1
|
Gao J, Liu H, Zhuo C, Zeng C, Zhao Y. Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography. J Chem Inf Model 2024. [PMID: 39230508 DOI: 10.1021/acs.jcim.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Du Z, Peng Z, Yang J. RNA threading with secondary structure and sequence profile. Bioinformatics 2024; 40:btae080. [PMID: 38341662 PMCID: PMC10893584 DOI: 10.1093/bioinformatics/btae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024] Open
Abstract
MOTIVATION RNA threading aims to identify remote homologies for template-based modeling of RNA 3D structure. Existing RNA alignment methods primarily rely on secondary structure alignment. They are often time- and memory-consuming, limiting large-scale applications. In addition, the accuracy is far from satisfactory. RESULTS Using RNA secondary structure and sequence profile, we developed a novel RNA threading algorithm, named RNAthreader. To enhance the alignment process and minimize memory usage, a novel approach has been introduced to simplify RNA secondary structures into compact diagrams. RNAthreader employs a two-step methodology. Initially, integer programming and dynamic programming are combined to create an initial alignment for the simplified diagram. Subsequently, the final alignment is obtained using dynamic programming, taking into account the initial alignment derived from the previous step. The benchmark test on 80 RNAs illustrates that RNAthreader generates more accurate alignments than other methods, especially for RNAs with pseudoknots. Another benchmark, involving 30 RNAs from the RNA-Puzzles experiments, exhibits that the models constructed using RNAthreader templates have a lower average RMSD than those created by alternative methods. Remarkably, RNAthreader takes less than two hours to complete alignments with ∼5000 RNAs, which is 3-40 times faster than other methods. These compelling results suggest that RNAthreader is a promising algorithm for RNA template detection. AVAILABILITY AND IMPLEMENTATION https://yanglab.qd.sdu.edu.cn/RNAthreader.
Collapse
Affiliation(s)
- Zongyang Du
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhenling Peng
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Zhang Y, Lang M, Jiang J, Gao Z, Xu F, Litfin T, Chen K, Singh J, Huang X, Song G, Tian Y, Zhan J, Chen J, Zhou Y. Multiple sequence alignment-based RNA language model and its application to structural inference. Nucleic Acids Res 2024; 52:e3. [PMID: 37941140 PMCID: PMC10783488 DOI: 10.1093/nar/gkad1031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA/RNA sequences have less information content than 20-letter coded protein sequences. While BERT (Bidirectional Encoder Representations from Transformers)-like language models have been developed for RNA, they are ineffective at capturing the evolutionary information from homologous sequences because unlike proteins, RNA sequences are less conserved. Here, we have developed an unsupervised multiple sequence alignment-based RNA language model (RNA-MSM) by utilizing homologous sequences from an automatic pipeline, RNAcmap, as it can provide significantly more homologous sequences than manually annotated Rfam. We demonstrate that the resulting unsupervised, two-dimensional attention maps and one-dimensional embeddings from RNA-MSM contain structural information. In fact, they can be directly mapped with high accuracy to 2D base pairing probabilities and 1D solvent accessibilities, respectively. Further fine-tuning led to significantly improved performance on these two downstream tasks compared with existing state-of-the-art techniques including SPOT-RNA2 and RNAsnap2. By comparison, RNA-FM, a BERT-based RNA language model, performs worse than one-hot encoding with its embedding in base pair and solvent-accessible surface area prediction. We anticipate that the pre-trained RNA-MSM model can be fine-tuned on many other tasks related to RNA structure and function.
Collapse
Affiliation(s)
- Yikun Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University Shenzhen Graduate School, Shenzen 518055, China
| | - Mei Lang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jiuhong Jiang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zhiqiang Gao
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Fan Xu
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD 4215, Australia
| | - Ke Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jaswinder Singh
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | | | - Guoli Song
- Peng Cheng Laboratory, Shenzhen 518066, China
| | | | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Chen
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China
- Peng Cheng Laboratory, Shenzhen 518066, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Institute for Glycomics, Griffith University, Parklands Dr, Southport, QLD 4215, Australia
| |
Collapse
|
4
|
Zhang L, Xiao K, Kong L. A computational method for small molecule-RNA binding sites identification by utilizing position specificity and complex network information. Biosystems 2024; 235:105094. [PMID: 38056591 DOI: 10.1016/j.biosystems.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Some computational methods have been given for small molecule-RNA binding site identification due to that it plays a significant role in revealing biology function researches. However, it is still challenging to design an accurate model, especially for MCC. We designed a feature extraction technology from two aspects (position specificity and complex network information). Specifically, complex network was employed to express the space topological structure and sequence position information for improving prediction effect. Then, the features fused position specificity and complex network information were input into random forest classifier for model construction. The AUC of 88.22%, 77.92% and 81.46% were obtained on three independent datasets (RB19, CS71, RB78). Compared with the existing method, the best MCC were obtained on three datasets, which were 8.19%, 0.59% and 4.35% higher than the state-of-the-art prediction methods, respectively. The outstanding performances show that our method is a powerful tool to identify RNA binding sites, helping to the design RNA-targeting small molecule drugs. The data and resource codes are available at https://github.com/Kangxiaoneuq/PCN_RNAsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China.
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China.
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|
5
|
Zhao Q, Mao Q, Zhao Z, Yuan W, He Q, Sun Q, Yao Y, Fan X. RNA independent fragment partition method based on deep learning for RNA secondary structure prediction. Sci Rep 2023; 13:2861. [PMID: 36801945 PMCID: PMC9938198 DOI: 10.1038/s41598-023-30124-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
The non-coding RNA secondary structure largely determines its function. Hence, accuracy in structure acquisition is of great importance. Currently, this acquisition primarily relies on various computational methods. The prediction of the structures of long RNA sequences with high precision and reasonable computational cost remains challenging. Here, we propose a deep learning model, RNA-par, which could partition an RNA sequence into several independent fragments (i-fragments) based on its exterior loops. Each i-fragment secondary structure predicted individually could be further assembled to acquire the complete RNA secondary structure. In the examination of our independent test set, the average length of the predicted i-fragments was 453 nt, which was considerably shorter than that of complete RNA sequences (848 nt). The accuracy of the assembled structures was higher than that of the structures predicted directly using the state-of-the-art RNA secondary structure prediction methods. This proposed model could serve as a preprocessing step for RNA secondary structure prediction for enhancing the predictive performance (especially for long RNA sequences) and reducing the computational cost. In the future, predicting the secondary structure of long-sequence RNA with high accuracy can be enabled by developing a framework combining RNA-par with various existing RNA secondary structure prediction algorithms. Our models, test codes and test data are provided at https://github.com/mianfei71/RNAPar .
Collapse
Affiliation(s)
- Qi Zhao
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qian Mao
- grid.411356.40000 0000 9339 3042College of Light Industry, Liaoning University, Shenyang, 110036 Liaoning China
| | - Zheng Zhao
- grid.440686.80000 0001 0543 8253College of Artificial Intelligence, Dalian Maritime University, Dalian, 116026 Liaoning China
| | - Wenxuan Yuan
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qiang He
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Qixuan Sun
- grid.412252.20000 0004 0368 6968College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169 Liaoning China
| | - Yudong Yao
- grid.217309.e0000 0001 2180 0654Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| | - Xiaoya Fan
- School of Software, Dalian University of Technology, Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, 116620, Liaoning, China.
| |
Collapse
|
6
|
Wang K, Zhou R, Wu Y, Li M. RLBind: a deep learning method to predict RNA-ligand binding sites. Brief Bioinform 2023; 24:6832814. [PMID: 36398911 DOI: 10.1093/bib/bbac486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.
Collapse
Affiliation(s)
- Kaili Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
7
|
Abstract
RNA molecules carry out various cellular functions, and understanding the mechanisms behind their functions requires the knowledge of their 3D structures. Different types of computational methods have been developed to model RNA 3D structures over the past decade. These methods were widely used by researchers although their performance needs to be further improved. Recently, along with these traditional methods, machine-learning techniques have been increasingly applied to RNA 3D structure prediction and show significant improvement in performance. Here we shall give a brief review of the traditional methods and recent related advances in machine-learning approaches for RNA 3D structure prediction.
Collapse
Affiliation(s)
- Xiujuan Ou
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Zhang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yiduo Xiong
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
8
|
rMSA: a sequence search and alignment algorithm to improve RNA structure modeling. J Mol Biol 2022. [DOI: 10.1016/j.jmb.2022.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Huang Y, Luo J, Jing R, Li M. Multi-model predictive analysis of RNA solvent accessibility based on modified residual attention mechanism. Brief Bioinform 2022; 23:6775603. [PMID: 36305428 DOI: 10.1093/bib/bbac470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Predicting RNA solvent accessibility using only primary sequence data can be regarded as sequence-based prediction work. Currently, the established studies for sequence-based RNA solvent accessibility prediction are limited due to the available number of datasets and black box prediction. To improve these issues, we first expanded the available RNA structures and then developed a sequence-based model using modified attention layers with different receptive fields to conform to the stem-loop structure of RNA chains. We measured the improvement with an extended dataset and further explored the model's interpretability by analysing the model structures, attention values and hyperparameters. Finally, we found that the developed model regarded the pieces of a sequence as templates during the training process. This work will be helpful for researchers who would like to build RNA attribute prediction models using deep learning in the future.
Collapse
Affiliation(s)
- Yuyao Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Runyu Jing
- School of Cyber Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
10
|
DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences. Int J Mol Sci 2022; 23:ijms231911026. [PMID: 36232325 PMCID: PMC9570463 DOI: 10.3390/ijms231911026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
N6,2′-O-dimethyladenosine (m6Am) is a post-transcriptional modification that may be associated with regulatory roles in the control of cellular functions. Therefore, it is crucial to accurately identify transcriptome-wide m6Am sites to understand underlying m6Am-dependent mRNA regulation mechanisms and biological functions. Here, we used three sequence-based feature-encoding schemes, including one-hot, nucleotide chemical property (NCP), and nucleotide density (ND), to represent RNA sequence samples. Additionally, we proposed an ensemble deep learning framework, named DLm6Am, to identify m6Am sites. DLm6Am consists of three similar base classifiers, each of which contains a multi-head attention module, an embedding module with two parallel deep learning sub-modules, a convolutional neural network (CNN) and a Bi-directional long short-term memory (BiLSTM), and a prediction module. To demonstrate the superior performance of our model’s architecture, we compared multiple model frameworks with our method by analyzing the training data and independent testing data. Additionally, we compared our model with the existing state-of-the-art computational methods, m6AmPred and MultiRM. The accuracy (ACC) for the DLm6Am model was improved by 6.45% and 8.42% compared to that of m6AmPred and MultiRM on independent testing data, respectively, while the area under receiver operating characteristic curve (AUROC) for the DLm6Am model was increased by 4.28% and 5.75%, respectively. All the results indicate that DLm6Am achieved the best prediction performance in terms of ACC, Matthews correlation coefficient (MCC), AUROC, and the area under precision and recall curves (AUPR). To further assess the generalization performance of our proposed model, we implemented chromosome-level leave-out cross-validation, and found that the obtained AUROC values were greater than 0.83, indicating that our proposed method is robust and can accurately predict m6Am sites.
Collapse
|
11
|
Predicting RNA solvent accessibility from multi-scale context feature via multi-shot neural network. Anal Biochem 2022; 654:114802. [PMID: 35809650 DOI: 10.1016/j.ab.2022.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/11/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Knowledge of RNA solvent accessibility has recently become attractive due to the increasing awareness of its importance for key biological process. Accurately predicting the solvent accessibility of RNA is crucial for understanding its 3D structure and biological function. In this study, we develop a novel computational method, termed M2pred, for accurately predicting the solvent accessibility of RNA from sequence-based multi-scale context feature. In M2pred, three single-view features, i.e., base-pairing probabilities, position-specific frequency matrix, and a binary one-hot encoding, are first generated as three feature sources, and immediately concatenated to engender a super feature. Secondly, for the super feature, the matrix-format features of each nucleotide are extracted using an initialized sliding window technique, and regularly stacked into a cube-format feature. Then, using multi-scale context feature extraction strategy, a pyramid feature constructed of contextual feature of four scales related to target nucleotides is extracted from the cube-format feature. Finally, a customized multi-shot neural network framework, which is equipped with four different scales of receptive fields mainly integrating several residual attention blocks, is designed to dig discrimination information from the contextual pyramid feature. Experimental results demonstrate that the proposed M2pred achieve a high prediction performance and outperforms existing state-of-the-art prediction methods of RNA solvent accessibility.
Collapse
|
12
|
Singh J, Paliwal K, Litfin T, Singh J, Zhou Y. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics 2022; 38:3900-3910. [PMID: 35751593 PMCID: PMC9364379 DOI: 10.1093/bioinformatics/btac421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins. RESULTS Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction. AVAILABILITY AND IMPLEMENTATION SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
13
|
Solayman M, Litfin T, Singh J, Paliwal K, Zhou Y, Zhan J. Probing RNA structures and functions by solvent accessibility: an overview from experimental and computational perspectives. Brief Bioinform 2022; 23:bbac112. [PMID: 35348613 PMCID: PMC9116373 DOI: 10.1093/bib/bbac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Characterizing RNA structures and functions have mostly been focused on 2D, secondary and 3D, tertiary structures. Recent advances in experimental and computational techniques for probing or predicting RNA solvent accessibility make this 1D representation of tertiary structures an increasingly attractive feature to explore. Here, we provide a survey of these recent developments, which indicate the emergence of solvent accessibility as a simple 1D property, adding to secondary and tertiary structures for investigating complex structure-function relations of RNAs.
Collapse
Affiliation(s)
- Md Solayman
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
14
|
Wei J, Chen S, Zong L, Gao X, Li Y. Protein-RNA interaction prediction with deep learning: structure matters. Brief Bioinform 2022; 23:bbab540. [PMID: 34929730 PMCID: PMC8790951 DOI: 10.1093/bib/bbab540] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Because of the limitation of the previous database, especially the lack of protein structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably, the protein-RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used datasets, features and models. We also point out the potential challenges and opportunities in this field. This survey summarizes the development of the RNA-binding protein-RNA interaction field in the past and foresees its future development in the post-AlphaFold era.
Collapse
Affiliation(s)
- Junkang Wei
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Siyuan Chen
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Licheng Zong
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC),
King Abdullah University of Science and Technology (KAUST),
23955-6900, Thuwal, Saudi Arabia
| | - Yu Li
- Department of Computer Science and Engineering (CSE), The Chinese
University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
- The CUHK Shenzhen Research Institute, Hi-Tech Park, 518057,
Shenzhen, China
| |
Collapse
|
15
|
Jiang Z, Xiao SR, Liu R. Dissecting and predicting different types of binding sites in nucleic acids based on structural information. Brief Bioinform 2021; 23:6384399. [PMID: 34624074 PMCID: PMC8769709 DOI: 10.1093/bib/bbab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Si-Rui Xiao
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
16
|
Wei H, Wang B, Yang J, Gao J. RNA Flexibility Prediction With Sequence Profile and Predicted Solvent Accessibility. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2017-2022. [PMID: 31794403 DOI: 10.1109/tcbb.2019.2956496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Structural flexibility plays an essential role in many biological processes. B-factor is an important indicator to measure the flexibility of protein or RNA structures. Many methods were developed to predict protein B-factors, but few studies have been done for RNA B-factor prediction. In this paper, we proposed a new method RNAbval to predict RNA B-factors using random forest. The method was developed using a comprehensive set of features, including the sequence profile and predicted solvent accessibility. RNAbval achieved an improvement of 9.2-20.5 percent over the state-of-the-art method on two benchmark test datasets. The proposed method is available at http://yanglab.nankai.edu.cn/RNAbval/.
Collapse
|
17
|
Hanumanthappa AK, Singh J, Paliwal K, Singh J, Zhou Y. Single-sequence and profile-based prediction of RNA solvent accessibility using dilated convolutional neural network. Bioinformatics 2021; 36:5169-5176. [PMID: 33106872 DOI: 10.1093/bioinformatics/btaa652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION RNA solvent accessibility, similar to protein solvent accessibility, reflects the structural regions that are accessible to solvents or other functional biomolecules, and plays an important role for structural and functional characterization. Unlike protein solvent accessibility, only a few tools are available for predicting RNA solvent accessibility despite the fact that millions of RNA transcripts have unknown structures and functions. Also, these tools have limited accuracy. Here, we have developed RNAsnap2 that uses a dilated convolutional neural network with a new feature, based on predicted base-pairing probabilities from LinearPartition. RESULTS Using the same training set from the recent predictor RNAsol, RNAsnap2 provides an 11% improvement in median Pearson Correlation Coefficient (PCC) and 9% improvement in mean absolute errors for the same test set of 45 RNA chains. A larger improvement (22% in median PCC) is observed for 31 newly deposited RNA chains that are non-redundant and independent from the training and the test sets. A single-sequence version of RNAsnap2 (i.e. without using sequence profiles generated from homology search by Infernal) has achieved comparable performance to the profile-based RNAsol. In addition, RNAsnap2 has achieved comparable performance for protein-bound and protein-free RNAs. Both RNAsnap2 and RNAsnap2 (SingleSeq) are expected to be useful for searching structural signatures and locating functional regions of non-coding RNAs. AVAILABILITY AND IMPLEMENTATION Standalone-versions of RNAsnap2 and RNAsnap2 (SingleSeq) are available at https://github.com/jaswindersingh2/RNAsnap2. Direct prediction can also be made at https://sparks-lab.org/server/rnasnap2. The datasets used in this research can also be downloaded from the GITHUB and the webserver mentioned above. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anil Kumar Hanumanthappa
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
18
|
Kaddour H, Lucchi H, Hervé G, Vergne J, Maurel MC. Kinetic Study of the Avocado Sunblotch Viroid Self-Cleavage Reaction Reveals Compensatory Effects between High-Pressure and High-Temperature: Implications for Origins of Life on Earth. BIOLOGY 2021; 10:720. [PMID: 34439952 PMCID: PMC8389264 DOI: 10.3390/biology10080720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022]
Abstract
A high pressure apparatus allowing one to study enzyme kinetics under pressure was used to study the self-cleavage activity of the avocado sunblotch viroid. The kinetics of this reaction were determined under pressure over a range up to 300 MPa (1-3000 bar). It appears that the initial rate of this reaction decreases when pressure increases, revealing a positive ΔV≠ of activation, which correlates with the domain closure accompanying the reaction and the decrease of the surface of the viroid exposed to the solvent. Although, as expected, temperature increases the rate of the reaction whose energy of activation was determined, it appeared that it does not significantly influence the ΔV≠ of activation and that pressure does not influence the energy of activation. These results provide information about the structural aspects or this self-cleavage reaction, which is involved in the process of maturation of this viroid. The behavior of ASBVd results from the involvement of the hammerhead ribozyme present at its catalytic domain, indeed a structural motif is very widespread in the ancient and current RNA world.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Honorine Lucchi
- Société PYMABS, 5 rue Henri Auguste Desbyeres, 91000 Évry-Courcouronnes, France;
| | - Guy Hervé
- Laboratoire BIOSIPE, Institut de biologie Paris-Seine, Sorbonne Université, 7 quai Saint-Bernard, 75005 Paris, France;
| | - Jacques Vergne
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité, (ISYEB), Sorbonne Université, Museum National d’Histoire Naturelle, CNRS, EPHE, F 75005 Paris, France;
| |
Collapse
|
19
|
Sun S, Wang W, Peng Z, Yang J. RNA inter-nucleotide 3D closeness prediction by deep residual neural networks. Bioinformatics 2021; 37:1093-1098. [PMID: 33135062 PMCID: PMC8150135 DOI: 10.1093/bioinformatics/btaa932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Recent years have witnessed that the inter-residue contact/distance in proteins could be accurately predicted by deep neural networks, which significantly improve the accuracy of predicted protein structure models. In contrast, fewer studies have been done for the prediction of RNA inter-nucleotide 3D closeness. RESULTS We proposed a new algorithm named RNAcontact for the prediction of RNA inter-nucleotide 3D closeness. RNAcontact was built based on the deep residual neural networks. The covariance information from multiple sequence alignments and the predicted secondary structure were used as the input features of the networks. Experiments show that RNAcontact achieves the respective precisions of 0.8 and 0.6 for the top L/10 and L (where L is the length of an RNA) predictions on an independent test set, significantly higher than other evolutionary coupling methods. Analysis shows that about 1/3 of the correctly predicted 3D closenesses are not base pairings of secondary structure, which are critical to the determination of RNA structure. In addition, we demonstrated that the predicted 3D closeness could be used as distance restraints to guide RNA structure folding by the 3dRNA package. More accurate models could be built by using the predicted 3D closeness than the models without using 3D closeness. AVAILABILITY AND IMPLEMENTATION The webserver and a standalone package are available at: http://yanglab.nankai.edu.cn/RNAcontact/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Saisai Sun
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Wenkai Wang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Jianyi Yang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Singh J, Paliwal K, Singh J, Zhou Y. RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. J Chem Inf Model 2021; 61:2610-2622. [PMID: 34037398 DOI: 10.1021/acs.jcim.1c00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA three-dimensional structure prediction has been relied on using a predicted or experimentally determined secondary structure as a restraint to reduce the conformational sampling space. However, the secondary-structure restraints are limited to paired bases, and the conformational space of the ribose-phosphate backbone is still too large to be sampled efficiently. Here, we employed the dilated convolutional neural network to predict backbone torsion and pseudotorsion angles using a single RNA sequence as input. The method called SPOT-RNA-1D was trained on a high-resolution training data set and tested on three independent, nonredundant, and high-resolution test sets. The proposed method yields substantially smaller mean absolute errors than the baseline predictors based on random predictions and based on helix conformations according to actual angle distributions. The mean absolute errors for three test sets range from 14°-44° for different angles, compared to 17°-62° by random prediction and 14°-58° by helix prediction. The method also accurately recovers the overall patterns of single or pairwise angle distributions. In general, torsion angles further away from the bases and associated with unpaired bases and paired bases involved in tertiary interactions are more difficult to predict. Compared to the best models in RNA-puzzles experiments, SPOT-RNA-1D yielded more accurate dihedral angles and, thus, are potentially useful as model quality indicators and restraints for RNA structure prediction as in protein structure prediction.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, Griffith University, Brisbane, Queensland 4122, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Southport, Queensland 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.,Peking University Shenzhen Graduate School, Shenzhen 518055, P.R. China
| |
Collapse
|
21
|
Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by Evolutionary Coupling Analysis. Bioinformatics 2021; 37:3494-3500. [PMID: 34021744 DOI: 10.1093/bioinformatics/btab391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.
Collapse
Affiliation(s)
- Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
22
|
Singh J, Paliwal K, Zhang T, Singh J, Litfin T, Zhou Y. Improved RNA Secondary Structure and Tertiary Base-pairing Prediction Using Evolutionary Profile, Mutational Coupling and Two-dimensional Transfer Learning. Bioinformatics 2021; 37:2589-2600. [PMID: 33704363 DOI: 10.1093/bioinformatics/btab165] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The recent discovery of numerous non-coding RNAs (long non-coding RNAs, in particular) has transformed our perception about the roles of RNAs in living organisms. Our ability to understand them, however, is hampered by our inability to solve their secondary and tertiary structures in high resolution efficiently by existing experimental techniques. Computational prediction of RNA secondary structure, on the other hand, has received much-needed improvement, recently, through deep learning of a large approximate data, followed by transfer learning with gold-standard base-pairing structures from high-resolution 3-D structures. Here, we expand this single-sequence-based learning to the use of evolutionary profiles and mutational coupling. RESULTS The new method allows large improvement not only in canonical base-pairs (RNA secondary structures) but more so in base-pairing associated with tertiary interactions such as pseudoknots, noncanonical and lone base-pairs. In particular, it is highly accurate for those RNAs of more than 1000 homologous sequences by achieving >0.8 F1-score (harmonic mean of sensitivity and precision) for 14/16 RNAs tested. The method can also significantly improve base-pairing prediction by incorporating artificial but functional homologous sequences generated from deep mutational scanning without any modification. The fully automatic method (publicly available as server and standalone software) should provide the scientific community a new powerful tool to capture not only the secondary structure but also tertiary base-pairing information for building three-dimensional models. It also highlights the future of accurately solving the base-pairing structure by using a large number of natural and/or artificial homologous sequences. AVAILABILITY Standalone-version of SPOT-RNA2 is available at https://github.com/jaswindersingh2/SPOT-RNA2. Direct prediction can also be made at https://sparks-lab.org/server/spot-rna2/. The datasets used in this research can also be downloaded from the GITHUB and the webserver mentioned above.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| |
Collapse
|
23
|
Guo L, Wang S, Li M, Cao Z. Accurate classification of membrane protein types based on sequence and evolutionary information using deep learning. BMC Bioinformatics 2019; 20:700. [PMID: 31874615 PMCID: PMC6929490 DOI: 10.1186/s12859-019-3275-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Membrane proteins play an important role in the life activities of organisms. Knowing membrane protein types provides clues for understanding the structure and function of proteins. Though various computational methods for predicting membrane protein types have been developed, the results still do not meet the expectations of researchers. Results We propose two deep learning models to process sequence information and evolutionary information, respectively. Both models obtained better results than traditional machine learning models. Furthermore, to improve the performance of the sequence information model, we also provide a new vector representation method to replace the one-hot encoding, whose overall success rate improved by 3.81% and 6.55% on two datasets. Finally, a more effective model is obtained by fusing the above two models, whose overall success rate reached 95.68% and 92.98% on two datasets. Conclusion The final experimental results show that our method is more effective than existing methods for predicting membrane protein types, which can help laboratory researchers to identify the type of novel membrane proteins.
Collapse
Affiliation(s)
- Lei Guo
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, People's Republic of China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, People's Republic of China.
| | - Mingyuan Li
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, People's Republic of China
| | - Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|