1
|
Liu F, Xin S, Liu Y. ProLoc-IHS: Multi-label protein subcellular localization based on immunohistochemical images and sequence information. Int J Biol Macromol 2025:144096. [PMID: 40379182 DOI: 10.1016/j.ijbiomac.2025.144096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Immunohistochemistry (IHC) imaging is a powerful technique to study the subcelluar localization (SCL) of human proteins in both normal and pathological tissues. As the manual annotation of localization for IHC images is time-consuming and the number of annotated is limited, a computational tool is necessary to analyze IHC images. However, existing prediction models rarely incorporate protein sequences. In this paper, a novel protein SCL prediction model for IHC images, ProLoc-IHS, is proposed by combining with sequence features. First, a bimodal dataset is curated including IHC images and protein sequences, which are derived from the Human Protein Atlas (HPA) and UniProt respectively. Then, ProLoc-IHS extracts embeddings from IHC images and protein sequences using a visual language model, Vision Transformer (Vit), and a protein language model, ProtT5, respectively. Subsequently, these embeddings are fused using a cross-attention module, and the fused features are input into the feature learning module of ProLoc-IHS, which contains a multi-head attention mechanism, a feedforward neural network and a residual connection. Finally, binary cross entropy (BCE) and focal loss function are incorporated into the feature learning module to solve multi-label classification tasks. Experimental results show that ProLoc-IHS outperforms other prediction models. The newly curated dataset and ProLoc-IHS code are available at https://github.com/xinshuaiiii/ProLoc-IHS.
Collapse
Affiliation(s)
- Fu Liu
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| | - Shuai Xin
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| | - Yun Liu
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| |
Collapse
|
2
|
Gillani M, Pollastri G. Protein subcellular localization prediction tools. Comput Struct Biotechnol J 2024; 23:1796-1807. [PMID: 38707539 PMCID: PMC11066471 DOI: 10.1016/j.csbj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Protein subcellular localization prediction is of great significance in bioinformatics and biological research. Most of the proteins do not have experimentally determined localization information, computational prediction methods and tools have been acting as an active research area for more than two decades now. Knowledge of the subcellular location of a protein provides valuable information about its functionalities, the functioning of the cell, and other possible interactions with proteins. Fast, reliable, and accurate predictors provides platforms to harness the abundance of sequence data to predict subcellular locations accordingly. During the last decade, there has been a considerable amount of research effort aimed at developing subcellular localization predictors. This paper reviews recent subcellular localization prediction tools in the Eukaryotic, Prokaryotic, and Virus-based categories followed by a detailed analysis. Each predictor is discussed based on its main features, strengths, weaknesses, algorithms used, prediction techniques, and analysis. This review is supported by prediction tools taxonomies that highlight their rele- vant area and examples for uncomplicated categorization and ease of understandability. These taxonomies help users find suitable tools according to their needs. Furthermore, recent research gaps and challenges are discussed to cover areas that need the utmost attention. This survey provides an in-depth analysis of the most recent prediction tools to facilitate readers and can be considered a quick guide for researchers to identify and explore the recent literature advancements.
Collapse
Affiliation(s)
- Maryam Gillani
- School of Computer Science, University College Dublin (UCD), Dublin, D04 V1W8, Ireland
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin (UCD), Dublin, D04 V1W8, Ireland
| |
Collapse
|
3
|
Zhang Z, Fu L, Yun B, Wang X, Wang X, Wu Y, Lv J, Chen L, Li W. Differentially localized protein identification for breast cancer based on deep learning in immunohistochemical images. Commun Biol 2024; 7:935. [PMID: 39095659 PMCID: PMC11297317 DOI: 10.1038/s42003-024-06548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
The mislocalization of proteins leads to breast cancer, one of the world's most prevalent cancers, which can be identified from immunohistochemical images. Here, based on the deep learning framework, location prediction models were constructed using the features of breast immunohistochemical images. Ultimately, six differentially localized proteins that with stable differentially predictive localization, maximum localization differences, and whose predicted results are not affected by removing a single image are obtained (CCNT1, NSUN5, PRPF4, RECQL4, UTP6, ZNF500). Further verification reveals that these proteins are not differentially expressed, but are closely associated with breast cancer and have great classification performance. Potential mechanism analysis shows that their co-expressed or co-located proteins and RNAs may affect their localization, leading to changes in interactions and functions that further causes breast cancer. They have the potential to help shed light on the molecular mechanisms of breast cancer and provide assistance for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Zihan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Bei Yun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Xu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Xiaoxi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Yifan Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
4
|
Han K, Liu X, Sun G, Wang Z, Shi C, Liu W, Huang M, Liu S, Guo Q. Enhancing subcellular protein localization mapping analysis using Sc2promap utilizing attention mechanisms. Biochim Biophys Acta Gen Subj 2024; 1868:130601. [PMID: 38522679 DOI: 10.1016/j.bbagen.2024.130601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Aberrant protein localization is a prominent feature in many human diseases and can have detrimental effects on the function of specific tissues and organs. High-throughput technologies, which continue to advance with iterations of automated equipment and the development of bioinformatics, enable the acquisition of large-scale data that are more pattern-rich, allowing for the use of a wider range of methods to extract useful patterns and knowledge from them. METHODS The proposed sc2promap (Spatial and Channel for SubCellular Protein Localization Mapping) model, designed to proficiently extract meaningful features from a vast repository of single-channel grayscale protein images for the purposes of protein localization analysis and clustering. Sc2promap incorporates a prediction head component enriched with supplementary protein annotations, along with the integration of a spatial-channel attention mechanism within the encoder to enables the generation of high-resolution protein localization maps that encapsulate the fundamental characteristics of cells, including elemental cellular localizations such as nuclear and non-nuclear domains. RESULTS Qualitative and quantitative comparisons were conducted across internal and external clustering evaluation metrics, as well as various facets of the clustering results. The study also explored different components of the model. The research outcomes conclusively indicate that, in comparison to previous methods, Sc2promap exhibits superior performance. CONCLUSIONS The amalgamation of the attention mechanism and prediction head components has led the model to excel in protein localization clustering and analysis tasks. GENERAL SIGNIFICANCE The model effectively enhances the capability to extract features and knowledge from protein fluorescence images.
Collapse
Affiliation(s)
- Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Guocheng Sun
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Chaojing Shi
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shitou Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
5
|
Bao LX, Luo ZM, Zhu XL, Xu YY. Automated identification of protein expression intensity and classification of protein cellular locations in mouse brain regions from immunofluorescence images. Med Biol Eng Comput 2024; 62:1105-1119. [PMID: 38150111 DOI: 10.1007/s11517-023-02985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Knowledge of protein expression in mammalian brains at regional and cellular levels can facilitate understanding of protein functions and associated diseases. As the mouse brain is a typical mammalian brain considering cell type and structure, several studies have been conducted to analyze protein expression in mouse brains. However, labeling protein expression using biotechnology is costly and time-consuming. Therefore, automated models that can accurately recognize protein expression are needed. Here, we constructed machine learning models to automatically annotate the protein expression intensity and cellular location in different mouse brain regions from immunofluorescence images. The brain regions and sub-regions were segmented through learning image features using an autoencoder and then performing K-means clustering and registration to align with the anatomical references. The protein expression intensities for those segmented structures were computed on the basis of the statistics of the image pixels, and patch-based weakly supervised methods and multi-instance learning were used to classify the cellular locations. Results demonstrated that the models achieved high accuracy in the expression intensity estimation, and the F1 score of the cellular location prediction was 74.5%. This work established an automated pipeline for analyzing mouse brain images and provided a foundation for further study of protein expression and functions.
Collapse
Affiliation(s)
- Lin-Xia Bao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Zhuo-Ming Luo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Xi-Liang Zhu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China
| | - Ying-Ying Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Medical Imaging Processing, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, 510623, China.
| |
Collapse
|
6
|
Xiao H, Zou Y, Wang J, Wan S. A Review for Artificial Intelligence Based Protein Subcellular Localization. Biomolecules 2024; 14:409. [PMID: 38672426 PMCID: PMC11048326 DOI: 10.3390/biom14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and Alzheimer's disease. Knowing where a target protein resides within a cell will give insights into tailored drug design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location identification. However, the booming era of proteomics and high-throughput sequencing generates tons of newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML), especially deep learning methods, have made significant progress in this research area. In this article, we review the latest advances in AI-based method development in three typical types of approaches, including sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges and future directions in AI-based method development in this research field.
Collapse
Affiliation(s)
- Hanyu Xiao
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yijin Zou
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
7
|
Wang C, Wang Y, Ding P, Li S, Yu X, Yu B. ML-FGAT: Identification of multi-label protein subcellular localization by interpretable graph attention networks and feature-generative adversarial networks. Comput Biol Med 2024; 170:107944. [PMID: 38215617 DOI: 10.1016/j.compbiomed.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/14/2024]
Abstract
The prediction of multi-label protein subcellular localization (SCL) is a pivotal area in bioinformatics research. Recent advancements in protein structure research have facilitated the application of graph neural networks. This paper introduces a novel approach termed ML-FGAT. The approach begins by extracting node information of proteins from sequence data, physical-chemical properties, evolutionary insights, and structural details. Subsequently, various evolutionary techniques are integrated to consolidate multi-view information. A linear discriminant analysis framework, grounded on entropy weight, is then employed to reduce the dimensionality of the merged features. To enhance the robustness of the model, the training dataset is augmented using feature-generative adversarial networks. For the primary prediction step, graph attention networks are employed to determine multi-label protein SCL, leveraging both node and neighboring information. The interpretability is enhanced by analyzing the attention weight parameters. The training is based on the Gram-positive bacteria dataset, while validation employs newly constructed datasets: human, virus, Gram-negative bacteria, plant, and SARS-CoV-2. Following a leave-one-out cross-validation procedure, ML-FGAT demonstrates noteworthy superiority in this domain.
Collapse
Affiliation(s)
- Congjing Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yifei Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China; School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Pengju Ding
- College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Shan Li
- School of Mathematics and Statistics, Central South University, Changsha, 410083, China
| | - Xu Yu
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum, Qingdao, 266580, China
| | - Bin Yu
- School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China; School of Data Science, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
8
|
Zou K, Wang S, Wang Z, Zou H, Yang F. Dual-Signal Feature Spaces Map Protein Subcellular Locations Based on Immunohistochemistry Image and Protein Sequence. SENSORS (BASEL, SWITZERLAND) 2023; 23:9014. [PMID: 38005402 PMCID: PMC10675401 DOI: 10.3390/s23229014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Protein is one of the primary biochemical macromolecular regulators in the compartmental cellular structure, and the subcellular locations of proteins can therefore provide information on the function of subcellular structures and physiological environments. Recently, data-driven systems have been developed to predict the subcellular location of proteins based on protein sequence, immunohistochemistry (IHC) images, or immunofluorescence (IF) images. However, the research on the fusion of multiple protein signals has received little attention. In this study, we developed a dual-signal computational protocol by incorporating IHC images into protein sequences to learn protein subcellular localization. Three major steps can be summarized as follows in this protocol: first, a benchmark database that includes 281 proteins sorted out from 4722 proteins of the Human Protein Atlas (HPA) and Swiss-Prot database, which is involved in the endoplasmic reticulum (ER), Golgi apparatus, cytosol, and nucleoplasm; second, discriminative feature operators were first employed to quantitate protein image-sequence samples that include IHC images and protein sequence; finally, the feature subspace of different protein signals is absorbed to construct multiple sub-classifiers via dimensionality reduction and binary relevance (BR), and multiple confidence derived from multiple sub-classifiers is adopted to decide subcellular location by the centralized voting mechanism at the decision layer. The experimental results indicated that the dual-signal model embedded IHC images and protein sequences outperformed the single-signal models with accuracy, precision, and recall of 75.41%, 80.38%, and 74.38%, respectively. It is enlightening for further research on protein subcellular location prediction under multi-signal fusion of protein.
Collapse
Affiliation(s)
- Kai Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Simeng Wang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Ziqian Wang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Hongliang Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330038, China
- Artificial Intelligence and Bioinformation Cognition Laboratory, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| |
Collapse
|
9
|
Zou K, Wang S, Wang Z, Zhang Z, Yang F. HAR_Locator: a novel protein subcellular location prediction model of immunohistochemistry images based on hybrid attention modules and residual units. Front Mol Biosci 2023; 10:1171429. [PMID: 37664182 PMCID: PMC10470064 DOI: 10.3389/fmolb.2023.1171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Proteins located in subcellular compartments have played an indispensable role in the physiological function of eukaryotic organisms. The pattern of protein subcellular localization is conducive to understanding the mechanism and function of proteins, contributing to investigating pathological changes of cells, and providing technical support for targeted drug research on human diseases. Automated systems based on featurization or representation learning and classifier design have attracted interest in predicting the subcellular location of proteins due to a considerable rise in proteins. However, large-scale, fine-grained protein microscopic images are prone to trapping and losing feature information in the general deep learning models, and the shallow features derived from statistical methods have weak supervision abilities. Methods: In this work, a novel model called HAR_Locator was developed to predict the subcellular location of proteins by concatenating multi-view abstract features and shallow features, whose advanced advantages are summarized in the following three protocols. Firstly, to get discriminative abstract feature information on protein subcellular location, an abstract feature extractor called HARnet based on Hybrid Attention modules and Residual units was proposed to relieve gradient dispersion and focus on protein-target regions. Secondly, it not only improves the supervision ability of image information but also enhances the generalization ability of the HAR_Locator through concatenating abstract features and shallow features. Finally, a multi-category multi-classifier decision system based on an Artificial Neural Network (ANN) was introduced to obtain the final output results of samples by fitting the most representative result from five subset predictors. Results: To evaluate the model, a collection of 6,778 immunohistochemistry (IHC) images from the Human Protein Atlas (HPA) database was used to present experimental results, and the accuracy, precision, and recall evaluation indicators were significantly increased to 84.73%, 84.77%, and 84.70%, respectively, compared with baseline predictors.
Collapse
Affiliation(s)
- Kai Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Simeng Wang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ziqian Wang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihai Zhang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
- Artificial Intelligence and Bioinformation Cognition Laboratory, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
10
|
Li J, Zou Q, Yuan L. A review from biological mapping to computation-based subcellular localization. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:507-521. [PMID: 37215152 PMCID: PMC10192651 DOI: 10.1016/j.omtn.2023.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Subcellular localization is crucial to the study of virus and diseases. Specifically, research on protein subcellular localization can help identify clues between virus and host cells that can aid in the design of targeted drugs. Research on RNA subcellular localization is significant for human diseases (such as Alzheimer's disease, colon cancer, etc.). To date, only reviews addressing subcellular localization of proteins have been published, which are outdated for reference, and reviews of RNA subcellular localization are not comprehensive. Therefore, we collated (the most up-to-date) literature on protein and RNA subcellular localization to help researchers understand changes in the field of protein and RNA subcellular localization. Extensive and complete methods for constructing subcellular localization models have also been summarized, which can help readers understand the changes in application of biotechnology and computer science in subcellular localization research and explore how to use biological data to construct improved subcellular localization models. This paper is the first review to cover both protein subcellular localization and RNA subcellular localization. We urge researchers from biology and computational biology to jointly pay attention to transformation patterns, interrelationships, differences, and causality of protein subcellular localization and RNA subcellular localization.
Collapse
Affiliation(s)
- Jing Li
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou, Zhejiang 324000, China
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, 1 Chengdian Road, Quzhou, Zhejiang 324000, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, 100 Minjiang Main Road, Quzhou, Zhejiang 324000, China
| |
Collapse
|
11
|
Zhu XL, Bao LX, Xue MQ, Xu YY. Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning. Brief Bioinform 2023; 24:6964519. [PMID: 36577448 DOI: 10.1093/bib/bbac609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
With the improvement of single-cell measurement techniques, there is a growing awareness that individual differences exist among cells, and protein expression distribution can vary across cells in the same tissue or cell line. Pinpointing the protein subcellular locations in single cells is crucial for mapping functional specificity of proteins and studying related diseases. Currently, research about single-cell protein location is still in its infancy, and most studies and databases do not annotate proteins at the cell level. For example, in the human protein atlas database, an immunofluorescence image stained for a particular protein shows multiple cells, but the subcellular location annotation is for the whole image, ignoring intercellular difference. In this study, we used large-scale immunofluorescence images and image-level subcellular locations to develop a deep-learning-based pipeline that could accurately recognize protein localizations in single cells. The pipeline consisted of two deep learning models, i.e. an image-based model and a cell-based model. The former used a multi-instance learning framework to comprehensively model protein distribution in multiple cells in each image, and could give both image-level and cell-level predictions. The latter firstly used clustering and heuristics algorithms to assign pseudo-labels of subcellular locations to the segmented cell images, and then used the pseudo-labels to train a classification model. Finally, the image-based model was fused with the cell-based model at the decision level to obtain the final ensemble model for single-cell prediction. Our experimental results showed that the ensemble model could achieve higher accuracy and robustness on independent test sets than state-of-the-art methods.
Collapse
Affiliation(s)
- Xi-Liang Zhu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Lin-Xia Bao
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Min-Qi Xue
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Ying-Ying Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Zhang T, Gu J, Wang Z, Wu C, Liang Y, Shi X. Protein Subcellular Localization Prediction Model Based on Graph Convolutional Network. Interdiscip Sci 2022; 14:937-946. [PMID: 35713780 DOI: 10.1007/s12539-022-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Protein subcellular localization prediction is an important research area in bioinformatics, which plays an essential role in understanding protein function and mechanism. Many machine learning and deep learning algorithms have been employed for this task, but most of them do not use structural information of proteins. With the advances in protein structure research in recent years, protein contact map prediction has been dramatically enhanced. In this paper, we present GraphLoc, a deep learning model that predicts the localization of proteins at the subcellular level. The cores of the model are a graph convolutional neural network module and a multi-head attention module. The protein topology graph is constructed based on a contact map predicted from protein sequences, which is used as the input of the GCN module to take full advantage of the structural information of proteins. Multi-head attention module learns the weighted contribution of different amino acids to subcellular localization in different feature representation subspaces. Experiments on the benchmark dataset show that the performance of our model is better than others. The code can be accessed at https://github.com/GoodGuy398/GraphLoc . The proposed GraphLoc model consists of three parts. The first part is a graph convolutional network (GCN) module, which utilizes the predicted contact maps to construct protein graph, taking benefit of protein information accordingly. The second part is the multi-head attention module, which learns the weighted contribution of different amino acids in different feature representation subspace, and weighted average the feature map across all amino acid nodes. The last part is a fully connected layer that maps the flatten graph representation vector to another vector with a category number dimension, followed by a softmax layer to predict the protein subcellular localization.
Collapse
Affiliation(s)
- Tianhao Zhang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Jiawei Gu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Zeyu Wang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
| | - Chunguo Wu
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
| | - Yanchun Liang
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China
| | - Xiaohu Shi
- College of Computer Science and Technology, University of Jilin, Changchun, 130012, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Changchun, 130012, China.
- School of Computer Science, Zhuhai College of Science and Technology, Zhuhai, 519041, China.
| |
Collapse
|
13
|
Hu JX, Yang Y, Xu YY, Shen HB. GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Bioinformatics 2022; 38:4941-4948. [DOI: 10.1093/bioinformatics/btac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Recognition of protein subcellular distribution patterns and identification of location biomarker proteins in cancer tissues are important for understanding protein functions and related diseases. Immunohistochemical (IHC) images enable visualizing the distribution of proteins at the tissue level, providing an important resource for the protein localization studies. In the past decades, several image-based protein subcellular location prediction methods have been developed, but the prediction accuracies still have much space to improve due to the complexity of protein patterns resulting from multi-label proteins and variation of location patterns across cell types or states.
Results
Here, we propose a multi-label multi-instance model based on deep graph convolutional neural networks, GraphLoc, to recognize protein subcellular location patterns. GraphLoc builds a graph of multiple IHC images for one protein, learns protein-level representations by graph convolutions, and predicts multi-label information by a dynamic threshold method. Our results show that GraphLoc is a promising model for image-based protein subcellular location prediction with model interpretability. Furthermore, we apply GraphLoc to the identification of candidate location biomarkers and potential members for protein networks. A large portion of the predicted results have supporting evidence from the existing literatures and the new candidates also provide guidance for further experimental screening.
Availability
The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/GraphLoc.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin-Xian Hu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Shanghai Jiao Tong University Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, , Shanghai 200240, China
| | - Ying-Ying Xu
- Southern Medical University School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, , Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University , Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| |
Collapse
|
14
|
Murphy M, Jegelka S, Fraenkel E. Self-supervised learning of cell type specificity from immunohistochemical images. Bioinformatics 2022; 38:i395-i403. [PMID: 35758799 PMCID: PMC9235491 DOI: 10.1093/bioinformatics/btac263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Advances in bioimaging now permit in situ proteomic characterization of cell-cell interactions in complex tissues, with important applications across a spectrum of biological problems from development to disease. These methods depend on selection of antibodies targeting proteins that are expressed specifically in particular cell types. Candidate marker proteins are often identified from single-cell transcriptomic data, with variable rates of success, in part due to divergence between expression levels of proteins and the genes that encode them. In principle, marker identification could be improved by using existing databases of immunohistochemistry for thousands of antibodies in human tissue, such as the Human Protein Atlas. However, these data lack detailed annotations of the types of cells in each image. RESULTS We develop a method to predict cell type specificity of protein markers from unlabeled images. We train a convolutional neural network with a self-supervised objective to generate embeddings of the images. Using non-linear dimensionality reduction, we observe that the model clusters images according to cell types and anatomical regions for which the stained proteins are specific. We then use estimates of cell type specificity derived from an independent single-cell transcriptomics dataset to train an image classifier, without requiring any human labelling of images. Our scheme demonstrates superior classification of known proteomic markers in kidney compared to selection via single-cell transcriptomics. AVAILABILITY AND IMPLEMENTATION Code and trained model are available at www.github.com/murphy17/HPA-SimCLR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefanie Jegelka
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Wu L, Gao S, Yao S, Wu F, Li J, Dong Y, Zhang Y. Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM. Front Genet 2022; 13:912614. [PMID: 35783287 PMCID: PMC9240597 DOI: 10.3389/fgene.2022.912614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the subcellular localization of a given protein is an essential part of biological and medical research, since the protein must be localized in the correct organelle to ensure physiological function. Conventional biological experiments for protein subcellular localization have some limitations, such as high cost and low efficiency, thus massive computational methods are proposed to solve these problems. However, some of these methods need to be improved further for protein subcellular localization with class imbalance problem. We propose a new model, generating minority samples for protein subcellular localization (Gm-PLoc), to predict the subcellular localization of multi-label proteins. This model includes three steps: using the position specific scoring matrix to extract distinguishable features of proteins; synthesizing samples of the minority category to balance the distribution of categories based on the revised generative adversarial networks; training a classifier with the rebalanced dataset to predict the subcellular localization of multi-label proteins. One benchmark dataset is selected to evaluate the performance of the presented model, and the experimental results demonstrate that Gm-PLoc performs well for the multi-label protein subcellular localization.
Collapse
Affiliation(s)
- Liwen Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Song Gao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Shaowen Yao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Feng Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Jie Li
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunyun Dong
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunqi Zhang
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Statistical Modeling and Data Analysis, School of Mathematics and Statistics, Yunnan University, Kunming, China
- *Correspondence: Yunqi Zhang,
| |
Collapse
|
16
|
Cong H, Liu H, Cao Y, Chen Y, Liang C. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism. Interdiscip Sci 2022; 14:421-438. [PMID: 35066812 DOI: 10.1007/s12539-021-00496-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
As an important research field in bioinformatics, protein subcellular location prediction is critical to reveal the protein functions and provide insightful information for disease diagnosis and drug development. Predicting protein subcellular locations remains a challenging task due to the difficulty of finding representative features and robust classifiers. Many feature fusion methods have been widely applied to tackle the above issues. However, they still suffer from accuracy loss due to feature redundancy. Furthermore, multiple protein subcellular locations prediction is more complicated since it is fundamentally a multi-label classification problem. The traditional binary classifiers or even multi-class classifiers cannot achieve satisfactory results. This paper proposes a novel method for protein subcellular location prediction with both single and multiple sites based on deep convolutional neural networks. Specifically, we first obtain the integrated features by simultaneously considering the pseudo amino acid, amino acid index distribution, and physicochemical property. We then adopt deep convolutional neural networks to extract high-dimensional features from the fused feature, removing the redundant preliminary features and gaining better representations of the raw sequences. Moreover, we use the self-attention mechanism and a customized loss function to ensure that the model is more inclined to positive data. In addition, we use random k-label sets to reduce the number of prediction labels. Meanwhile, we employ a hybrid strategy of over-sampling and under-sampling to tackle the data imbalance problem. We compare our model with three representative classification alternatives. The experiment results show that our model achieves the best performance in terms of accuracy, demonstrating the efficacy of the proposed model.
Collapse
Affiliation(s)
- Hanhan Cong
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China
| | - Hong Liu
- School of Information Science and Engineering, Shandong Normal University, Jinan, China.
- Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China.
| | - Yi Cao
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent, Computing University of Jinan, Jinan, China
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, China
- Shandong Provincial Key Laboratory of Network Based Intelligent, Computing University of Jinan, Jinan, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| |
Collapse
|
17
|
Nakai K, Wei L. Recent Advances in the Prediction of Subcellular Localization of Proteins and Related Topics. FRONTIERS IN BIOINFORMATICS 2022; 2:910531. [PMID: 36304291 PMCID: PMC9580943 DOI: 10.3389/fbinf.2022.910531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of subcellular localization of proteins from their amino acid sequences has a long history in bioinformatics and is still actively developing, incorporating the latest advances in machine learning and proteomics. Notably, deep learning-based methods for natural language processing have made great contributions. Here, we review recent advances in the field as well as its related fields, such as subcellular proteomics and the prediction/recognition of subcellular localization from image data.
Collapse
Affiliation(s)
- Kenta Nakai
- Institute of Medical Science, The University of Tokyo, Minato-Ku, Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China
| |
Collapse
|
18
|
Li X, Ma S, Liu J, Tang J, Guo F. Inferring gene regulatory network via fusing gene expression image and RNA-seq data. Bioinformatics 2022; 38:1716-1723. [PMID: 34999771 DOI: 10.1093/bioinformatics/btac008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Recently, with the development of high-throughput experimental technology, reconstruction of gene regulatory network (GRN) has ushered in new opportunities and challenges. Some previous methods mainly extract gene expression information based on RNA-seq data, but the associated information is very limited. With the establishment of gene expression image database, it is possible to infer GRN from image data with rich spatial information. RESULTS First, we propose a new convolutional neural network (called SDINet), which can extract gene expression information from images and identify the interaction between genes. SDINet can obtain the detailed information and high-level semantic information from the images well. And it can achieve satisfying performance on image data (Acc: 0.7196, F1: 0.7374). Second, we apply the idea of our SDINet to build an RNA-model, which also achieves good results on RNA-seq data (Acc: 0.8962, F1: 0.8950). Finally, we combine image data and RNA-seq data, and design a new fusion network to explore the potential relationship between them. Experiments show that our proposed network fusing two modalities can obtain satisfying performance (Acc: 0.9116, F1: 0.9118) than any single data. AVAILABILITY AND IMPLEMENTATION Data and code are available from https://github.com/guofei-tju/Combine-Gene-Expression-images-and-RNA-seq-data-For-infering-GRN.
Collapse
Affiliation(s)
- Xuejian Li
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Shiqiang Ma
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jin Liu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China.,School of Computational Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Wang F, Wei L. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images. Bioinformatics 2022; 38:2602-2611. [PMID: 35212728 DOI: 10.1093/bioinformatics/btac123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The development of microscopic imaging techniques enables us to study protein subcellular locations from the tissue level down to the cell level, contributing to the rapid development of image-based protein subcellular location prediction approaches. However, existing methods suffer from intrinsic limitations, such as poor feature representation ability, data imbalanced issue, and multi-label classification problem, greatly impacting the model performance and generalization. RESULTS In this study, we propose MSTLoc, a novel multi-scale end-to-end deep learning model to identify protein subcellular locations in the imbalanced multi-label immunohistochemistry (IHC) images dataset. In our MSTLoc, we deploy a deep convolution neural network to extract multi-scale features from the IHC images, aggregate the high-level features and low-level features via feature fusion to sufficiently exploit the dependencies amongst various subcellular locations, and utilize Vision Transformer (ViT) to model the relationship amongst the features and enhance the feature representation ability. We demonstrate that the proposed MSTLoc achieves better performance than current state-of-the-art models in multi-label subcellular location prediction. Through feature visualization and interpretation analysis, we demonstrate that as compared with the hand-crafted features, the multi-scale deep features learnt from our model exhibit better ability in capturing discriminative patterns underlying protein subcellular locations, and the features from different scales are complementary for the improvement in performance. Finally, case study results indicate that our MSTLoc can successfully identify some biomarkers from proteins that are closely involved with cancer development. For the convenient use of our method, we establish a user-friendly webserver available at http://server.wei-group.net/ MSTLoc. AVAILABILITY AND IMPLEMENTATION http://server.wei-group.net/ MSTLoc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Fengsheng Wang
- School of Software, Shandong University, Jinan, China.,Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China.,Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| |
Collapse
|
20
|
Tu Y, Lei H, Shen HB, Yang Y. SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Brief Bioinform 2022; 23:6527276. [DOI: 10.1093/bib/bbab605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Abstract
With the rapid growth of high-resolution microscopy imaging data, revealing the subcellular map of human proteins has become a central task in the spatial proteome. The cell atlas of the Human Protein Atlas (HPA) provides precious resources for recognizing subcellular localization patterns at the cell level, and the large-scale annotated data enable learning via advanced deep neural networks. However, the existing predictors still suffer from the imbalanced class distribution and the lack of labeled data for minor classes. Thus, it is necessary to develop new methods for coping with these issues. We leverage the self-supervised learning protocol to address these problems. Especially, we propose a pre-training scheme to enhance the conventional supervised learning framework called SIFLoc. The pre-training is featured by a hybrid data augmentation method and a modified contrastive loss function, aiming to learn good feature representations from microscopic images. The experiments are performed on a large-scale immunofluorescence microscopic image dataset collected from the HPA database. Using the same deep neural networks as the classifier, the model pre-trained via SIFLoc not only outperforms the model without pre-training by a large margin but also shows advantages over the state-of-the-art self-supervised learning methods. Especially, SIFLoc improves the prediction accuracy for minor organelles significantly.
Collapse
Affiliation(s)
- Yanlun Tu
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Houchao Lei
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Hong-Bin Shen
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
21
|
Xue MQ, Zhu XL, Wang G, Xu YY. DULoc: quantitatively unmixing protein subcellular location patterns in immunofluorescence images based on deep learning features. Bioinformatics 2022; 38:827-833. [PMID: 34694372 DOI: 10.1093/bioinformatics/btab730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Knowledge of subcellular locations of proteins is of great significance for understanding their functions. The multi-label proteins that simultaneously reside in or move between more than one subcellular structure usually involve with complex cellular processes. Currently, the subcellular location annotations of proteins in most studies and databases are descriptive terms, which fail to capture the protein amount or fractions across different locations. This highly limits the understanding of complex spatial distribution and functional mechanism of multi-label proteins. Thus, quantitatively analyzing the multiplex location patterns of proteins is an urgent and challenging task. RESULTS In this study, we developed a deep-learning-based pattern unmixing pipeline for protein subcellular localization (DULoc) to quantitatively estimate the fractions of proteins localizing in different subcellular compartments from immunofluorescence images. This model used a deep convolutional neural network to construct feature representations, and combined multiple nonlinear decomposing algorithms as the pattern unmixing method. Our experimental results showed that the DULoc can achieve over 0.93 correlation between estimated and true fractions on both real and synthetic datasets. In addition, we applied the DULoc method on the images in the human protein atlas database on a large scale, and showed that 70.52% of proteins can achieve consistent location orders with the database annotations. AVAILABILITY AND IMPLEMENTATION The datasets and code are available at: https://github.com/PRBioimages/DULoc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Min-Qi Xue
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Xi-Liang Zhu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Ge Wang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Ying-Ying Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Zhang F, Zhao B, Shi W, Li M, Kurgan L. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Brief Bioinform 2021; 23:6461158. [PMID: 34905768 DOI: 10.1093/bib/bbab521] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/30/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022] Open
Abstract
Proteins with intrinsically disordered regions (IDRs) are common among eukaryotes. Many IDRs interact with nucleic acids and proteins. Annotation of these interactions is supported by computational predictors, but to date, only one tool that predicts interactions with nucleic acids was released, and recent assessments demonstrate that current predictors offer modest levels of accuracy. We have developed DeepDISOBind, an innovative deep multi-task architecture that accurately predicts deoxyribonucleic acid (DNA)-, ribonucleic acid (RNA)- and protein-binding IDRs from protein sequences. DeepDISOBind relies on an information-rich sequence profile that is processed by an innovative multi-task deep neural network, where subsequent layers are gradually specialized to predict interactions with specific partner types. The common input layer links to a layer that differentiates protein- and nucleic acid-binding, which further links to layers that discriminate between DNA and RNA interactions. Empirical tests show that this multi-task design provides statistically significant gains in predictive quality across the three partner types when compared to a single-task design and a representative selection of the existing methods that cover both disorder- and structure-trained tools. Analysis of the predictions on the human proteome reveals that DeepDISOBind predictions can be encoded into protein-level propensities that accurately predict DNA- and RNA-binding proteins and protein hubs. DeepDISOBind is available at https://www.csuligroup.com/DeepDISOBind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Wenbo Shi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
23
|
Liao Z, Pan G, Sun C, Tang J. Predicting subcellular location of protein with evolution information and sequence-based deep learning. BMC Bioinformatics 2021; 22:515. [PMID: 34686152 PMCID: PMC8539821 DOI: 10.1186/s12859-021-04404-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Protein subcellular localization prediction plays an important role in biology research. Since traditional methods are laborious and time-consuming, many machine learning-based prediction methods have been proposed. However, most of the proposed methods ignore the evolution information of proteins. In order to improve the prediction accuracy, we present a deep learning-based method to predict protein subcellular locations. RESULTS Our method utilizes not only amino acid compositions sequence but also evolution matrices of proteins. Our method uses a bidirectional long short-term memory network that processes the entire protein sequence and a convolutional neural network that extracts features from protein sequences. The position specific scoring matrix is used as a supplement to protein sequences. Our method was trained and tested on two benchmark datasets. The experiment results show that our method yields accurate results on the two datasets with an average precision of 0.7901, ranking loss of 0.0758 and coverage of 1.2848. CONCLUSION The experiment results show that our method outperforms five methods currently available. According to those experiments, we can see that our method is an acceptable alternative to predict protein subcellular location.
Collapse
Affiliation(s)
- Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, 350122 FJ China
- Department of Computer Science and Engineering, University of South Carolina, 550 Assembly St, Columbia, SC 29208 USA
| | - Gaofeng Pan
- Department of Computer Science and Engineering, University of South Carolina, 550 Assembly St, Columbia, SC 29208 USA
| | - Chao Sun
- Department of Computer Science and Engineering, University of South Carolina, 550 Assembly St, Columbia, SC 29208 USA
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, 550 Assembly St, Columbia, SC 29208 USA
- College of Electrical and Power Engineering, Taiyuan University of Technology, No. 79 Yinze West Street, Taiyuan, 030024 SX China
| |
Collapse
|
24
|
Hu JX, Yang Y, Xu YY, Shen HB. Incorporating label correlations into deep neural networks to classify protein subcellular location patterns in immunohistochemistry images. Proteins 2021; 90:493-503. [PMID: 34546597 DOI: 10.1002/prot.26244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/16/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Analysis of protein subcellular localization is a critical part of proteomics. In recent years, as both the number and quality of microscopic images are increasing rapidly, many automated methods, especially convolutional neural networks (CNN), have been developed to predict protein subcellular location(s) based on bioimages, but their performance always suffers from some inherent properties of the problem. First, many microscopic images have non-informative or noisy sections, like unstained stroma and unspecific background, which affect the extraction of protein expression information. Second, the patterns of protein subcellular localization are very complex, as a lot of proteins locate in more than one compartment. In this study, we propose a new label-correlation enhanced deep neural network, laceDNN, to classify the subcellular locations of multi-label proteins from immunohistochemistry images. The model uses small representative patches as input to alleviate the image noise issue, and its backbone is a hybrid architecture of CNN and recurrent neural network, where the former network extracts representative image features and the latter learns the organelle dependency relationships. Our experimental results indicate that the proposed model can improve the performance of multi-label protein subcellular classification.
Collapse
Affiliation(s)
- Jin-Xian Hu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yang Yang
- Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Ying Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| |
Collapse
|
25
|
DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning. Mol Cell Proteomics 2021; 20:100140. [PMID: 34425263 PMCID: PMC8476775 DOI: 10.1016/j.mcpro.2021.100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
A multitude of efforts worldwide aim to create a single-cell reference map of the human body, for fundamental understanding of human health, molecular medicine, and targeted treatment. Antibody-based proteomics using immunohistochemistry (IHC) has proven to be an excellent technology for integration with large-scale single-cell transcriptomics datasets. The golden standard for evaluation of IHC staining patterns is manual annotation, which is expensive and may lead to subjective errors. Artificial intelligence holds much promise for efficient and accurate pattern recognition, but confidence in prediction needs to be addressed. Here, the aim was to present a reliable and comprehensive framework for automated annotation of IHC images. We developed a multilabel classification of 7848 complex IHC images of human testis corresponding to 2794 unique proteins, generated as part of the Human Protein Atlas (HPA) project. Manual annotation data for eight different cell types was generated as a basis for training and testing a proposed Hybrid Bayesian Neural Network. By combining the deep learning model with a novel uncertainty metric, DeepHistoClass (DHC) Confidence Score, the average diagnostic performance improved from 86.9% to 96.3%. This metric not only reveals which images are reliably classified by the model, but can also be utilized for identification of manual annotation errors. The proposed streamlined workflow can be developed further for other tissue types in health and disease and has important implications for digital pathology initiatives or large-scale protein mapping efforts such as the HPA project. A novel method for automated annotation of immunohistochemistry images. Introduction of an uncertainty metric, the DeepHistoClass (DHC) confidence score. Increased accuracy of automated image predictions. Identification of manual annotation errors.
Collapse
|
26
|
Li C, Fan Y, Cai X. PyConvU-Net: a lightweight and multiscale network for biomedical image segmentation. BMC Bioinformatics 2021; 22:14. [PMID: 33413088 PMCID: PMC7788933 DOI: 10.1186/s12859-020-03943-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.
Collapse
Affiliation(s)
- Changyong Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Xiaodong Cai
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
27
|
Kumar R, Dhanda SK. Bird Eye View of Protein Subcellular Localization Prediction. Life (Basel) 2020; 10:E347. [PMID: 33327400 PMCID: PMC7764902 DOI: 10.3390/life10120347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Proteins are made up of long chain of amino acids that perform a variety of functions in different organisms. The activity of the proteins is determined by the nucleotide sequence of their genes and by its 3D structure. In addition, it is essential for proteins to be destined to their specific locations or compartments to perform their structure and functions. The challenge of computational prediction of subcellular localization of proteins is addressed in various in silico methods. In this review, we reviewed the progress in this field and offered a bird eye view consisting of a comprehensive listing of tools, types of input features explored, machine learning approaches employed, and evaluation matrices applied. We hope the review will be useful for the researchers working in the field of protein localization predictions.
Collapse
Affiliation(s)
- Ravindra Kumar
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Sandeep Kumar Dhanda
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
28
|
Wen B, Zeng W, Liao Y, Shi Z, Savage SR, Jiang W, Zhang B. Deep Learning in Proteomics. Proteomics 2020; 20:e1900335. [PMID: 32939979 PMCID: PMC7757195 DOI: 10.1002/pmic.201900335] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Proteomics, the study of all the proteins in biological systems, is becoming a data-rich science. Protein sequences and structures are comprehensively catalogued in online databases. With recent advancements in tandem mass spectrometry (MS) technology, protein expression and post-translational modifications (PTMs) can be studied in a variety of biological systems at the global scale. Sophisticated computational algorithms are needed to translate the vast amount of data into novel biological insights. Deep learning automatically extracts data representations at high levels of abstraction from data, and it thrives in data-rich scientific research domains. Here, a comprehensive overview of deep learning applications in proteomics, including retention time prediction, MS/MS spectrum prediction, de novo peptide sequencing, PTM prediction, major histocompatibility complex-peptide binding prediction, and protein structure prediction, is provided. Limitations and the future directions of deep learning in proteomics are also discussed. This review will provide readers an overview of deep learning and how it can be used to analyze proteomics data.
Collapse
Affiliation(s)
- Bo Wen
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Wen‐Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS)Chinese Academy of SciencesInstitute of Computing TechnologyBeijing100190China
| | - Yuxing Liao
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Zhiao Shi
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Sara R. Savage
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Wen Jiang
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Bing Zhang
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
29
|
Automated classification of protein subcellular localization in immunohistochemistry images to reveal biomarkers in colon cancer. BMC Bioinformatics 2020; 21:398. [PMID: 32907537 PMCID: PMC7487883 DOI: 10.1186/s12859-020-03731-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein biomarkers play important roles in cancer diagnosis. Many efforts have been made on measuring abnormal expression intensity in biological samples to identity cancer types and stages. However, the change of subcellular location of proteins, which is also critical for understanding and detecting diseases, has been rarely studied. RESULTS In this work, we developed a machine learning model to classify protein subcellular locations based on immunohistochemistry images of human colon tissues, and validated the ability of the model to detect subcellular location changes of biomarker proteins related to colon cancer. The model uses representative image patches as inputs, and integrates feature engineering and deep learning methods. It achieves 92.69% accuracy in classification of new proteins. Two validation datasets of colon cancer biomarkers derived from published literatures and the human protein atlas database respectively are employed. It turns out that 81.82 and 65.66% of the biomarker proteins can be identified to change locations. CONCLUSIONS Our results demonstrate that using image patches and combining predefined and deep features can improve the performance of protein subcellular localization, and our model can effectively detect biomarkers based on protein subcellular translocations. This study is anticipated to be useful in annotating unknown subcellular localization for proteins and discovering new potential location biomarkers.
Collapse
|