1
|
Kim J, Zhang J, Kinch L, Shen J, Field S, Khan S, Klapproth JM, Forsberg KJ, Harris-Tryon T, Orth K, Cong Q, Ni J. Genetic and Microbial Analysis of Invasiveness for Escherichia coli Strains Associated With Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101451. [PMID: 40437706 PMCID: PMC11879602 DOI: 10.1016/j.jcmgh.2024.101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 06/01/2025]
Abstract
BACKGROUND & AIMS The adherent-invasive Escherichia coli (AIEC) pathotype is implicated in inflammatory bowel disease (IBD) pathogenesis. AIEC strains are currently defined by phenotypic measurement of their pathogenicity, including invasion of epithelial cells. This broad definition, combined with the genetic diversity of AIEC across patients with IBD, has complicated the identification of virulence determinants. We sought to quantify the invasion phenotype of clinical isolates from patients with IBD and identify the genetic basis for their invasion into epithelial cells. METHODS A pangenome with core and accessory genes (genotype) was assembled using whole genome sequencing of 168 E coli samples isolated from 13 patients with IBD. A modified assay for invasion of epithelial cells (phenotype) was established with consideration of antibiotic resistance phenotypes. Isolate genotype was correlated to invasiveness phenotype to identify genetic factors that cosegregate with invasion. RESULTS Pangenome-wide comparisons of E coli clinical isolates identified accessory genes that can cosegregate with invasion phenotype. These correlations found the acquisition of antibiotic resistance genes in clinical isolates compromised the traditional gentamicin protection assays used to quantify invasion. Therefore, an alternate assay, based on amikacin resistance, identified genes cosegregating with invasion. These genes encode an arylsulfatase, a glycoside hydrolase, and genetic islands carrying propanediol utilization and sulfoquinovose metabolism pathways. CONCLUSIONS This study highlights the importance of incorporating antibiotic resistance screening for invasion assays used in AIEC identification. Accurately screened invasion phenotypes identified accessory genome elements among E coli IBD isolates that correlate with their ability to invade epithelial cells. These results help explain why single genetic markers for the AIEC phylotype are challenging to identify.
Collapse
Affiliation(s)
- Jungyeon Kim
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lisa Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jinhui Shen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sydney Field
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shahanshah Khan
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Kevin J Forsberg
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Josephine Ni
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
2
|
Champie A, Lachance JC, Sastry A, Matteau D, Lloyd CJ, Grenier F, Lamoureux CR, Jeanneau S, Feist AM, Jacques PÉ, Palsson BO, Rodrigue S. Diagnosis and mitigation of the systemic impact of genome reduction in Escherichia coli DGF-298. mBio 2024; 15:e0087324. [PMID: 39207109 PMCID: PMC11481515 DOI: 10.1128/mbio.00873-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Microorganisms with simplified genomes represent interesting cell chassis for systems and synthetic biology. However, genome reduction can lead to undesired traits, such as decreased growth rate and metabolic imbalances. To investigate the impact of genome reduction on Escherichia coli strain DGF-298, a strain in which ~ 36% of the genome has been removed, we reconstructed a strain-specific metabolic model (iAC1061), investigated the regulation of gene expression using iModulon-based transcriptome analysis, and performed adaptive laboratory evolution to let the strain correct potential imbalances that arose during its simplification. The model notably predicted that the removal of all three key pathways for glycolaldehyde disposal in this microorganism would lead to a metabolic bottleneck through folate starvation. Glycolaldehyde is also known to cause self-generation of reactive oxygen species, as evidenced by the increased expression of oxidative stress resistance genes in the SoxS iModulon. The reintroduction of the aldA gene, responsible for one native glycolaldehyde disposal route, alleviated the constitutive oxidative stress response. Our results suggest that systems-level approaches and adaptive laboratory evolution have additive benefits when trying to repair and optimize genome-engineered strains. IMPORTANCE Genomic streamlining can be employed in model organisms to reduce complexity and enhance strain predictability. One of the most striking examples is the bacterial strain Escherichia coli DGF-298, notable for having over one-third of its genome deleted. However, such extensive genome modifications raise the question of how similar this simplified cell remains when compared with its parent, and what are the possible unintended consequences of this simplification. In this study, we used metabolic modeling along with iModulon-based transcriptomic analysis in different growth conditions to assess the impact of genome reduction on metabolism and gene regulation. We observed little impact of genomic reduction on the regulatory network of E. coli DGF-298 and identified a potential metabolic bottleneck leading to the constitutive activity of the SoxS iModulon. We then leveraged the model's predictions to successfully restore SoxS activity to the basal level.
Collapse
Affiliation(s)
- Antoine Champie
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Dominick Matteau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Frédéric Grenier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Simon Jeanneau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam M. Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
| | | | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sébastien Rodrigue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Chand Y, Jain T, Singh S. Unveiling a Comprehensive Multi-epitope Subunit Vaccine Strategy Against Salmonella subsp. enterica: Bridging Core, Subtractive Proteomics, and Immunoinformatics. Cell Biochem Biophys 2024; 82:2901-2936. [PMID: 39018007 DOI: 10.1007/s12013-024-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Salmonella subsp. enterica (SE) presents a significant global health challenge in both developed and developing countries. Current SE vaccines have limitations, targeting specific strains and demonstrating moderate efficacy in adults, while also being unsuitable for young children and often unaffordable in regions with lower income levels where the disease is prevalent. To address these challenges, this study employed a computational approach integrating core proteomics, subtractive proteomics, and immunoinformatics to develop a universal SE vaccine and identify potential drug targets. Analysis of the core proteome of 185 SE strains revealed 1964 conserved proteins. Subtractive proteomics identified 9 proteins as potential vaccine candidates and 41 as novel drug targets. Using reverse vaccinology-based immunoinformatics, four multi-epitope-based subunit vaccine constructs (MESVCs) were designed, aiming to stimulate cytotoxic T lymphocyte, helper T lymphocyte, and linear B lymphocyte responses. These constructs underwent comprehensive evaluations for antigenicity, immunogenicity, toxicity, hydropathicity, and physicochemical properties. Predictive modeling, refinement, and validation were conducted to determine the secondary and tertiary structures of the SE-MESVCs, followed by docking studies with MHC-I, MHC-II, and TLR4 receptors. Molecular docking assessments showed favorable binding with all three receptors, with SE-MESVC-4 exhibiting the most promising binding energy. Molecular dynamics simulations confirmed the binding affinity and stability of SE-MESVC-4 with the TLR4/MD2 complex. Additionally, codon optimization and in silico cloning verified the efficient translation and successful expression of SE-MESVC-4 in Escherichia coli (E. coli) str. K12. Subsequent in silico immune simulation evaluated the efficacy of SE-MESVC-4 in triggering an effective immune response. These results suggest that SE-MESVC-4 may induce both humoral and cellular immune responses, making it a potential candidate for an effective SE vaccine. However, further experimental investigations are necessary to validate the immunogenicity and efficacy of SE-MESVC-4, bringing us closer to effectively combating SE infections.
Collapse
Affiliation(s)
- Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Tanvi Jain
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy and Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India.
| |
Collapse
|
4
|
Hilário S, Gonçalves MFM, Matos I, Rangel LF, Sousa JA, Santos MJ, Ayra-Pardo C. Comparative genomics reveals insights into the potential of Lysinibacillus irui as a plant growth promoter. Appl Microbiol Biotechnol 2024; 108:370. [PMID: 38861018 PMCID: PMC11166776 DOI: 10.1007/s00253-024-13210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- GreenUPorto, Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, 747, 4485-646, Vila do Conde, Portugal.
| | - Micael F M Gonçalves
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Matos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Luis F Rangel
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - José A Sousa
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Maria J Santos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Camilo Ayra-Pardo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
| |
Collapse
|
5
|
Arboleda-García A, Alarcon-Ruiz I, Boada-Acosta L, Boada Y, Vignoni A, Jantus-Lewintre E. Advancements in synthetic biology-based bacterial cancer therapy: A modular design approach. Crit Rev Oncol Hematol 2023; 190:104088. [PMID: 37541537 DOI: 10.1016/j.critrevonc.2023.104088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we propose six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
Collapse
Affiliation(s)
- Andrés Arboleda-García
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Ivan Alarcon-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lissette Boada-Acosta
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Yadira Boada
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain
| | - Alejandro Vignoni
- Systems Biology and Biosystems Control Lab, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain.
| | - Eloisa Jantus-Lewintre
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Molecular Oncology Laboratory, Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
6
|
Lekired A, Cherif-Silini H, Silini A, Ben Yahia H, Ouzari HI. Comparative genomics reveals the acquisition of mobile genetic elements by the plant growth-promoting Pantoea eucrina OB49 in polluted environments. Genomics 2023; 115:110579. [PMID: 36792019 DOI: 10.1016/j.ygeno.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.
Collapse
Affiliation(s)
- Abdelmalek Lekired
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000, Setif, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000, Setif, Algeria
| | - Hamza Ben Yahia
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
7
|
Srinivas K, Ghatak S, Pyngrope DA, Angappan M, Milton AAP, Das S, Lyngdoh V, Lamare JP, Prasad MCB, Sen A. Avian strains of emerging pathogen Escherichia fergusonii are phylogenetically diverse and harbor the greatest AMR dissemination potential among different sources: Comparative genomic evidence. Front Microbiol 2023; 13:1080677. [PMID: 36741902 PMCID: PMC9895846 DOI: 10.3389/fmicb.2022.1080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Escherichia fergusonii is regarded as an emerging pathogen with zoonotic potential. In the current study, we undertook source-wise comparative genomic analyses (resistome, virulome, mobilome and pangenome) to understand the antimicrobial resistance, virulence, mobile genetic elements and phylogenetic diversity of E. fergusonii. Methods Six E. fergusonii strains (5 multidrug resistant strains and 1 biofilm former) were isolated from poultry (duck faeces and retail chicken samples). Following confirmation by phenotypic and molecular methods, the isolates were further characterized and their genomes were sequenced. Comparative resisto-virulo-mobilome analyses and pangenomics were performed for E. fergusonii genomes, while including 125 other E. fergusonii genomes available from NCBI database. Results and discussion Avian and porcine strains of E. fergusonii were found to carry significantly higher number of antimicrobial resistance genes (p < 0.05) and mobile genetic elements (plasmids, transposons and integrons) (p < 0.05), while the pathogenic potential of bovine strains was significantly higher compared to other strains (p < 0.05). Pan-genome development trends indicated open pan-genome for all strains (0 < γ < 1). Genomic diversity of avian strains was found to be greater than that from other sources. Phylogenetic analysis revealed close clustering among isolates of similar isolation source and geographical location. Indian isolates of E. fergusonii clustered closely with those from Chinese and a singleton Australian isolate. Overall, being the first pangenomic study on E. fergusonii, our analysis provided important cues on genomic features of the emerging pathogen E. fergusonii while highlighting the potential role of avian strains in dissemination of AMR.
Collapse
Affiliation(s)
- Kandhan Srinivas
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,*Correspondence: Sandeep Ghatak,
| | - Daniel Aibor Pyngrope
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Madesh Angappan
- Division of Veterinary Public Health, ICAR – Indian Veterinary Research Institute, Bareilly, India,Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arockiasamy Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India,Arockiasamy Arun Prince Milton,
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - John Pynhun Lamare
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Mosuri Chendu Bharat Prasad
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| | - Arnab Sen
- Division of Animal and Fisheries Sciences, ICAR Research Complex for North Eastern Hill Region, Umiam, India
| |
Collapse
|
8
|
Liu D, Zhang Y, Fan G, Sun D, Zhang X, Yu Z, Wang J, Wu L, Shi W, Ma J. IPGA: A handy integrated prokaryotes genome and pan-genome analysis web service. IMETA 2022; 1:e55. [PMID: 38867900 PMCID: PMC10989949 DOI: 10.1002/imt2.55] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 06/14/2024]
Abstract
Pan-genomics is one of the most powerful means to study genomic variation and obtain a sketch of genes within a defined clade of species. Though there are a lot of computational tools to achieve this, an integrated framework to evaluate their performance and offer the best choice to users has never been achieved. To ease the process of large-scale prokaryotic genome analysis, we introduce Integrated Prokaryotes Genome and pan-genome Analysis (IPGA), a one-stop web service to analyze, compare, and visualize pan-genome as well as individual genomes, that rids users of installing any specific tools. IPGA features a scoring system that helps users to evaluate the reliability of pan-genome profiles generated by different packages. Thus, IPGA can help users ascertain the profiling method that is most suitable for their data set for the following analysis. In addition, IPGA integrates several downstream comparative analysis and genome analysis modules to make users achieve diverse targets.
Collapse
Affiliation(s)
- Dongmei Liu
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yifei Zhang
- Central LaboratoryPeking University School and Hospital of StomatologyBeijingChina
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Dingzhong Sun
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Xingjiao Zhang
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zhengfei Yu
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jinfeng Wang
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- National Microbiology Data CenterBeijingChina
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- National Microbiology Data CenterBeijingChina
| |
Collapse
|
9
|
Yang T, Gao F. High-quality pan-genome of Escherichia coli generated by excluding confounding and highly similar strains reveals an association between unique gene clusters and genomic islands. Brief Bioinform 2022; 23:6638794. [PMID: 35809555 DOI: 10.1093/bib/bbac283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023] Open
Abstract
The pan-genome analysis of bacteria provides detailed insight into the diversity and evolution of a bacterial population. However, the genomes involved in the pan-genome analysis should be checked carefully, as the inclusion of confounding strains would have unfavorable effects on the identification of core genes, and the highly similar strains could bias the results of the pan-genome state (open versus closed). In this study, we found that the inclusion of highly similar strains also affects the results of unique genes in pan-genome analysis, which leads to a significant underestimation of the number of unique genes in the pan-genome. Therefore, these strains should be excluded from pan-genome analysis at the early stage of data processing. Currently, tens of thousands of genomes have been sequenced for Escherichia coli, which provides an unprecedented opportunity as well as a challenge for pan-genome analysis of this classical model organism. Using the proposed strategies, a high-quality E. coli pan-genome was obtained, and the unique genes was extracted and analyzed, revealing an association between the unique gene clusters and genomic islands from a pan-genome perspective, which may facilitate the identification of genomic islands.
Collapse
Affiliation(s)
- Tong Yang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
10
|
Tantoso E, Eisenhaber B, Kirsch M, Shitov V, Zhao Z, Eisenhaber F. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol 2022; 20:146. [PMID: 35710371 PMCID: PMC9205054 DOI: 10.1186/s12915-022-01347-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli (E. coli) has been one of the most studied model organisms in the history of life sciences. Initially thought just to be commensal bacteria, E. coli has shown wide phenotypic diversity including pathogenic isolates with great relevance to public health. Though pangenome analysis has been attempted several times, there is no systematic functional characterization of the E. coli subgroups according to the gene profile. RESULTS Systematically scanning for optimal parametrization, we have built the E. coli pangenome from 1324 complete genomes. The pangenome size is estimated to be ~25,000 gene families (GFs). Whereas the core genome diminishes as more genomes are added, the softcore genome (≥95% of strains) is stable with ~3000 GFs regardless of the total number of genomes. Apparently, the softcore genome (with a 92% or 95% generation threshold) can define the genome of a bacterial species listing the critically relevant, evolutionarily most conserved or important classes of GFs. Unsupervised clustering of common E. coli sequence types using the presence/absence GF matrix reveals distinct characteristics of E. coli phylogroups B1, B2, and E. We highlight the bi-lineage nature of B1, the variation of the secretion and of the iron acquisition systems in ST11 (E), and the incorporation of a highly conserved prophage into the genome of ST131 (B2). The tail structure of the prophage is evolutionarily related to R2-pyocin (a tailocin) from Pseudomonas aeruginosa PAO1. We hypothesize that this molecular machinery is highly likely to play an important role in protecting its own colonies; thus, contributing towards the rapid rise of pandemic E. coli ST131. CONCLUSIONS This study has explored the optimized pangenome development in E. coli. We provide complete GF lists and the pangenome matrix as supplementary data for further studies. We identified biological characteristics of different E. coli subtypes, specifically for phylogroups B1, B2, and E. We found an operon-like genome region coding for a tailocin specific for ST131 strains. The latter is a potential killer weapon providing pandemic E. coli ST131 with an advantage in inter-bacterial competition and, suggestively, explains their dominance as human pathogen among E. coli strains.
Collapse
Affiliation(s)
- Erwin Tantoso
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Miles Kirsch
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: Northeastern University, Boston, USA
| | - Vladimir Shitov
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Zhiya Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,Present address: The University of Cambridge, Cambridge, UK
| | - Frank Eisenhaber
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, 637551, Singapore, Republic of Singapore.
| |
Collapse
|
11
|
Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C. Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 2021; 12:14. [PMID: 35050136 PMCID: PMC8778254 DOI: 10.3390/metabo12010014] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Genome-scale metabolic models (GEMs) enable the mathematical simulation of the metabolism of archaea, bacteria, and eukaryotic organisms. GEMs quantitatively define a relationship between genotype and phenotype by contextualizing different types of Big Data (e.g., genomics, metabolomics, and transcriptomics). In this review, we analyze the available Big Data useful for metabolic modeling and compile the available GEM reconstruction tools that integrate Big Data. We also discuss recent applications in industry and research that include predicting phenotypes, elucidating metabolic pathways, producing industry-relevant chemicals, identifying drug targets, and generating knowledge to better understand host-associated diseases. In addition to the up-to-date review of GEMs currently available, we assessed a plethora of tools for developing new GEMs that include macromolecular expression and dynamic resolution. Finally, we provide a perspective in emerging areas, such as annotation, data managing, and machine learning, in which GEMs will play a key role in the further utilization of Big Data.
Collapse
Affiliation(s)
- Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA;
| | - Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Merida 97203, Yucatan, Mexico
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0403, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| |
Collapse
|
12
|
Loose M, Sáez Moreno D, Mutti M, Hitzenhammer E, Visram Z, Dippel D, Schertler S, Tišáková LP, Wittmann J, Corsini L, Wagenlehner F. Natural Bred ε 2-Phages Have an Improved Host Range and Virulence against Uropathogenic Escherichia coli over Their Ancestor Phages. Antibiotics (Basel) 2021; 10:1337. [PMID: 34827275 PMCID: PMC8614997 DOI: 10.3390/antibiotics10111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Alternative treatments for Escherichia coli infections are urgently needed, and phage therapy is a promising option where antibiotics fail, especially for urinary tract infections (UTI). We used wastewater-isolated phages to test their lytic activity against a panel of 47 E. coli strains reflecting the diversity of strains found in UTI, including sequence type 131, 73 and 69. The plaquing host range (PHR) was between 13 and 63%. In contrast, the kinetic host range (KHR), describing the percentage of strains for which growth in suspension was suppressed for 24 h, was between 0% and 19%, substantially lower than the PHR. To improve the phage host range and their efficacy, we bred the phages by mixing and propagating cocktails on a subset of E. coli strains. The bred phages, which we termed evolution-squared ε2-phages, of a mixture of Myoviridae have KHRs up to 23% broader compared to their ancestors. Furthermore, using constant phage concentrations, Myoviridae ε2-phages suppressed the growth of higher bacterial inocula than their ancestors did. Thus, the ε2-phages were more virulent compared to their ancestors. Analysis of the genetic sequences of the ε2-phages with the broadest host range reveals that they are mosaic intercrossings of 2-3 ancestor phages. The recombination sites are distributed over the whole length of the genome. All ε2-phages are devoid of genes conferring lysogeny, antibiotic resistance, or virulence. Overall, this study shows that ε2-phages are remarkably more suitable than the wild-type phages for phage therapy.
Collapse
Affiliation(s)
- Maria Loose
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - David Sáez Moreno
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Michele Mutti
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Eva Hitzenhammer
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Zehra Visram
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - David Dippel
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| | - Susanne Schertler
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lenka Podpera Tišáková
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Johannes Wittmann
- DSMZ—German Collection of Microorganism and Cell Cultures GmbH, Leibniz Institute, 38124 Braunschweig, Germany; (S.S.); (J.W.)
| | - Lorenzo Corsini
- PhagoMed Biopharma GmbH, A-1110 Vienna, Austria; (D.S.M.); (M.M.); (E.H.); (Z.V.); (L.P.T.)
| | - Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig University Giessen, 35392 Giessen, Germany; (M.L.); (D.D.)
| |
Collapse
|
13
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
14
|
Yuan S, Wang Y, Zhao F, Kang L. Complete Genome Sequence of Weissella confusa LM1 and Comparative Genomic Analysis. Front Microbiol 2021; 12:749218. [PMID: 34650545 PMCID: PMC8506157 DOI: 10.3389/fmicb.2021.749218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
The genus Weissella is attracting an increasing amount of attention because of its multiple functions and probiotic potential. In particular, the species Weissella confusa is known to have great potential in industrial applications and exhibits numerous biological functions. However, the knowledge on this bacterium in insects is not investigated. Here, we isolated and identified W. confusa as the dominant lactic acid bacteria in the gut of the migratory locust. We named this strain W. confusa LM1, which is the first genome of an insect-derived W. confusa strain with one complete chromosome and one complete plasmid. Among all W. confusa strains, W. confusa LM1 had the largest genome. Its genome was the closest to that of W. confusa 1001271B_151109_G12, a strain from human feces. Our results provided accurate evolutionary relationships of known Weissella species and W. confusa strains. Based on genomic analysis, the pan-genome of W. confusa is in an open state. Most strains of W. confusa had the unique genes, indicating that these strains can adapt to different ecological niches and organisms. However, the variation of strain-specific genes did represent significant correlations with their hosts and ecological niches. These strains were predicted to have low potential to produce secondary metabolites. Furthermore, no antibiotic resistance genes were identified. At the same time, virulence factors associated with toxin production and secretion system were not found, indicating that W. confusa strains were not sufficient to perform virulence. Our study facilitated the discovery of the functions of W. confusa LM1 in locust biology and their potential application to locust management.
Collapse
Affiliation(s)
- Shenglei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yundan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
15
|
Sutton G, Fogel GB, Abramson B, Brinkac L, Michael T, Liu ES, Thomas S. A pan-genome method to determine core regions of the Bacillus subtilis and Escherichia coli genomes. F1000Res 2021; 10:286. [PMID: 34113437 PMCID: PMC8156514 DOI: 10.12688/f1000research.51873.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Synthetic engineering of bacteria to produce industrial products is a burgeoning field of research and application. In order to optimize genome design, designers need to understand which genes are essential, which are optimal for growth, and locations in the genome that will be tolerated by the organism when inserting engineered cassettes. Methods: We present a pan-genome based method for the identification of core regions in a genome that are strongly conserved at the species level. Results: We show that the core regions determined by our method contain all or almost all essential genes. This demonstrates the accuracy of our method as essential genes should be core genes. We show that we outperform previous methods by this measure. We also explain why there are exceptions to this rule for our method. Conclusions: We assert that synthetic engineers should avoid deleting or inserting into these core regions unless they understand and are manipulating the function of the genes in that region. Similarly, if the designer wishes to streamline the genome, non-core regions and in particular low penetrance genes would be good targets for deletion. Care should be taken to remove entire cassettes with similar penetrance of the genes within cassettes as they may harbor toxin/antitoxin genes which need to be removed in tandem. The bioinformatic approach introduced here saves considerable time and effort relative to knockout studies on single isolates of a given species and captures a broad understanding of the conservation of genes that are core to a species.
Collapse
Affiliation(s)
- Granger Sutton
- J. Craig Venter Institute, Rockville, Maryland, 20850, USA
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, CA, 92121, USA
| | | | | | - Todd Michael
- J. Craig Venter Institute, Rockville, Maryland, 20850, USA
| | - Enoch S Liu
- Natural Selection, Inc., San Diego, CA, 92121, USA
| | | |
Collapse
|
16
|
Sutton G, Fogel GB, Abramson B, Brinkac L, Michael T, Liu ES, Thomas S. A pan-genome method to determine core regions of the Bacillus subtilis and Escherichia coli genomes. F1000Res 2021; 10:286. [DOI: 10.12688/f1000research.51873.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Synthetic engineering of bacteria to produce industrial products is a burgeoning field of research and application. In order to optimize genome design, designers need to understand which genes are essential, which are optimal for growth, and locations in the genome that will be tolerated by the organism when inserting engineered cassettes. Methods: We present a pan-genome based method for the identification of core regions in a genome that are strongly conserved at the species level. Results: We show that the core regions determined by our method contain all or almost all essential genes. This demonstrates the accuracy of our method as essential genes should be core genes. We show that we outperform previous methods by this measure. We also explain why there are exceptions to this rule for our method. Conclusions: We assert that synthetic engineers should avoid deleting or inserting into these core regions unless they understand and are manipulating the function of the genes in that region. Similarly, if the designer wishes to streamline the genome, non-core regions and in particular low penetrance genes would be good targets for deletion. Care should be taken to remove entire cassettes with similar penetrance of the genes within cassettes as they may harbor toxin/antitoxin genes which need to be removed in tandem. The bioinformatic approach introduced here saves considerable time and effort relative to knockout studies on single isolates of a given species and captures a broad understanding of the conservation of genes that are core to a species.
Collapse
|
17
|
Genomic Characterization Provides an Insight into the Pathogenicity of the Poplar Canker Bacterium Lonsdalea populi. Genes (Basel) 2021; 12:genes12020246. [PMID: 33572241 PMCID: PMC7914447 DOI: 10.3390/genes12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
An emerging poplar canker caused by the gram-negative bacterium, Lonsdalea populi, has led to high mortality of hybrid poplars Populus × euramericana in China and Europe. The molecular bases of pathogenicity and bark adaptation of L. populi have become a focus of recent research. This study revealed the whole genome sequence and identified putative virulence factors of L. populi. A high-quality L. populi genome sequence was assembled de novo, with a genome size of 3,859,707 bp, containing approximately 3434 genes and 107 RNAs (75 tRNA, 22 rRNA, and 10 ncRNA). The L. populi genome contained 380 virulence-associated genes, mainly encoding for adhesion, extracellular enzymes, secretory systems, and two-component transduction systems. The genome had 110 carbohydrate-active enzyme (CAZy)-coding genes and putative secreted proteins. The antibiotic-resistance database annotation listed that L. populi was resistant to penicillin, fluoroquinolone, and kasugamycin. Analysis of comparative genomics found that L. populi exhibited the highest homology with the L. britannica genome and L. populi encompassed 1905 specific genes, 1769 dispensable genes, and 1381 conserved genes, suggesting high evolutionary diversity and genomic plasticity. Moreover, the pan genome analysis revealed that the N-5-1 genome is an open genome. These findings provide important resources for understanding the molecular basis of the pathogenicity and biology of L. populi and the poplar-bacterium interaction.
Collapse
|
18
|
Riley LW. Distinguishing Pathovars from Nonpathovars: Escherichia coli. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0014-2020. [PMID: 33385193 PMCID: PMC10773148 DOI: 10.1128/microbiolspec.ame-0014-2020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of E. coli that cause diarrhea are often described as intestinal pathogenic E. coli (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic E. coli (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of E. coli or pathovars. While IPEC can be distinguished from commensal E. coli based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal E. coli that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of E. coli based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by E. coli. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
19
|
Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 2020; 18:731-743. [PMID: 32958892 PMCID: PMC7981288 DOI: 10.1038/s41579-020-00440-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli's functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Colton J Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
20
|
Yan F, Gao F. A systematic strategy for the investigation of vaccines and drugs targeting bacteria. Comput Struct Biotechnol J 2020; 18:1525-1538. [PMID: 32637049 PMCID: PMC7327267 DOI: 10.1016/j.csbj.2020.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious and epidemic diseases induced by bacteria have historically caused great distress to people, and have even resulted in a large number of deaths worldwide. At present, many researchers are working on the discovery of viable drug and vaccine targets for bacteria through multiple methods, including the analyses of comparative subtractive genome, core genome, replication-related proteins, transcriptomics and riboswitches, which plays a significant part in the treatment of infectious and pandemic diseases. The 3D structures of the desired target proteins, drugs and epitopes can be predicted and modeled through target analysis. Meanwhile, molecular dynamics (MD) analysis of the constructed drug/epitope-protein complexes is an important standard for testing the suitability of these screened drugs and vaccines. Currently, target discovery, target analysis and MD analysis are integrated into a systematic set of drug and vaccine analysis strategy for bacteria. We hope that this comprehensive strategy will help in the design of high-performance vaccines and drugs.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
Kim YJ, Park JY, Balusamy SR, Huo Y, Nong LK, Thi Le H, Yang DC, Kim D. Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99 T Reveals Insights into Iron Tolerance of Ginseng. Int J Mol Sci 2020; 21:E2019. [PMID: 32188055 PMCID: PMC7139845 DOI: 10.3390/ijms21062019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus. Comparative analysis of S. panacis DCY99T with Sphingomonas sp. LK11 revealed plant growth-promoting potential of S. panacis DCY99T through indole acetic acid production, phosphate solubilizing, and antifungal abilities. Detailed genomic analysis has shown that S. panacis DCY99T contain various heavy metals resistance genes in its genome and the plasmid. Functional analysis with Sphingomonas paucimobilis EPA505 predicted that S. panacis DCY99T possess genes for degradation of polyaromatic hydrocarbon and phenolic compounds in rusty-ginseng root. Interestingly, when primed ginseng with S. panacis DCY99T during high concentration of iron exposure, iron stress of ginseng was suppressed. In order to detect S. panacis DCY99T in soil, biomarker was designed using spt gene. This study brings new insights into the role of S. panacis DCY99T as a microbial inoculant to protect ginseng plants against rusty root disease.
Collapse
Affiliation(s)
- Yeon-Ju Kim
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | | | - Yue Huo
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Linh Khanh Nong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Hoa Thi Le
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
| | - Deok Chun Yang
- College of Life Science, Kyung Hee University, Yongin 16710, Korea; (Y.H.); (D.C.Y.)
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (J.Y.P.); (L.K.N.); (H.T.L.)
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
22
|
Wu H, Wang D, Gao F. Toward a high-quality pan-genome landscape of Bacillus subtilis by removal of confounding strains. Brief Bioinform 2020; 22:1951-1971. [PMID: 32065216 DOI: 10.1093/bib/bbaa013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pan-genome analysis is widely used to study the evolution and genetic diversity of species, particularly in bacteria. However, the impact of strain selection on the outcome of pan-genome analysis is poorly understood. Furthermore, a standard protocol to ensure high-quality pan-genome results is lacking. In this study, we carried out a series of pan-genome analyses of different strain sets of Bacillus subtilis to understand the impact of various strains on the performance and output quality of pan-genome analyses. Consequently, we found that the results obtained by pan-genome analyses of B. subtilis can be influenced by the inclusion of incorrectly classified Bacillus subspecies strains, phylogenetically distinct strains, engineered genome-reduced strains, chimeric strains, strains with a large number of unique genes or a large proportion of pseudogenes, and multiple clonal strains. Since the presence of these confounding strains can seriously affect the quality and true landscape of the pan-genome, we should remove these deviations in the process of pan-genome analyses. Our study provides new insights into the removal of biases from confounding strains in pan-genome analyses at the beginning of data processing, which enables the achievement of a closer representation of a high-quality pan-genome landscape of B. subtilis that better reflects the performance and credibility of the B. subtilis pan-genome. This procedure could be added as an important quality control step in pan-genome analyses for improving the efficiency of analyses, and ultimately contributing to a better understanding of genome function, evolution and genome-reduction strategies for B. subtilis in the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Physics, School of Science, Tianjin University
| | - Dan Wang
- Department of Physics, School of Science, Tianjin University
| | - Feng Gao
- Department of Physics, School of Science, and the Frontier Science Center of Synthetic Biology (MOE), Key Laboratory of Systems Bioengineering (MOE), Tianjin University
| |
Collapse
|
23
|
Montealegre MC, Talavera Rodríguez A, Roy S, Hossain MI, Islam MA, Lanza VF, Julian TR. High Genomic Diversity and Heterogenous Origins of Pathogenic and Antibiotic-Resistant Escherichia coli in Household Settings Represent a Challenge to Reducing Transmission in Low-Income Settings. mSphere 2020; 5:e00704-19. [PMID: 31941809 PMCID: PMC6968650 DOI: 10.1128/msphere.00704-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli is present in multiple hosts and environmental compartments as a normal inhabitant, temporary or persistent colonizer, and as a pathogen. Transmission of E. coli between hosts and with the environment is considered to occur more often in areas with poor sanitation. We performed whole-genome comparative analyses on 60 E. coli isolates from soils and fecal sources (cattle, chickens, and humans) in households in rural Bangladesh. Isolates from household soils were in multiple branches of the reconstructed phylogeny, intermixed with isolates from fecal sources. Pairwise differences between all strain pairs were large (minimum, 189 single nucleotide polymorphisms [SNPs]), suggesting high diversity and heterogeneous origins of the isolates. The presence of multiple virulence and antibiotic resistance genes is indicative of the risk that E. coli from soil and feces represent for the transmission of variants that pose potential harm to people. Analysis of the accessory genomes of the Bangladeshi E. coli relative to E. coli genomes available in NCBI identified a common pool of accessory genes shared among E. coli isolates in this geographic area. Together, these findings indicate that in rural Bangladesh, a high level of E. coli in soil is likely driven by contributions from multiple and diverse E. coli sources (human and animal) that share an accessory gene pool relatively unique to previously published E. coli genomes. Thus, interventions to reduce environmental pathogen or antimicrobial resistance transmission should adopt integrated One Health approaches that consider heterogeneous origins and high diversity to improve effectiveness and reduce prevalence and transmission.IMPORTANCEEscherichia coli is reported in high levels in household soil in low-income settings. When E. coli reaches a soil environment, different mechanisms, including survival, clonal expansion, and genetic exchange, have the potential to either maintain or generate E. coli variants with capabilities of causing harm to people. In this study, we used whole-genome sequencing to identify that E. coli isolates collected from rural Bangladeshi household soils, including pathogenic and antibiotic-resistant variants, are diverse and likely originated from multiple diverse sources. In addition, we observed specialization of the accessory genome of this Bangladeshi E. coli compared to E. coli genomes available in current sequence databases. Thus, to address the high level of pathogenic and antibiotic-resistant E. coli transmission in low-income settings, interventions should focus on addressing the heterogeneous origins and high diversity.
Collapse
Affiliation(s)
| | | | - Subarna Roy
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Muhammed Iqbal Hossain
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mohammad Aminul Islam
- Food Microbiology Laboratory, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Val F Lanza
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Timothy R Julian
- Eawag, Swiss Federal Institute of Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|