1
|
Desai K, Wanggou S, Luis E, Whetstone H, Yu C, Vanner RJ, Selvadurai HJ, Lee L, Vijay J, Jaramillo JE, Fan J, Guilhamon P, Kushida M, Li X, Stein G, Kesari S, Simons BD, Huang X, Dirks PB. OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma. Nat Commun 2025; 16:1092. [PMID: 39904987 PMCID: PMC11794873 DOI: 10.1038/s41467-024-54858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously, we demonstrated that the growth of the paediatric brain malignancy, sonic hedgehog subgroup medulloblastoma, is rooted in a dysregulated developmental hierarchy, the apex of which is defined by characteristically quiescent SOX2+ stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments, we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation, driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor, CT-179, dramatically attenuates early tumour formation and tumour regrowth post-therapy, and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy.
Collapse
Affiliation(s)
- Kinjal Desai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Erika Luis
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Chunying Yu
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jinchu Vijay
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julia E Jaramillo
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gregory Stein
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
| | - Santosh Kesari
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, and the Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xi Huang
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Gu X, Shen H, Xiang Z, Li X, Zhang Y, Zhang R, Su F, Wang Z. Exploring the Correlation Between GPR176, a Potential Target Gene of Gastric Cancer, and Immune Cell Infiltration. Pharmgenomics Pers Med 2023; 16:519-535. [PMID: 37284492 PMCID: PMC10241216 DOI: 10.2147/pgpm.s411199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction GPR176, an orphan G protein-coupled receptor (GPCR), is essential for the progression of gastrointestinal cancers. However, it is still unclear how GPR176 affects tumor immunity and patient prognosis in gastric cancer (GC). Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were searched in this investigation to assess the expression patterns of GPR176 in GC tissues and normal gastric mucosa. The findings were further verified using immunohistochemical tests and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). The Kaplan-Meier method, univariate logistic regression, and Cox regression were then used to investigate the relationship between GPR176 and clinical traits. Additionally, the potential correlation between GPR176, immune checkpoint genes, and immune cell infiltration levels was investigated. Results As per the research findings, GC tissues had higher levels of GPR176 than normal tissues. Additionally, individuals with high expression of GPR176 had a worse 10-year overall survival (OS), in contrast with those having a low expression of GPR176 (p < 0.001). The OS of GC can be predicted using a validated nomogram model. The expression of GPR176 demonstrated a negative correlation with CD8+ T cells. When compared to the low-expression group of GPR176, Tumor Immune Dysfunction and Exclusion (TIDE) analysis demonstrated that the high-expression group had a considerably higher risk of immune evasion. A remarkable difference (variation) was observed in the levels of GPR176 expression across both groups, ie, low and high-risk groups, as determined by the immune phenomenon scores (IPS) immunotherapy assessment. Conclusion By examining GPR176 from various biological perspectives, it was determined that GPR176 can act as a predictive biomarker for poor patient prognosis in GC. Additionally, it was observed that GPR176 is capable of suppressing the proliferation of CD8+ T cells and facilitating immune evasion.
Collapse
Affiliation(s)
- Xianhua Gu
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Honghong Shen
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Zheng Xiang
- Department of Surgical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Xinwei Li
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Rong Zhang
- Department of Gynecology Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, People’s Republic of China
| |
Collapse
|
3
|
Zhang F, Jiao H, Wang Y, Yang C, Li L, Wang Z, Tong R, Zhou J, Shen J, Li L. InferLoop: leveraging single-cell chromatin accessibility for the signal of chromatin loop. Brief Bioinform 2023; 24:7150740. [PMID: 37139553 DOI: 10.1093/bib/bbad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Deciphering cell-type-specific 3D structures of chromatin is challenging. Here, we present InferLoop, a novel method for inferring the strength of chromatin interaction using single-cell chromatin accessibility data. The workflow of InferLoop is, first, to conduct signal enhancement by grouping nearby cells into bins, and then, for each bin, leverage accessibility signals for loop signals using a newly constructed metric that is similar to the perturbation of the Pearson correlation coefficient. In this study, we have described three application scenarios of InferLoop, including the inference of cell-type-specific loop signals, the prediction of gene expression levels and the interpretation of intergenic loci. The effectiveness and superiority of InferLoop over other methods in those three scenarios are rigorously validated by using the single-cell 3D genome structure data of human brain cortex and human blood, the single-cell multi-omics data of human blood and mouse brain cortex, and the intergenic loci in the GWAS Catalog database as well as the GTEx database, respectively. In addition, InferLoop can be applied to predict loop signals of individual spots using the spatial chromatin accessibility data of mouse embryo. InferLoop is available at https://github.com/jumphone/inferloop.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiyuan Jiao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Chen Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Linying Li
- Department of Central Laboratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhiming Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Tong
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junmei Zhou
- Department of Central Laboratory, Shanghai Children's Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200025, China
- Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Liu N, Low WY, Alinejad-Rokny H, Pederson S, Sadlon T, Barry S, Breen J. Seeing the forest through the trees: prioritising potentially functional interactions from Hi-C. Epigenetics Chromatin 2021; 14:41. [PMID: 34454581 PMCID: PMC8399707 DOI: 10.1186/s13072-021-00417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.
Collapse
Affiliation(s)
- Ning Liu
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, The University of New South Wales, NSW, 2052, Sydney, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
| | - Stephen Pederson
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - Simon Barry
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - James Breen
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia.
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia.
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia.
- South Australian Genomics Centre (SAGC), South Australian Health & Medical Research Institute (SAHMRI), SA, 5000, Adelaide, Australia.
| |
Collapse
|
5
|
Lv H, Dao FY, Zulfiqar H, Su W, Ding H, Liu L, Lin H. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Brief Bioinform 2021; 22:6149346. [PMID: 33634313 DOI: 10.1093/bib/bbab031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional (3D) architecture of the chromosomes is of crucial importance for transcription regulation and DNA replication. Various high-throughput chromosome conformation capture-based methods have revealed that CTCF-mediated chromatin loops are a major component of 3D architecture. However, CTCF-mediated chromatin loops are cell type specific, and most chromatin interaction capture techniques are time-consuming and labor-intensive, which restricts their usage on a very large number of cell types. Genomic sequence-based computational models are sophisticated enough to capture important features of chromatin architecture and help to identify chromatin loops. In this work, we develop Deep-loop, a convolutional neural network model, to integrate k-tuple nucleotide frequency component, nucleotide pair spectrum encoding, position conservation, position scoring function and natural vector features for the prediction of chromatin loops. By a series of examination based on cross-validation, Deep-loop shows excellent performance in the identification of the chromatin loops from different cell types. The source code of Deep-loop is freely available at the repository https://github.com/linDing-group/Deep-loop.
Collapse
Affiliation(s)
- Hao Lv
- Informational Biology at University of Electronic Science and Technology of China
| | - Fu-Ying Dao
- Informational Biology at University of Electronic Science and Technology of China
| | - Hasan Zulfiqar
- Informational Biology at University of Electronic Science and Technology of China
| | - Wei Su
- Informational Biology at University of Electronic Science and Technology of China
| | - Hui Ding
- Informational Biology at University of Electronic Science and Technology of China
| | - Li Liu
- Laboratory of Theoretical Biophysics at Inner Mongolia University
| | - Hao Lin
- Informational Biology at University of Electronic Science and Technology of China
| |
Collapse
|
6
|
Tao H, Li H, Xu K, Hong H, Jiang S, Du G, Wang J, Sun Y, Huang X, Ding Y, Li F, Zheng X, Chen H, Bo X. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Brief Bioinform 2021; 22:6102668. [PMID: 33454752 PMCID: PMC8424394 DOI: 10.1093/bib/bbaa405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
The exploration of three-dimensional chromatin interaction and organization provides insight into mechanisms underlying gene regulation, cell differentiation and disease development. Advances in chromosome conformation capture technologies, such as high-throughput chromosome conformation capture (Hi-C) and chromatin interaction analysis by paired-end tag (ChIA-PET), have enabled the exploration of chromatin interaction and organization. However, high-resolution Hi-C and ChIA-PET data are only available for a limited number of cell lines, and their acquisition is costly, time consuming, laborious and affected by theoretical limitations. Increasing evidence shows that DNA sequence and epigenomic features are informative predictors of regulatory interaction and chromatin architecture. Based on these features, numerous computational methods have been developed for the prediction of chromatin interaction and organization, whereas they are not extensively applied in biomedical study. A systematical study to summarize and evaluate such methods is still needed to facilitate their application. Here, we summarize 48 computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles, categorize them and compare their performance. Besides, we provide a comprehensive guideline for the selection of suitable methods to predict chromatin interaction and organization based on available data and biological question of interest.
Collapse
Affiliation(s)
- Huan Tao
- Beijing Institute of Radiation Medicine
| | - Hao Li
- Beijing Institute of Radiation Medicine
| | - Kang Xu
- Beijing Institute of Radiation Medicine
| | - Hao Hong
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Shuai Jiang
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Guifang Du
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | | | - Yu Sun
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Xin Huang
- Beijing Institute of Radiation Medicine, Department of Biotechnology
| | - Yang Ding
- Beijing Institute of Radiation Medicine
| | - Fei Li
- Chinese Academy of Sciences, Department of Computer Network Information Center
| | | | | | | |
Collapse
|
7
|
Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J 2020; 18:558-570. [PMID: 32226593 PMCID: PMC7090358 DOI: 10.1016/j.csbj.2020.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanisms underlying gene regulation are key to understand how multicellular organisms with various cell types develop from the same genetic blueprint. Dynamic interactions between enhancers and genes are revealed to play central roles in controlling gene transcription, but the determinants to link functional enhancer-promoter pairs remain elusive. A major challenge is the lack of reliable approach to detect and verify functional enhancer-promoter interactions (EPIs). In this review, we summarized the current methods for detecting EPIs and described how developing techniques facilitate the identification of EPI through assessing the merits and drawbacks of these methods. We also reviewed recent state-of-art EPI prediction methods in terms of their rationale, data usage and characterization. Furthermore, we briefly discussed the evolved strategies for validating functional EPIs.
Collapse
Affiliation(s)
- Hang Xu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Dariusz Plewczynski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Zhou S, Hawley JR, Soares F, Grillo G, Teng M, Madani Tonekaboni SA, Hua JT, Kron KJ, Mazrooei P, Ahmed M, Arlidge C, Yun HY, Livingstone J, Huang V, Yamaguchi TN, Espiritu SMG, Zhu Y, Severson TM, Murison A, Cameron S, Zwart W, van der Kwast T, Pugh TJ, Fraser M, Boutros PC, Bristow RG, He HH, Lupien M. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat Commun 2020; 11:441. [PMID: 31974375 PMCID: PMC6978390 DOI: 10.1038/s41467-020-14318-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention. FOXA1 pioneer transcription factor is recurrently mutated in primary and metastatic prostate tumors. Here, authors identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic SNVs in primary prostate tumors and characterize their role in regulating FOXA1 expression and prostate cancer cell growth.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie Tony Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hwa Young Yun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarina Cameron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, CA, Canada.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.,CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK.,Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
9
|
Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, Du Y, Lu M, Patel N, Torchia J, Popovski D, Fouladi M, Guilhamon P, Hansford JR, Leary S, Hoffman LM, Mulcahy Levy JM, Lassaletta A, Solano-Paez P, Rivas E, Reddy A, Gillespie GY, Gupta N, Van Meter TE, Nakamura H, Wong TT, Ra YS, Kim SK, Massimi L, Grundy RG, Fangusaro J, Johnston D, Chan J, Lafay-Cousin L, Hwang EI, Wang Y, Catchpoole D, Michaud J, Ellezam B, Ramanujachar R, Lindsay H, Taylor MD, Hawkins CE, Bouffet E, Jabado N, Singh SK, Kleinman CL, Barsyte-Lovejoy D, Li XN, Dirks PB, Lin CY, Mack SC, Rich JN, Huang A. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell 2019; 36:51-67.e7. [PMID: 31287992 DOI: 10.1016/j.ccell.2019.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.
Collapse
MESH Headings
- Biomarkers, Tumor
- Brain Neoplasms/diagnosis
- Brain Neoplasms/etiology
- Brain Neoplasms/therapy
- Cell Cycle/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 2
- DNA Copy Number Variations
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation
- Gene Regulatory Networks
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- MicroRNAs/genetics
- Models, Biological
- Multigene Family
- N-Myc Proto-Oncogene Protein/genetics
- Neoplasms, Germ Cell and Embryonal/diagnosis
- Neoplasms, Germ Cell and Embryonal/etiology
- Neoplasms, Germ Cell and Embryonal/therapy
- Oncogenes
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Patrick Sin-Chan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Iqra Mumal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tannu Suwal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Ben Ho
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Xiaolian Fan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Irtisha Singh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Du
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mei Lu
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Neilket Patel
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jonathon Torchia
- Princess Margaret Cancer Center-OICR Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Maryam Fouladi
- Division of Oncology, Department of Cancer and Blood Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Sarah Leary
- Department of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alvaro Lassaletta
- Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid 28009, Spain
| | - Palma Solano-Paez
- Department of Pediatric Oncology, Hospital Infantil Virgen del Rocio, Seville 41013, Spain
| | - Eloy Rivas
- Department of Pathology, Neuropathology Division, Hospital Universitario Virgen del Rocio, Seville 41013, Spain
| | - Alyssa Reddy
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA 94143-0112, USA
| | - Timothy E Van Meter
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298-0631, USA
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University, Fukuoka 830-0011, Japan
| | - Tai-Tong Wong
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Seoul 138-736, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Korea
| | - Luca Massimi
- Department of Neurosurgery, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Richard G Grundy
- Children's Brain Tumor Research Centre, Queen's Medical Centre University of Nottingham, Nottingham NG72UH, UK
| | - Jason Fangusaro
- Department of Pediatric Hematology and Oncology at Children's Healthcare of Atlanta and the Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donna Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON K1H8L1, Canada
| | - Jennifer Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Lucie Lafay-Cousin
- Department of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB T3B6A8, Canada
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC 20010, USA
| | - Yin Wang
- Department of Neuropathology Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daniel Catchpoole
- The Tumor Bank, Children's Cancer Research Unit, Kids Research, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T1C5, Canada
| | - Ramya Ramanujachar
- Paediatric Haematology and Oncology, Southampton Children's Hospital, Southampton SO166YD, UK
| | - Holly Lindsay
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael D Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Cynthia E Hawkins
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Pathology, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Claudia L Kleinman
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | | | - Xiao-Nan Li
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter B Dirks
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
10
|
Johnston MJ, Nikolic A, Ninkovic N, Guilhamon P, Cavalli FMG, Seaman S, Zemp FJ, Lee J, Abdelkareem A, Ellestad K, Murison A, Kushida MM, Coutinho FJ, Ma Y, Mungall AJ, Moore R, Marra MA, Taylor MD, Dirks PB, Pugh TJ, Morrissy S, St Croix B, Mahoney DJ, Lupien M, Gallo M. High-resolution structural genomics reveals new therapeutic vulnerabilities in glioblastoma. Genome Res 2019; 29:1211-1222. [PMID: 31249064 PMCID: PMC6673710 DOI: 10.1101/gr.246520.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276. We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.
Collapse
Affiliation(s)
- Michael J Johnston
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ana Nikolic
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nicoletta Ninkovic
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Centre-University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Florence M G Cavalli
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, USA
| | - Franz J Zemp
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John Lee
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Aly Abdelkareem
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Katrina Ellestad
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre-University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michelle M Kushida
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Fiona J Coutinho
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia VSZ 4S6, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia VSZ 4S6, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia VSZ 4S6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia VSZ 4S6, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Peter B Dirks
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre-University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sorana Morrissy
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bradley St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, Maryland 21702, USA
| | - Douglas J Mahoney
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre-University Health Network, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Ontario M5S 1A8, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Marco Gallo
- Clark Smith Brain Tumour Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
11
|
Guilhamon P, Lupien M. SMuRF: a novel tool to identify regulatory elements enriched for somatic point mutations. BMC Bioinformatics 2018; 19:454. [PMID: 30477433 PMCID: PMC6258448 DOI: 10.1186/s12859-018-2501-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/16/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Single Nucleotide Variants (SNVs), including somatic point mutations and Single Nucleotide Polymorphisms (SNPs), in noncoding cis-regulatory elements (CREs) can affect gene regulation and lead to disease development. Several approaches have been developed to identify highly mutated regions, but these do not take into account the specific genomic context, and thus likelihood of mutation, of CREs. RESULTS Here, we present SMuRF (Significantly Mutated Region Finder), a user-friendly command-line tool to identify these significantly mutated regions from user-defined genomic intervals and SNVs. We demonstrate this using publicly available datasets in which SMuRF identifies 72 significantly mutated CREs in liver cancer, including known mutated gene promoters as well as previously unreported regions. CONCLUSIONS SMuRF is a helpful tool to allow the simple identification of significantly mutated regulatory elements. It is open-source and freely available on GitHub ( https://github.com/LupienLab/SMURF ).
Collapse
Affiliation(s)
- Paul Guilhamon
- Princess Margaret Cancer Centre, The MaRS Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, The MaRS Center, University Health Network, 101 College Street, Toronto, ON M5G 1L7 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
- Ontario Institute for Cancer Research, Toronto, ON Canada
| |
Collapse
|