1
|
Iovino BG, Tang H, Ye Y. Protein domain embeddings for fast and accurate similarity search. Genome Res 2024; 34:1434-1444. [PMID: 39237301 PMCID: PMC11529836 DOI: 10.1101/gr.279127.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Recently developed protein language models have enabled a variety of applications with the protein contextual embeddings they produce. Per-protein representations (each protein is represented as a vector of fixed dimension) can be derived via averaging the embeddings of individual residues, or applying matrix transformation techniques such as the discrete cosine transformation (DCT) to matrices of residue embeddings. Such protein-level embeddings have been applied to enable fast searches of similar proteins; however, limitations have been found; for example, PROST is good at detecting global homologs but not local homologs, and knnProtT5 excels for proteins with single domains but not multidomain proteins. Here, we propose a novel approach that first segments proteins into domains (or subdomains) and then applies the DCT to the vectorized embeddings of residues in each domain to infer domain-level contextual vectors. Our approach, called DCTdomain, uses predicted contact maps from ESM-2 for domain segmentation, which is formulated as a domain segmentation problem and can be solved using a recursive cut algorithm (RecCut in short) in quadratic time to the protein length; for comparison, an existing approach for domain segmentation uses a cubic-time algorithm. We show such domain-level contextual vectors (termed as DCT fingerprints) enable fast and accurate detection of similarity between proteins that share global similarities but with undefined extended regions between shared domains, and those that only share local similarities. In addition, tests on a database search benchmark show that the DCTdomain is able to detect distant homologs by leveraging the structural information in the contextual embeddings.
Collapse
Affiliation(s)
- Benjamin Giovanni Iovino
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Haixu Tang
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Yuzhen Ye
- Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
2
|
Yu ZZ, Peng CX, Liu J, Zhang B, Zhou XG, Zhang GJ. DomBpred: Protein Domain Boundary Prediction Based on Domain-Residue Clustering Using Inter-Residue Distance. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:912-922. [PMID: 35594218 DOI: 10.1109/tcbb.2022.3175905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Domain boundary prediction is one of the most important problems in the study of protein structure and function, especially for large proteins. At present, most domain boundary prediction methods have low accuracy and limitations in dealing with multi-domain proteins. In this study, we develop a sequence-based protein domain boundary prediction, named DomBpred. In DomBpred, the input sequence is first classified as either a single-domain protein or a multi-domain protein through a designed effective sequence metric based on a constructed single-domain sequence library. For the multi-domain protein, a domain-residue clustering algorithm inspired by Ising model is proposed to cluster the spatially close residues according inter-residue distance. The unclassified residues and the residues at the edge of the cluster are then tuned by the secondary structure to form potential cut points. Finally, a domain boundary scoring function is proposed to recursively evaluate the potential cut points to generate the domain boundary. DomBpred is tested on a large-scale test set of FUpred comprising 2549 proteins. Experimental results show that DomBpred better performs than the state-of-the-art methods in classifying whether protein sequences are composed by single or multiple domains, and the Matthew's correlation coefficient is 0.882. Moreover, on 849 multi-domain proteins, the domain boundary distance and normalised domain overlap scores of DomBpred are 0.523 and 0.824, respectively, which are 5.0% and 4.2% higher than those of the best comparison method, respectively. Comparison with other methods on the given test set shows that DomBpred outperforms most state-of-the-art sequence-based methods and even achieves better results than the top-level template-based method. The executable program is freely available at https://github.com/iobio-zjut/DomBpred and the online server at http://zhanglab-bioinf.com/DomBpred/.
Collapse
|
3
|
AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms. Commun Biol 2023; 6:160. [PMID: 36755055 PMCID: PMC9908985 DOI: 10.1038/s42003-023-04488-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Deep-learning (DL) methods like DeepMind's AlphaFold2 (AF2) have led to substantial improvements in protein structure prediction. We analyse confident AF2 models from 21 model organisms using a new classification protocol (CATH-Assign) which exploits novel DL methods for structural comparison and classification. Of ~370,000 confident models, 92% can be assigned to 3253 superfamilies in our CATH domain superfamily classification. The remaining cluster into 2367 putative novel superfamilies. Detailed manual analysis on 618 of these, having at least one human relative, reveal extremely remote homologies and further unusual features. Only 25 novel superfamilies could be confirmed. Although most models map to existing superfamilies, AF2 domains expand CATH by 67% and increases the number of unique 'global' folds by 36% and will provide valuable insights on structure function relationships. CATH-Assign will harness the huge expansion in structural data provided by DeepMind to rationalise evolutionary changes driving functional divergence.
Collapse
|
4
|
Zhu K, Su H, Peng Z, Yang J. A unified approach to protein domain parsing with inter-residue distance matrix. Bioinformatics 2023; 39:7025502. [PMID: 36734597 PMCID: PMC9919455 DOI: 10.1093/bioinformatics/btad070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION It is fundamental to cut multi-domain proteins into individual domains, for precise domain-based structural and functional studies. In the past, sequence-based and structure-based domain parsing was carried out independently with different methodologies. The recent progress in deep learning-based protein structure prediction provides the opportunity to unify sequence-based and structure-based domain parsing. RESULTS Based on the inter-residue distance matrix, which can be either derived from the input structure or predicted by trRosettaX, we can decode the domain boundaries under a unified framework. We name the proposed method UniDoc. The principle of UniDoc is based on the well-accepted physical concept of maximizing intra-domain interaction while minimizing inter-domain interaction. Comprehensive tests on five benchmark datasets indicate that UniDoc outperforms other state-of-the-art methods in terms of both accuracy and speed, for both sequence-based and structure-based domain parsing. The major contribution of UniDoc is providing a unified framework for structure-based and sequence-based domain parsing. We hope that UniDoc would be a convenient tool for protein domain analysis. AVAILABILITY AND IMPLEMENTATION https://yanglab.nankai.edu.cn/UniDoc/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kun Zhu
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Hong Su
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- Ministry of Education Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Jianyi Yang
- Ministry of Education Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Wang L, Zhong H, Xue Z, Wang Y. Res-Dom: predicting protein domain boundary from sequence using deep residual network and Bi-LSTM. BIOINFORMATICS ADVANCES 2022; 2:vbac060. [PMID: 36699417 PMCID: PMC9710680 DOI: 10.1093/bioadv/vbac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/28/2023]
Abstract
Motivation Protein domains are the basic units of proteins that can fold, function and evolve independently. Protein domain boundary partition plays an important role in protein structure prediction, understanding their biological functions, annotating their evolutionary mechanisms and protein design. Although there are many methods that have been developed to predict domain boundaries from protein sequence over the past two decades, there is still much room for improvement. Results In this article, a novel domain boundary prediction tool called Res-Dom was developed, which is based on a deep residual network, bidirectional long short-term memory (Bi-LSTM) and transfer learning. We used deep residual neural networks to extract higher-order residue-related information. In addition, we also used a pre-trained protein language model called ESM to extract sequence embedded features, which can summarize sequence context information more abundantly. To improve the global representation of these deep residual networks, a Bi-LSTM network was also designed to consider long-range interactions between residues. Res-Dom was then tested on an independent test set including 342 proteins and generated correct single-domain and multi-domain classifications with a Matthew's correlation coefficient of 0.668, which was 17.6% higher than the second-best compared method. For domain boundaries, the normalized domain overlapping score of Res-Dom was 0.849, which was 5% higher than the second-best compared method. Furthermore, Res-Dom required significantly less time than most of the recently developed state-of-the-art domain prediction methods. Availability and implementation All source code, datasets and model are available at http://isyslab.info/Res-Dom/.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haolin Zhong
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhidong Xue
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, Shandong 264003, China.,School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
6
|
I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nat Protoc 2022; 17:2326-2353. [PMID: 35931779 DOI: 10.1038/s41596-022-00728-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023]
Abstract
Most proteins in cells are composed of multiple folding units (or domains) to perform complex functions in a cooperative manner. Relative to the rapid progress in single-domain structure prediction, there are few effective tools available for multi-domain protein structure assembly, mainly due to the complexity of modeling multi-domain proteins, which involves higher degrees of freedom in domain-orientation space and various levels of continuous and discontinuous domain assembly and linker refinement. To meet the challenge and the high demand of the community, we developed I-TASSER-MTD to model the structures and functions of multi-domain proteins through a progressive protocol that combines sequence-based domain parsing, single-domain structure folding, inter-domain structure assembly and structure-based function annotation in a fully automated pipeline. Advanced deep-learning models have been incorporated into each of the steps to enhance both the domain modeling and inter-domain assembly accuracy. The protocol allows for the incorporation of experimental cross-linking data and cryo-electron microscopy density maps to guide the multi-domain structure assembly simulations. I-TASSER-MTD is built on I-TASSER but substantially extends its ability and accuracy in modeling large multi-domain protein structures and provides meaningful functional insights for the targets at both the domain- and full-chain levels from the amino acid sequence alone.
Collapse
|
7
|
FRTpred: A novel approach for accurate prediction of protein folding rate and type. Comput Biol Med 2022; 149:105911. [DOI: 10.1016/j.compbiomed.2022.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
8
|
Mahmud S, Guo Z, Quadir F, Liu J, Cheng J. Multi-head attention-based U-Nets for predicting protein domain boundaries using 1D sequence features and 2D distance maps. BMC Bioinformatics 2022; 23:283. [PMID: 35854211 PMCID: PMC9295499 DOI: 10.1186/s12859-022-04829-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
The information about the domain architecture of proteins is useful for studying protein structure and function. However, accurate prediction of protein domain boundaries (i.e., sequence regions separating two domains) from sequence remains a significant challenge. In this work, we develop a deep learning method based on multi-head U-Nets (called DistDom) to predict protein domain boundaries utilizing 1D sequence features and predicted 2D inter-residue distance map as input. The 1D features contain the evolutionary and physicochemical information of protein sequences, whereas the 2D distance map includes the structural information of proteins that was rarely used in domain boundary prediction before. The 1D and 2D features are processed by the 1D and 2D U-Nets respectively to generate hidden features. The hidden features are then used by the multi-head attention to predict the probability of each residue of a protein being in a domain boundary, leveraging both local and global information in the features. The residue-level domain boundary predictions can be used to classify proteins as single-domain or multi-domain proteins. It classifies the CASP14 single-domain and multi-domain targets at the accuracy of 75.9%, 13.28% more accurate than the state-of-the-art method. Tested on the CASP14 multi-domain protein targets with expert annotated domain boundaries, the average per-target F1 measure score of the domain boundary prediction by DistDom is 0.263, 29.56% higher than the state-of-the-art method.
Collapse
Affiliation(s)
- Sajid Mahmud
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Zhiye Guo
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Farhan Quadir
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Jian Liu
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| | - Jianlin Cheng
- grid.134936.a0000 0001 2162 3504Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO USA
| |
Collapse
|
9
|
Zheng W, Wuyun Q, Zhou X, Li Y, Freddolino PL, Zhang Y. LOMETS3: integrating deep learning and profile alignment for advanced protein template recognition and function annotation. Nucleic Acids Res 2022; 50:W454-W464. [PMID: 35420129 PMCID: PMC9252734 DOI: 10.1093/nar/gkac248] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Deep learning techniques have significantly advanced the field of protein structure prediction. LOMETS3 (https://zhanglab.ccmb.med.umich.edu/LOMETS/) is a new generation meta-server approach to template-based protein structure prediction and function annotation, which integrates newly developed deep learning threading methods. For the first time, we have extended LOMETS3 to handle multi-domain proteins and to construct full-length models with gradient-based optimizations. Starting from a FASTA-formatted sequence, LOMETS3 performs four steps of domain boundary prediction, domain-level template identification, full-length template/model assembly and structure-based function prediction. The output of LOMETS3 contains (i) top-ranked templates from LOMETS3 and its component threading programs, (ii) up to 5 full-length structure models constructed by L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm) optimization, (iii) the 10 closest Protein Data Bank (PDB) structures to the target, (iv) structure-based functional predictions, (v) domain partition and assembly results, and (vi) the domain-level threading results, including items (i)–(iii) for each identified domain. LOMETS3 was tested in large-scale benchmarks and the blind CASP14 (14th Critical Assessment of Structure Prediction) experiment, where the overall template recognition and function prediction accuracy is significantly beyond its predecessors and other state-of-the-art threading approaches, especially for hard targets without homologous templates in the PDB. Based on the improved developments, LOMETS3 should help significantly advance the capability of broader biomedical community for template-based protein structure and function modelling.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qiqige Wuyun
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Gao M, Lund-Andersen P, Morehead A, Mahmud S, Chen C, Chen X, Giri N, Roy RS, Quadir F, Effler TC, Prout R, Abraham S, Elwasif W, Haas NQ, Skolnick J, Cheng J, Sedova A. High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function. WORKSHOP ON MACHINE LEARNING IN HPC ENVIRONMENTS. WORKSHOP ON MACHINE LEARNING IN HPC ENVIRONMENTS 2021; 2021:46-57. [PMID: 35112110 PMCID: PMC8802329 DOI: 10.1109/mlhpc54614.2021.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computational biology is one of many scientific disciplines ripe for innovation and acceleration with the advent of high-performance computing (HPC). In recent years, the field of machine learning has also seen significant benefits from adopting HPC practices. In this work, we present a novel HPC pipeline that incorporates various machine-learning approaches for structure-based functional annotation of proteins on the scale of whole genomes. Our pipeline makes extensive use of deep learning and provides computational insights into best practices for training advanced deep-learning models for high-throughput data such as proteomics data. We showcase methodologies our pipeline currently supports and detail future tasks for our pipeline to envelop, including large-scale sequence comparison using SAdLSA and prediction of protein tertiary structures using AlphaFold2.
Collapse
Affiliation(s)
- Mu Gao
- Georgia Institute of Technology, Atlanta, GA
| | | | | | | | - Chen Chen
- University of Missouri, Columbia, MO
| | - Xiao Chen
- University of Missouri, Columbia, MO
| | | | | | | | | | - Ryan Prout
- Oak Ridge National Laboratory, Oak Ridge, TN
| | | | | | | | | | | | - Ada Sedova
- Oak Ridge National Laboratory, Oak Ridge, TN
| |
Collapse
|
11
|
Perpetuo L, Klein J, Ferreira R, Guedes S, Amado F, Leite-Moreira A, Silva AMS, Thongboonkerd V, Vitorino R. How can artificial intelligence be used for peptidomics? Expert Rev Proteomics 2021; 18:527-556. [PMID: 34343059 DOI: 10.1080/14789450.2021.1962303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Peptidomics is an emerging field of omics sciences using advanced isolation, analysis, and computational techniques that enable qualitative and quantitative analyses of various peptides in biological samples. Peptides can act as useful biomarkers and as therapeutic molecules for diseases. AREAS COVERED The use of therapeutic peptides can be predicted quickly and efficiently using data-driven computational methods, particularly artificial intelligence (AI) approach. Various AI approaches are useful for peptide-based drug discovery, such as support vector machine, random forest, extremely randomized trees, and other more recently developed deep learning methods. AI methods are relatively new to the development of peptide-based therapies, but these techniques already become essential tools in protein science by dissecting novel therapeutic peptides and their functions (Figure 1).[Figure: see text]. EXPERT OPINION Researchers have shown that AI models can facilitate the development of peptidomics and selective peptide therapies in the field of peptide science. Biopeptide prediction is important for the discovery and development of successful peptide-based drugs. Due to their ability to predict therapeutic roles based on sequence details, many AI-dependent prediction tools have been developed (Figure 1).
Collapse
Affiliation(s)
- Luís Perpetuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III, Toulouse, France
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Adelino Leite-Moreira
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| | - Artur M S Silva
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro.,LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro.,UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| |
Collapse
|
12
|
Mulnaes D, Golchin P, Koenig F, Gohlke H. TopDomain: Exhaustive Protein Domain Boundary Metaprediction Combining Multisource Information and Deep Learning. J Chem Theory Comput 2021; 17:4599-4613. [PMID: 34161735 DOI: 10.1021/acs.jctc.1c00129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein domains are independent, functional, and stable structural units of proteins. Accurate protein domain boundary prediction plays an important role in understanding protein structure and evolution, as well as for protein structure prediction. Current domain boundary prediction methods differ in terms of boundary definition, methodology, and training databases resulting in disparate performance for different proteins. We developed TopDomain, an exhaustive metapredictor, that uses deep neural networks to combine multisource information from sequence- and homology-based features of over 50 primary predictors. For this purpose, we developed a new domain boundary data set termed the TopDomain data set, in which the true annotations are informed by SCOPe annotations, structural domain parsers, human inspection, and deep learning. We benchmark TopDomain against 2484 targets with 3354 boundaries from the TopDomain test set and achieve F1 scores of 78.4% and 73.8% for multidomain boundary prediction within ±20 residues and ±10 residues of the true boundary, respectively. When examined on targets from CASP11-13 competitions, TopDomain achieves F1 scores of 47.5% and 42.8% for multidomain proteins. TopDomain significantly outperforms 15 widely used, state-of-the-art ab initio and homology-based domain boundary predictors. Finally, we implemented TopDomainTMC, which accurately predicts whether domain parsing is necessary for the target protein.
Collapse
Affiliation(s)
- Daniel Mulnaes
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Pegah Golchin
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Filip Koenig
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
13
|
Wang Y, Zhang H, Zhong H, Xue Z. Protein domain identification methods and online resources. Comput Struct Biotechnol J 2021; 19:1145-1153. [PMID: 33680357 PMCID: PMC7895673 DOI: 10.1016/j.csbj.2021.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023] Open
Abstract
Protein domains are the basic units of proteins that can fold, function, and evolve independently. Knowledge of protein domains is critical for protein classification, understanding their biological functions, annotating their evolutionary mechanisms and protein design. Thus, over the past two decades, a number of protein domain identification approaches have been developed, and a variety of protein domain databases have also been constructed. This review divides protein domain prediction methods into two categories, namely sequence-based and structure-based. These methods are introduced in detail, and their advantages and limitations are compared. Furthermore, this review also provides a comprehensive overview of popular online protein domain sequence and structure databases. Finally, we discuss potential improvements of these prediction methods.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Artificial Intelligence, Binzhou Medical College, Yantai, Shandong 264003, China
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hang Zhang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haolin Zhong
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhidong Xue
- School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
14
|
Zheng W, Zhou X, Wuyun Q, Pearce R, Li Y, Zhang Y. FUpred: detecting protein domains through deep-learning-based contact map prediction. Bioinformatics 2020; 36:3749-3757. [PMID: 32227201 DOI: 10.1093/bioinformatics/btaa217] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein domains are subunits that can fold and function independently. Correct domain boundary assignment is thus a critical step toward accurate protein structure and function analyses. There is, however, no efficient algorithm available for accurate domain prediction from sequence. The problem is particularly challenging for proteins with discontinuous domains, which consist of domain segments that are separated along the sequence. RESULTS We developed a new algorithm, FUpred, which predicts protein domain boundaries utilizing contact maps created by deep residual neural networks coupled with coevolutionary precision matrices. The core idea of the algorithm is to retrieve domain boundary locations by maximizing the number of intra-domain contacts, while minimizing the number of inter-domain contacts from the contact maps. FUpred was tested on a large-scale dataset consisting of 2549 proteins and generated correct single- and multi-domain classifications with a Matthew's correlation coefficient of 0.799, which was 19.1% (or 5.3%) higher than the best machine learning (or threading)-based method. For proteins with discontinuous domains, the domain boundary detection and normalized domain overlapping scores of FUpred were 0.788 and 0.521, respectively, which were 17.3% and 23.8% higher than the best control method. The results demonstrate a new avenue to accurately detect domain composition from sequence alone, especially for discontinuous, multi-domain proteins. AVAILABILITY AND IMPLEMENTATION https://zhanglab.ccmb.med.umich.edu/FUpred. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Xiaogen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Qiqige Wuyun
- Computer Science and Engineering Department, Michigan State University, East Lansing, MI 48824, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Yang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109.,School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next‐generation tool for rapid disease screening. Med Res Rev 2020; 40:1276-1314. [DOI: 10.1002/med.21658] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shaherin Basith
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | | | - Tae Hwan Shin
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| | - Gwang Lee
- Department of PhysiologyAjou University School of MedicineSuwon Republic of Korea
| |
Collapse
|
16
|
4mCpred-EL: An Ensemble Learning Framework for Identification of DNA N4-methylcytosine Sites in the Mouse Genome. Cells 2019; 8:cells8111332. [PMID: 31661923 PMCID: PMC6912380 DOI: 10.3390/cells8111332] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
DNA N4-methylcytosine (4mC) is one of the key epigenetic alterations, playing essential roles in DNA replication, differentiation, cell cycle, and gene expression. To better understand 4mC biological functions, it is crucial to gain knowledge on its genomic distribution. In recent times, few computational studies, in particular machine learning (ML) approaches have been applied in the prediction of 4mC site predictions. Although ML-based methods are promising for 4mC identification in other species, none are available for detecting 4mCs in the mouse genome. Our novel computational approach, called 4mCpred-EL, is the first method for identifying 4mC sites in the mouse genome where four different ML algorithms with a wide range of seven feature encodings are utilized. Subsequently, those feature encodings predicted probabilistic values are used as a feature vector and are once again inputted to ML algorithms, whose corresponding models are integrated into ensemble learning. Our benchmarking results demonstrated that 4mCpred-EL achieved an accuracy and MCC values of 0.795 and 0.591, which significantly outperformed seven other classifiers by more than 1.5–5.9% and 3.2–11.7%, respectively. Additionally, 4mCpred-EL attained an overall accuracy of 79.80%, which is 1.8–5.1% higher than that yielded by seven other classifiers in the independent evaluation. We provided a user-friendly web server, namely 4mCpred-EL which could be implemented as a pre-screening tool for the identification of potential 4mC sites in the mouse genome.
Collapse
|