C-QUARK could fold 75% of the cases with TM-scores (template-modeling scores) ≥0.5, which was 2.6 times more than that achieved by QUARK. For the 59 cases that had either low contact accuracy or few homologous sequences, C-QUARK correctly folded 6 times more proteins than other contact-based folding methods. C-QUARK was also tested on 64 free-modeling targets from the 13th CASP (critical assessment of protein structure prediction) experiment and had an average GDT_TS (global distance test) score that was 5% higher than the best CASP predictors. These data demonstrate, in a robust manner, the progress in modeling non-homologous protein structures using low-accuracy and sparse contact-map predictions.
Collapse
Affiliation(s)
- S M Mortuza
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. CELL REPORTS METHODS 2021; 1:100014. [PMID: 34355210 PMCID: PMC8336924 DOI: 10.1016/j.crmeth.2021.100014] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a significant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps from deep neural-network learning with the cutting-edge I-TASSER fragment assembly simulations. Large-scale benchmark tests showed that C-I-TASSER can fold more than twice the number of non-homologous proteins than the I-TASSER, which does not use contacts. When applied to a folding experiment on 8,266 unsolved Pfam families, C-I-TASSER successfully folded 4,162 domain families, including 504 folds that are not found in the PDB. Furthermore, it created correct folds for 85% of proteins in the SARS-CoV-2 genome, despite the quick mutation rate of the virus and sparse sequence profiles. The results demonstrated the critical importance of coupling whole-genome and metagenome-based evolutionary information with optimal structure assembly simulations for solving the problem of non-homologous protein structure prediction.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric W. Bell
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Mulnaes D, Golchin P, Koenig F, Gohlke H. TopDomain: Exhaustive Protein Domain Boundary Metaprediction Combining Multisource Information and Deep Learning. J Chem Theory Comput 2021; 17:4599-4613. [PMID: 34161735 DOI: 10.1021/acs.jctc.1c00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein domains are independent, functional, and stable structural units of proteins. Accurate protein domain boundary prediction plays an important role in understanding protein structure and evolution, as well as for protein structure prediction. Current domain boundary prediction methods differ in terms of boundary definition, methodology, and training databases resulting in disparate performance for different proteins. We developed TopDomain, an exhaustive metapredictor, that uses deep neural networks to combine multisource information from sequence- and homology-based features of over 50 primary predictors. For this purpose, we developed a new domain boundary data set termed the TopDomain data set, in which the true annotations are informed by SCOPe annotations, structural domain parsers, human inspection, and deep learning. We benchmark TopDomain against 2484 targets with 3354 boundaries from the TopDomain test set and achieve F1 scores of 78.4% and 73.8% for multidomain boundary prediction within ±20 residues and ±10 residues of the true boundary, respectively. When examined on targets from CASP11-13 competitions, TopDomain achieves F1 scores of 47.5% and 42.8% for multidomain proteins. TopDomain significantly outperforms 15 widely used, state-of-the-art ab initio and homology-based domain boundary predictors. Finally, we implemented TopDomainTMC, which accurately predicts whether domain parsing is necessary for the target protein.
Collapse
Affiliation(s)
- Daniel Mulnaes
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Pegah Golchin
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Filip Koenig
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
48
|
Chen Z, Zhao P, Li C, Li F, Xiang D, Chen YZ, Akutsu T, Daly RJ, Webb GI, Zhao Q, Kurgan L, Song J. iLearnPlus: a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Res 2021; 49:e60. [PMID: 33660783 PMCID: PMC8191785 DOI: 10.1093/nar/gkab122] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Sequence-based analysis and prediction are fundamental bioinformatic tasks that facilitate understanding of the sequence(-structure)-function paradigm for DNAs, RNAs and proteins. Rapid accumulation of sequences requires equally pervasive development of new predictive models, which depends on the availability of effective tools that support these efforts. We introduce iLearnPlus, the first machine-learning platform with graphical- and web-based interfaces for the construction of machine-learning pipelines for analysis and predictions using nucleic acid and protein sequences. iLearnPlus provides a comprehensive set of algorithms and automates sequence-based feature extraction and analysis, construction and deployment of models, assessment of predictive performance, statistical analysis, and data visualization; all without programming. iLearnPlus includes a wide range of feature sets which encode information from the input sequences and over twenty machine-learning algorithms that cover several deep-learning approaches, outnumbering the current solutions by a wide margin. Our solution caters to experienced bioinformaticians, given the broad range of options, and biologists with no programming background, given the point-and-click interface and easy-to-follow design process. We showcase iLearnPlus with two case studies concerning prediction of long noncoding RNAs (lncRNAs) from RNA transcripts and prediction of crotonylation sites in protein chains. iLearnPlus is an open-source platform available at https://github.com/Superzchen/iLearnPlus/ with the webserver at http://ilearnplus.erc.monash.edu/.
Collapse
Affiliation(s)
- Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Chen Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Fuyi Li
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Dongxu Xiang
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Yong-Zi Chen
- Laboratory of Tumor Cell Biology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Roger J Daly
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Geoffrey I Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450046, China.,Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.,Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
49
|
Bouvier B. Protein-Protein Interface Topology as a Predictor of Secondary Structure and Molecular Function Using Convolutional Deep Learning. J Chem Inf Model 2021; 61:3292-3303. [PMID: 34225449 DOI: 10.1021/acs.jcim.1c00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To power the specific recognition and binding of protein partners into functional complexes, a wealth of information about the structure and function of the partners is necessarily encoded into the global shape of protein-protein interfaces and their local topological features. To identify whether this is the case, this study uses convolutional deep learning methods (typically leveraged for 2D image recognition) on 3D voxel representations of protein-protein interfaces colored by burial depth. A novel two-stage network fed with voxelizations of each interface at two distinct resolutions achieves balance between performance and computational cost. From the shape of the interfaces, the network tries to predict the presence of secondary structure motifs at the interface and the molecular function of the corresponding complex. Secondary structure and certain classes of function are found to be very well predicted, validating the hypothesis that interface shape is a conveyor of higher-level information. Interface patterns triggering the recognition of specific classes are also identified and described.
Collapse
Affiliation(s)
- Benjamin Bouvier
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR7378/Université de Picardie Jules Verne, 10 rue Baudelocque, 80039 Amiens Cedex, France
| |
Collapse
|
50
|
Neuwald AF, Lanczycki CJ, Hodges TK, Marchler-Bauer A. Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5850901. [PMID: 32500917 PMCID: PMC7297217 DOI: 10.1093/database/baaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 11/12/2022]
Abstract
For optimal performance, machine learning methods for protein sequence/structural analysis typically require as input a large multiple sequence alignment (MSA), which is often created using query-based iterative programs, such as PSI-BLAST or JackHMMER. However, because these programs align database sequences using a query sequence as a template, they may fail to detect or may tend to misalign sequences distantly related to the query. More generally, automated MSA programs often fail to align sequences correctly due to the unpredictable nature of protein evolution. Addressing this problem typically requires manual curation in the light of structural data. However, curated MSAs tend to contain too few sequences to serve as input for statistically based methods. We address these shortcomings by making publicly available a set of 252 curated hierarchical MSAs (hiMSAs), containing a total of 26 212 066 sequences, along with programs for generating from these extremely large MSAs. Each hiMSA consists of a set of hierarchically arranged MSAs representing individual subgroups within a superfamily along with template MSAs specifying how to align each subgroup MSA against MSAs higher up the hierarchy. Central to this approach is the MAPGAPS search program, which uses a hiMSA as a query to align (potentially vast numbers of) matching database sequences with accuracy comparable to that of the curated hiMSA. We illustrate this process for the exonuclease–endonuclease–phosphatase superfamily and for pleckstrin homology domains. A set of extremely large MSAs generated from the hiMSAs in this way is available as input for deep learning, big data analyses. MAPGAPS, auxiliary programs CDD2MGS, AddPhylum, PurgeMSA and ConvertMSA and links to National Center for Biotechnology Information data files are available at https://www.igs.umaryland.edu/labs/neuwald/software/mapgaps/.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Institute for Genome Sciences.,Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Christopher J Lanczycki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|