1
|
Vosper KR, Velyvis A, Vahidi S. HDgraphiX: A Web-Based Tool for Visualization of Hydrogen/Deuterium Exchange Mass Spectrometry Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:1200-1203. [PMID: 40329740 DOI: 10.1021/jasms.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) investigates protein structural changes by measuring deuterium incorporation into the protein amide backbone. Due to the richness of information provided on protein conformational dynamics, HDX-MS data can be challenging to visualize effectively. To address this, we have developed HDgraphiX, a web-based tool that visualizes HDX-MS data by processing outputs from several popular analysis software packages including DynamX, HDExaminer, and HDX Workbench. HDgraphiX performs statistical analyses, filters data based on statistical significance, and presents the results as user-friendly publication-quality visualizations, including heatmaps (Chiclet plots), Woods plots, ladder plots, and volcano plots. Users can optionally generate PyMOL and ChimeraX coloring scripts to map deuterium uptake differences onto protein structures. Additionally, HDgraphiX offers numerous advanced options for customizing data processing and plotting without the need for manual data editing. To improve usability, users have the option to download a file containing all input settings, which can be reuploaded alongside HDX-MS data to avoid manual re-entry of custom settings.
Collapse
Affiliation(s)
- Kent R Vosper
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Puchała W, Kistowski M, Zhukova L, Burdukiewicz M, Dadlez M. HRaDeX: R Package and Web Server for Computing High-Resolution Deuterium Uptake Rates for HDX-MS Data. J Proteome Res 2025; 24:1688-1700. [PMID: 40105417 PMCID: PMC11976858 DOI: 10.1021/acs.jproteome.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Hydrogen-deuterium exchange monitored by mass spectrometry (HDX-MS) is a well-established and powerful technique used to study protein dynamics and stability by capturing local and global unfolding events in protein structures. However, in this technique, obtaining region-specific information requires proteolytic digestion that breaks the protein into peptide fragments, causing the HDX data to reflect averages over these fragments rather than individual amino acids. We propose a new computational method that provides deuterium uptake kinetic parameters with high resolution, considering deuterium uptake trajectories of superimposed peptides. Our algorithm, HRaDeX, is available as a web server and an R package capable of processing data from single-state and comparative HDX-MS studies. Utilizing eight benchmark data sets, we demonstrate that HRaDeX reaches an average root-mean-square error of 7.15% in the reconstitution of experimental normalized deuterium uptake curves.
Collapse
Affiliation(s)
- Weronika Puchała
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Warsaw 02-106, Poland
| | - Michał Kistowski
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Warsaw 02-106, Poland
| | - Liliya Zhukova
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Warsaw 02-106, Poland
| | - Michał Burdukiewicz
- Clinical
Research Centre, Medical University of Białystok, Białystok, 15-369, Poland
- Institute
of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Michał Dadlez
- Institute
of Biochemistry and Biophysics, Polish Academy
of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
3
|
McLaughlin NK, Rincon Pabon JP, Gies S, Dastvan R, Gross ML. Kingfisher: An open-sourced web-based platform for the analysis of hydrogen exchange mass spectrometry data. Protein Sci 2025; 34:e70096. [PMID: 40099873 PMCID: PMC11915630 DOI: 10.1002/pro.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is now a critical tool in molecular biology and structural proteomics. It is routinely used to probe protein and conformational dynamics through a well-established experiment where amide hydrogens exchange with deuterium atoms in a buffer containing D2O. Although there have been numerous advances in the field, data analysis still poses challenges mainly due to the need for manual curation of the data and the lack of standardized statistics and accessible software. In response, we developed Kingfisher, an open-source, user-friendly, web-based solution that facilitates downstream analysis using well-established statistics and provides advanced high-resolution representations of the HDX results. Kingfisher is able to read data directly as exported from common software packages and usually takes less than a minute to run the analysis, without the need to download the raw code or install any software. We foresee Kingfisher as a valuable tool for both newcomers and experts in the field of Hydrogen Exchange Mass Spectrometry. Kingfisher is available to all users as an interactive web application at https://kingfisher.wustl.edu/.
Collapse
Affiliation(s)
- Nolan K. McLaughlin
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| | - Juan P. Rincon Pabon
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Samantha Gies
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Reza Dastvan
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Michael L. Gross
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
4
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024; 124:12242-12263. [PMID: 39481095 PMCID: PMC11565574 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| | - Antonio Grimaldi
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Jochem H. Smit
- Department
of Microbiology and Immunology, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, KU
Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology
and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| |
Collapse
|
5
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Janowska MK, Reiter K, Magala P, Guttman M, Klevit RE. HDXBoxeR: an R package for statistical analysis and visualization of multiple Hydrogen-Deuterium Exchange Mass-Spectrometry datasets of different protein states. Bioinformatics 2024; 40:btae479. [PMID: 39078213 PMCID: PMC11310453 DOI: 10.1093/bioinformatics/btae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
SUMMARY Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful protein characterization technique that provides insights into protein dynamics and flexibility at the peptide level. However, analyzing HDX-MS data presents a significant challenge due to the wealth of information it generates. Each experiment produces data for hundreds of peptides, often measured in triplicate across multiple time points. Comparisons between different protein states create distinct datasets containing thousands of peptides that require matching, rigorous statistical evaluation, and visualization. Our open-source R package, HDXBoxeR, is a comprehensive tool designed to facilitate statistical analysis and comparison of multiple sets among samples and time points for different protein states, along with data visualization. AVAILABILITY AND IMPLEMENTATION HDXBoxeR is accessible as the R package (https://cran.r-project.org/web//packages/HDXBoxeR) and GitHub: mkajano/HDXBoxeR.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Katherine Reiter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Lyterian Therapeutics, South San Francisco, CA, 94080, United States
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
7
|
Yin JZ, Keszei AFA, Houliston S, Filandr F, Beenstock J, Daou S, Kitaygorodsky J, Schriemer DC, Mazhab-Jafari MT, Gingras AC, Sicheri F. The HisRS-like domain of GCN2 is a pseudoenzyme that can bind uncharged tRNA. Structure 2024; 32:795-811.e6. [PMID: 38531363 DOI: 10.1016/j.str.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
GCN2 is a stress response kinase that phosphorylates the translation initiation factor eIF2α to inhibit general protein synthesis when activated by uncharged tRNA and stalled ribosomes. The presence of a HisRS-like domain in GCN2, normally associated with tRNA aminoacylation, led to the hypothesis that eIF2α kinase activity is regulated by the direct binding of this domain to uncharged tRNA. Here we solved the structure of the HisRS-like domain in the context of full-length GCN2 by cryoEM. Structure and function analysis shows the HisRS-like domain of GCN2 has lost histidine and ATP binding but retains tRNA binding abilities. Hydrogen deuterium exchange mass spectrometry, site-directed mutagenesis and computational docking experiments support a tRNA binding model that is partially shifted from that employed by bona fide HisRS enzymes. These results demonstrate that the HisRS-like domain of GCN2 is a pseudoenzyme and advance our understanding of GCN2 regulation and function.
Collapse
Affiliation(s)
- Jay Z Yin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada; Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonah Beenstock
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Salima Daou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Julia Kitaygorodsky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad T Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
8
|
Griffiths D, Anderson M, Richardson K, Inaba-Inoue S, Allen WJ, Collinson I, Beis K, Morris M, Giles K, Politis A. Cyclic Ion Mobility for Hydrogen/Deuterium Exchange-Mass Spectrometry Applications. Anal Chem 2024; 96:5869-5877. [PMID: 38561318 PMCID: PMC11024883 DOI: 10.1021/acs.analchem.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.
Collapse
Affiliation(s)
- Damon Griffiths
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Keith Richardson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
- Diffraction
and Scattering Division, Japan Synchrotron
Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - William J. Allen
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Collinson
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Kevin Giles
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Argyris Politis
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
9
|
Filandr F, Sarpe V, Raval S, Crowder DA, Khan MF, Douglas P, Coales S, Viner R, Syed A, Tainer JA, Lees-Miller SP, Schriemer DC. Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology. Nat Commun 2024; 15:2200. [PMID: 38467655 PMCID: PMC10928179 DOI: 10.1038/s41467-024-46610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
We present a hydrogen/deuterium exchange workflow coupled to tandem mass spectrometry (HX-MS2) that supports the acquisition of peptide fragment ions alongside their peptide precursors. The approach enables true auto-curation of HX data by mining a rich set of deuterated fragments, generated by collisional-induced dissociation (CID), to simultaneously confirm the peptide ID and authenticate MS1-based deuteration calculations. The high redundancy provided by the fragments supports a confidence assessment of deuterium calculations using a combinatorial strategy. The approach requires data-independent acquisition (DIA) methods that are available on most MS platforms, making the switch to HX-MS2 straightforward. Importantly, we find that HX-DIA enables a proteomics-grade approach and wide-spread applications. Considerable time is saved through auto-curation and complex samples can now be characterized and at higher throughput. We illustrate these advantages in a drug binding analysis of the ultra-large protein kinase DNA-PKcs, isolated directly from mammalian cells.
Collapse
Affiliation(s)
- Frantisek Filandr
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaunak Raval
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Morgan F Khan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Pauline Douglas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Stephen Coales
- Trajan Scientific & Medical - Raleigh, Morrisville, NC, USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, USA
| | - Aleem Syed
- Division of Radiation and Genome Instability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Chemistry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
10
|
Yang Y, Chen H, Corey RA, Morales V, Quentin Y, Froment C, Caumont-Sarcos A, Albenne C, Burlet-Schiltz O, Ranava D, Stansfeld PJ, Marcoux J, Ieva R. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry. Nat Commun 2023; 14:6368. [PMID: 37821449 PMCID: PMC10567701 DOI: 10.1038/s41467-023-42007-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a β-barrel membrane protein, LptD, and a lipoprotein, LptE. The β-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex. LptM stabilizes a conformation of LptD that can efficiently acquire native disulfide bonds, whereas its inactivation makes disulfide bond isomerization by DsbC become essential for viability. Our structural prediction and biochemical analyses indicate that LptM binds to sites in both LptD and LptE that are proposed to coordinate LPS insertion into the OM. These results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.
Collapse
Affiliation(s)
- Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Haoxiang Chen
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France.
| |
Collapse
|
11
|
Cupp-Sutton KA, Welborn T, Fang M, Langford JB, Wang Z, Smith K, Wu S. The Deuterium Calculator: An Open-Source Tool for Hydrogen-Deuterium Exchange Mass Spectrometry Analysis. J Proteome Res 2023; 22:532-538. [PMID: 36695755 DOI: 10.1021/acs.jproteome.2c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful protein footprinting technique to study protein dynamics and binding; however, HDX-MS data analysis is often challenging and time-consuming. Moreover, the HDX community is expanding to investigate multiprotein and highly complex protein systems which further complicates data analysis. Thus, a simple, open-source software package designed to analyze large and highly complex protein systems is needed. In this vein, we have developed "The Deuterium Calculator", a Python-based software package for HDX-MS data analysis. The Deuterium Calculator is capable of differential and nondifferential HDX-MS analysis, produces standardized data files according to recommendations from the International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX) to increase transparency in data analysis, and generates Woods' plots for statistical analysis and data visualization. This standard output can be used to perform time dependent deuteration studies and for the study of protein folding kinetics or differential uptake. Moreover, The Deuterium Calculator is capable of performing these analyses on large HDX-MS data sets (e.g., LC-HDX-MS from cell lysate digest). The Deuterium Calculator is freely available for download at https://github.com/OUWuLab/TheDeuteriumCalculator.git. Data are available via ProteomeXchange with identifier PXD036813.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Joel B Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| |
Collapse
|
12
|
Uhrik L, Henek T, Planas-Iglesias J, Kucera J, Damborsky J, Marek M, Hernychova L. Study of Protein Conformational Dynamics Using Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2023; 2652:293-318. [PMID: 37093484 DOI: 10.1007/978-1-0716-3147-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Intrinsic protein dynamics contribute to their biological functions. Rational engineering of protein dynamics is extremely challenging with only a handful of successful examples. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) represents a powerful technique for quantitative analysis of protein dynamics. Here we provide a detailed description of the preparation of protein samples, collection of high-quality data, and their in-depth analysis using various computational tools. We illustrate the application of HDX-MS for the study of protein dynamics in the rational engineering of flexible loops in the reconstructed ancestor of haloalkane dehalogenase and Renilla luciferase. These experiments provided unique and valuable data rigorously describing the modification of protein dynamics upon grafting of the loop-helix element. Tips and tricks are provided to stimulate the wider use of HDX-MS to study and engineer protein dynamics.
Collapse
Affiliation(s)
- Lukas Uhrik
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Tomas Henek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Josef Kucera
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Lenka Hernychova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
13
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
14
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
15
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Puchała W, Burdukiewicz M, Kistowski M, Dąbrowska KA, Badaczewska-Dawid AE, Cysewski D, Dadlez M. HaDeX: an R package and web-server for analysis of data from hydrogen-deuterium exchange mass spectrometry experiments. Bioinformatics 2021; 36:4516-4518. [PMID: 32579220 PMCID: PMC7575049 DOI: 10.1093/bioinformatics/btaa587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
Motivation Hydrogen–deuterium mass spectrometry (HDX-MS) is a rapidly developing technique for monitoring dynamics and interactions of proteins. The development of new devices has to be followed with new software suites addressing emerging standards in data analysis. Results We propose HaDeX, a novel tool for processing, analysis and visualization of HDX-MS experiments. HaDeX supports a reproducible analytical process, including data exploration, quality control and generation of publication-quality figures. Availability and implementation HaDeX is available primarily as a web-server (http://mslab-ibb.pl/shiny/HaDeX/), but its all functionalities are also accessible as the R package (https://CRAN.R-project.org/package=HaDeX) and standalone software (https://sourceforge.net/projects/HaDeX/). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weronika Puchała
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | - Michał Kistowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Katarzyna A Dąbrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | | | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
17
|
Lesne J, Locard-Paulet M, Parra J, Zivković D, Menneteau T, Bousquet MP, Burlet-Schiltz O, Marcoux J. Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks. Nat Commun 2020; 11:6140. [PMID: 33262340 PMCID: PMC7708635 DOI: 10.1038/s41467-020-19934-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αβ or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic β-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the β-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Biologie Structurale, CNRS, Université de Montpellier, INSERM, 34090, Montpellier, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dušan Zivković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
18
|
Ozohanics O, Ambrus A. Hydrogen-Deuterium Exchange Mass Spectrometry: A Novel Structural Biology Approach to Structure, Dynamics and Interactions of Proteins and Their Complexes. Life (Basel) 2020; 10:E286. [PMID: 33203161 PMCID: PMC7696067 DOI: 10.3390/life10110286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022] Open
Abstract
Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) is a rapidly evolving technique for analyzing structural features and dynamic properties of proteins. It may stand alone or serve as a complementary method to cryo-electron-microscopy (EM) or other structural biology approaches. HDX-MS is capable of providing information on individual proteins as well as large protein complexes. Owing to recent methodological advancements and improving availability of instrumentation, HDX-MS is becoming a routine technique for some applications. When dealing with samples of low to medium complexity and sizes of less than 150 kDa, conformation and ligand interaction analyses by HDX-MS are already almost routine applications. This is also well supported by the rapid evolution of the computational (software) background that facilitates the analysis of the obtained experimental data. HDX-MS can cope at times with analytes that are difficult to tackle by any other approach. Large complexes like viral capsids as well as disordered proteins can also be analyzed by this method. HDX-MS has recently become an established tool in the drug discovery process and biopharmaceutical development, as it is now also capable of dissecting post-translational modifications and membrane proteins. This mini review provides the reader with an introduction to the technique and a brief overview of the most common applications. Furthermore, the most challenging likely applications, the analyses of glycosylated and membrane proteins, are also highlighted.
Collapse
Affiliation(s)
- Oliver Ozohanics
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, 37–47 Tuzolto Street, 1094 Budapest, Hungary
| |
Collapse
|
19
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Structural predictions of the functions of membrane proteins from HDX-MS. Biochem Soc Trans 2020; 48:971-979. [PMID: 32597490 PMCID: PMC7329338 DOI: 10.1042/bst20190880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
HDX-MS has emerged as a powerful tool to interrogate the structure and dynamics of proteins and their complexes. Recent advances in the methodology and instrumentation have enabled the application of HDX-MS to membrane proteins. Such targets are challenging to investigate with conventional strategies. Developing new tools are therefore pertinent for improving our fundamental knowledge of how membrane proteins function in the cell. Importantly, investigating this central class of biomolecules within their native lipid environment remains a challenge but also a key goal ahead. In this short review, we outline recent progresses in dissecting the conformational mechanisms of membrane proteins using HDX-MS. We further describe how the use of computational strategies can aid the interpretation of experimental data and enable visualisation of otherwise intractable membrane protein states. This unique integration of experiments with computations holds significant potential for future applications.
Collapse
|
21
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|