1
|
Pang X, Pan Y, Wang M, Qiu S, He Y, Ren Y, Yu T, Yu S, Cui Y. Comparison of reproductive performance and functional analysis of spermatogenesis factors between domestic yak and semi-wild blood yak. BMC Genomics 2025; 26:418. [PMID: 40301732 DOI: 10.1186/s12864-025-11594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
This study investigates differences in reproductive performance, testicular histology, and transcriptomic profiles between male Subei (SB; semi-wild) yaks and two domestic yaks, Gannan (GN) and Qinghai (QH). Key metrics including mating age, utilization time, breeding capacity, morphometric traits, and testicular indices were analyzed. SB yaks exhibited superior reproductive metrics, including earlier sexual maturity, prolonged utilization periods, and enhanced breeding capacity compared to GN and QH (P < 0.05). Morphologically, SB yaks demonstrated significantly greater body weight, and testicular dimensions. Compared with GN and QH yaks, the seminiferous tubules of SB yaks exhibited significantly larger spermatogenic cells and luminal cavities, along with a notably higher sperm density within the luminal cavity. Transcriptomic analysis identified 2,403 and 4,428 differentially expressed genes (DEGs) in GN vs. SB and QH vs. SB comparisons, respectively. Eight key genes (TPPP3, SMAD3, PAFAH1B3, BMP7, ARSA, CTNNB1, SMAD4, STAT3) and three pathways (Hippo, pluripotency regulation, TGF-β) were implicated in testicular development and spermatogenesis. These findings underscore the genetic and physiological advantages of SB yaks, offering insights for enhancing male yak reproductive performance.
Collapse
Affiliation(s)
- Xin Pang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yulong He
- Jiuquan Animal Husbandry and Veterinary Medicine General Station, Jiuquan, China
| | - Yuchun Ren
- Central Agricultural Radio and Television School Tianzhu County Branch, Wuwei, China
| | - Tianjun Yu
- Subei Mongolian Autonomous County Animal Husbandry and Veterinary Technical Service Center, Jiuquan, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
- Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| |
Collapse
|
2
|
Liu C, Ni C, Li C, Tian H, Jian W, Zhong Y, Zhou Y, Lyu X, Zhang Y, Xiang XJ, Cheng C, Li X. Lactate-related gene signatures as prognostic predictors and comprehensive analysis of immune profiles in nasopharyngeal carcinoma. J Transl Med 2024; 22:1116. [PMID: 39707377 DOI: 10.1186/s12967-024-05935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Nasopharyngeal carcinoma (NPC) is an aggressive malignancy with high rates of morbidity and mortality, largely because of its late diagnosis and metastatic potential. Lactate metabolism and protein lactylation are thought to play roles in NPC pathogenesis by modulating the tumor microenvironment and immune evasion. However, research specifically linking lactate-related mechanisms to NPC remains limited. This study aimed to identify lactate-associated biomarkers in NPC and explore their underlying mechanisms, with a particular focus on immune modulation and tumor progression. METHODS To achieve these objectives, we utilized a bioinformatics approach in which publicly available gene expression datasets related to NPC were analysed. Differential expression analysis revealed differentially expressed genes (DEGs) between NPC and normal tissues. We performed weighted gene coexpression network analysis (WGCNA) to identify module genes significantly associated with NPC. Overlaps among DEGs, key module genes and lactate-related genes (LRGs) were analysed to derive lactate-related differentially expressed genes (LR-DEGs). Machine learning algorithms can be used to predict potential biomarkers, and immune infiltration analysis can be used to examine the relationships between identified biomarkers and immune cell types, particularly M0 macrophages and B cells. RESULTS A total of 1,058 DEGs were identified between the NPC and normal tissue groups. From this set, 372 key module genes associated with NPC were isolated. By intersecting the DEGs, key module genes and lactate-related genes (LRGs), 17 lactate-related DEGs (LR-DEGs) were identified. Using three machine learning algorithms, this list was further refined, resulting in three primary lactate-related biomarkers: TPPP3, MUC4 and CLIC6. These biomarkers were significantly enriched in pathways related to "immune cell activation" and the "extracellular matrix environment". Additionally, M0 and B macrophages were found to be closely associated with these biomarkers, suggesting their involvement in shaping the NPC immune microenvironment. CONCLUSION In summary, this study identified TPPP3, MUC4 and CLIC6 as lactate-associated clinical modelling indicators linked to NPC, providing a foundation for advancing diagnostic and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Changlin Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuping Ni
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hu Tian
- Department of Urology Surgery, Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Weiquan Jian
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yuping Zhong
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Yanqing Zhou
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao-Jun Xiang
- Department of Healthcare-associated Infection Management, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China.
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Horánszky A, Shashikadze B, Elkhateib R, Lombardo SD, Lamberto F, Zana M, Menche J, Fröhlich T, Dinnyés A. Proteomics and disease network associations evaluation of environmentally relevant Bisphenol A concentrations in a human 3D neural stem cell model. Front Cell Dev Biol 2023; 11:1236243. [PMID: 37664457 PMCID: PMC10472293 DOI: 10.3389/fcell.2023.1236243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Bisphenol A (BPA) exposure is associated with a plethora of neurodevelopmental abnormalities and brain disorders. Previous studies have demonstrated BPA-induced perturbations to critical neural stem cell (NSC) characteristics, such as proliferation and differentiation, although the underlying molecular mechanisms remain under debate. The present study evaluated the effects of a repeated-dose exposure of environmentally relevant BPA concentrations during the in vitro 3D neural induction of human induced pluripotent stem cells (hiPSCs), emulating a chronic exposure scenario. Firstly, we demonstrated that our model is suitable for NSC differentiation during the early stages of embryonic brain development. Our morphological image analysis showed that BPA exposure at 0.01, 0.1 and 1 µM decreased the average spheroid size by day 21 (D21) of the neural induction, while no effect on cell viability was detected. No alteration to the rate of the neural induction was observed based on the expression of key neural lineage and neuroectodermal transcripts. Quantitative proteomics at D21 revealed several differentially abundant proteins across all BPA-treated groups with important functions in NSC proliferation and maintenance (e.g., FABP7, GPC4, GAP43, Wnt-8B, TPPP3). Additionally, a network analysis demonstrated alterations to the glycolytic pathway, potentially implicating BPA-induced changes to glycolytic signalling in NSC proliferation impairments, as well as the pathophysiology of brain disorders including intellectual disability, autism spectrum disorders, and amyotrophic lateral sclerosis (ALS). This study enhances the current understanding of BPA-related NSC aberrations based mostly on acute, often high dose exposures of rodent in vivo and in vitro models and human GWAS data in a novel human 3D cell-based model with real-life scenario relevant prolonged and low-level exposures, offering further mechanistic insights into the ramifications of BPA exposure on the developing human brain and consequently, later life neurological disorders.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Federica Lamberto
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | | | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Yang J, Wang L, Ma J, Diao L, Chen J, Cheng Y, Yang J, Li L. Endometrial proteomic profile of patients with repeated implantation failure. Front Endocrinol (Lausanne) 2023; 14:1144393. [PMID: 37583433 PMCID: PMC10424929 DOI: 10.3389/fendo.2023.1144393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Successful embryo implantation, is the initiating step of pregnancy, relies on not only the high quality of the embryo but also the synergistic development of a healthy endometrium. Characterization and identification of biomarkers for the receptive endometrium is an effective method for increasing the probability of successful embryo implantation. Methods Endometrial tissues from 22 women with a history of recurrent implantation failure (RIF) and 19 fertile controls were collected using biopsy catheters on 7-9 days after the peak of luteinizing hormone. Differentially expressed proteins (DEPs) were identified in six patients with RIF and six fertile controls using isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics analysis. Results Two hundred and sixty-three DEPs, including proteins with multiple bioactivities, such as protein translation, mitochondrial function, oxidoreductase activity, fatty acid and amino acid metabolism, were identified from iTRAQ. Four potential biomarkers for receptive endometrium named tubulin polymerization-promoting protein family member 3 TPPP3, S100 Calcium Binding Protein A13 (S100A13), 17b-hydroxysteroid dehydrogenase 2 (HSD17B2), and alpha-2-glycoprotein 1, zinc binding (AZGP1) were further verified using ProteinSimple Wes and immunohistochemical staining in all included samples (n=22 for RIF and n=19 for controls). Of the four proteins, the protein levels of TPPP3 and HSD17B2 were significantly downregulated in the endometrium of patients with RIF. Discussion Poor endometrial receptivity is considered the main reason for the decrease in pregnancy success rates in patients suffering from RIF. iTRAQ techniques based on isotope markers can identify and quantify low abundance proteomics, and may be suitable for identifying differentially expressed proteins in RIF. This study provides novel evidence that TPPP3 and HSD17B2 may be effective targets for the diagnosis and treatment of non-receptive endometrium and RIF.
Collapse
Affiliation(s)
- Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jingwen Ma
- Department of Reproductive Medicine, Chengdu XiNan Gynecological Hospital, Chengdu, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
5
|
Oláh J, Lehotzky A, Szénási T, Berki T, Ovádi J. Modulatory Role of TPPP3 in Microtubule Organization and Its Impact on Alpha-Synuclein Pathology. Cells 2022; 11:cells11193025. [PMID: 36230985 PMCID: PMC9564178 DOI: 10.3390/cells11193025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease is characterized by locomotion deficits, dopaminergic neuronal loss and alpha-synuclein (SYN) aggregates; the Tubulin Polymerization Promoting Protein (TPPP/p25 or TPPP1) is also implicated in these processes. The moonlighting and chameleon TPPP1 modulates the dynamics/stability of the multifunctional microtubule network by promoting its acetylation and bundling. Previously, we identified the microtubule-associated TPPP3, a homologue of TPPP1 lacking its N-terminus; however, its involvement in physiological or pathological processes was not elucidated. In this work, we have shown the modulatory role of TPPP3, similarly to TPPP1, in microtubule organization, as well as its homo- and hetero-associations with TPPP1. TPPP3, in contrast to TPPP1, virtually does not bind to SYN; consequently, it does not promote SYN aggregation. Its anti-aggregative potency is achieved by counteracting the formation of the TPPP1–SYN pathological complex/aggregation leading to Parkinsonism. The interactions of TPPP3 have been determined and quantified in vitro with recombinant human proteins, cell extracts and in living human cells using different methods including bifunctional fluorescence complementation. The tight association of TPPP3 with TPPP1, but not with SYN, may ensure a unique mechanism for its inhibitory effect. TPPP3 or its selected fragments may become a leading agent for developing anti-Parkinson agents.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (J.O.); (J.O.); Tel.: +36-1-3826-742 (J.O.); +36-1-3826-714 (J.O.)
| | - Attila Lehotzky
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tibor Szénási
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: (J.O.); (J.O.); Tel.: +36-1-3826-742 (J.O.); +36-1-3826-714 (J.O.)
| |
Collapse
|
6
|
Kaushal JB, Shukla V, Sankhwar P, Jha RK, Dwivedi A. Targeted inhibition of TAK1 abrogates TGFβ1 non-canonical signaling axis, NFκB/Smad7 inhibiting human endometriotic cells proliferation and inducing cell death involving autophagy. Cytokine 2021; 148:155700. [PMID: 34560609 DOI: 10.1016/j.cyto.2021.155700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Transforming growth factor (TGFβ) is known to play a major role in establishment and maintenance of endometriosis as reported by our group earlier, the underlying mechanism remains to be explored. We deciphered the involvement of TAK1 in TGFβ1- induced cellular responses and delineated the signaling mechanism in human endometriotic cells. The endometriotic cells showed elevated expression of TGFβ1 signaling-effector molecules. TGFβ1 exposure to endometriotic cells induced the expression of the downstream target molecules indicating that TGFβ1 is implicated in the commencement ofTAK1/NFκB-p65/Smad7 cascade. The silencing of TAK1 in endometriotic cells attenuated the TGFβ1 -induced NFκB transcriptional activation and nuclear translocation of NFκB-p65 subunit. The pharmacological inhibition of NFκB by QNZ or knockdown of TAK1 reduced the expression of Smad7 and Cox2. The knockdown of TAK1 in endometriotic cells showed G1 phase cell-cycle arrest and showed low BrdU-incorporation in the presence of TGFβ1. The inhibition of TAK1 attenuated the TGFβ1 signaling activation indicating that TAK1 is a crucial mediator for TGFβ1 action in endometriotic cells. The exposure of endometriotic cells to TAK1 inhibitor, celastrol caused activation of caspase-3 and -9 that led to PARP cleavage and induced apoptosis. Simultaneously, autophagy occurred in celastrol-treated and TAK1-silenced cells as was evidenced by the formation of autophagosome and the increased expression of autophagic markers. Thus, TAK1 activation appears to protect the growth of endometriotic cells by suppressing the cell death process. Overall, our study provided the evidence that of TAK1 significant in the endometriotic cell regulation and mediates a functional cross-talk between TGFβ1 and NFκB-p65 that promotes the growth and inflammatory response in endometriotic cells.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India
| | - Pushplata Sankhwar
- Department of Obstetrics & Gynaecology, King George's Medical University, Lucknow 226001, U.P., India
| | - Rajesh K Jha
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow 226031, U.P., India.
| |
Collapse
|
7
|
Zhang H, Qi J, Guo J, Wang Y, Guan Y, Fan J, Sui L, Xu Y, Kong L, Yan B, Kong Y. Paired-like homeodomain transcription factor 2 affects endometrial cell function and embryo implantation through the Wnt/β-catenin pathway. Cell Biol Int 2021; 45:1957-1965. [PMID: 34003541 DOI: 10.1002/cbin.11636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022]
Abstract
The successful implantation of embryos is crucial for pregnancy in mammals. This complex process is inevitably dependent on the development of the endometrium. The paired-like homeodomain transcription factor 2 (PITX2) is involved in a variety of biological processes, but whether it is involved in embryo implantation has not been reported. In this study, we aimed to investigate uterine expression and regulation of PITX2 during implantation. We found that PITX2 was elevated in the human endometrium in the secretory phase. The results of the pregnant mouse models showed that PITX2 expression was spatiotemporal in mouse endometrial tissue throughout peri-implantation period, and it was significantly upregulated at the time of implantation. Interestingly, PITX2 was mainly localized to the glandular epithelium cells on D2.5-3.5 of pregnancy, while D5.5-6.5 was largely expressed in stromal cells. In vitro, PITX2 regulated endometrial cells proliferation, migration, invasion, and other functions through the Wnt/β-catenin signaling pathway. In addition, a significant decrease in the rate of embryo implantation was observed after injecting PITX2 small interfering RNA into the uterine horn. These results demonstrate the effects of PITX2 on the physiological function of endometrial cells and embryo implantation, suggesting a role in the endometrial regulatory mechanism during implantation.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Qi
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinqiu Guo
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yufei Wang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Guan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianhui Fan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuefei Xu
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Bin Yan
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Kong
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Ullah R, Naz A, Akram HS, Ullah Z, Tariq M, Mithani A, Faisal A. Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation. Stem Cell Res Ther 2020; 11:342. [PMID: 32762732 PMCID: PMC7409654 DOI: 10.1186/s13287-020-01848-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiation of mouse trophoblast stem cells (TSCs) to trophoblast giant cells (TGCs) has been widely used as a model system to study placental development and function. While several differentially expressed genes, including regulators of TSC differentiation, have been identified, a comprehensive analysis of the global expression of genes and splice variants in the two cell types has not been reported. RESULTS Here, we report ~ 7800 differentially expressed genes in TGCs compared to TSCs which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism, and various signaling pathways. We show that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identify hitherto undiscovered, cell-type specific alternative splicing events in 31 genes in the two cell types. Finally, we also report 19 novel exons in 12 genes which are expressed in both TSCs and TGCs. CONCLUSIONS Overall, our results uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ambreen Naz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hafiza Sara Akram
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- Virginia Commonwealth University, Richmond, USA
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
9
|
Ren Q, Hou Y, Li X, Fan X. Silence of TPPP3 suppresses cell proliferation, invasion and migration via inactivating NF-κB/COX2 signal pathway in breast cancer cell. Cell Biochem Funct 2020; 38:773-781. [PMID: 32515139 DOI: 10.1002/cbf.3546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Malignant phenotypes are leading causes of death in patients with breast cancer (BC). Previously, it has been proved that tubulin polymerization promoting protein 3 (TPPP3) participates in cell progressions in several human cancers. Little is known about the functions of TPPP3 in BC. Herein, we detected the expression of TPPP3 in 54 clinical BC tissues and two BC cell lines by immunohistochemistry and Western blot. CCK-8, wound healing, colony formation and Transwell assays were used to assess cell proliferation, clone formation, invasion and migration of MCF-7 and T47D cells after transfection with TPPP3 siRNA. Meanwhile, related-proteins expression was detected using Western blot. TPPP3 was found to be highly expressed in the tissues from the patients with BC. Poor outcomes were associated with the high expression of TPPP3 in all patients with BC. When MCF-7 and T47D cells receiving TPPP3 siRNA transfection, the capacities of proliferation, clone formation, invasion and migration were suppressed and the expression of MMP-2/-9 and NF-κB p65/COX2 was notably reduced. The dual-luciferase reporter assay indicated that the promoter regions of NF-κB p65 could combine to TPPP3. Overall, the present study demonstrated that TPPP3 played a significant role in BC, and its inhibition lead to the suppression of NF-κB/COX-2 signalling pathway along with the reduction of malignant phenotypes. SIGNIFICANCE OF THIS STUDY: Previously, it has been proved that tubulin polymerization promoting protein 3 (TPPP3) participates in cell progression in several human cancers. Little is known about the function of TPPP3 in BC. Our study was the first direct evidence to support the role of TPPP3 in tumorigenesis and metastasis of BC. Although the underlying mechanism has not been fully delineated, these findings suggested that TPPP3 was an important factor in the tumour progression and metastasis of BC cells and provided a molecular basis for potential therapeutic implications in the treatment of patients with BC.
Collapse
Affiliation(s)
- Qianfeng Ren
- Department of Pathology, Jincheng People's Hospital, Jincheng, China
| | - Yugui Hou
- Department of Pathology, Jincheng People's Hospital, Jincheng, China
| | - Xiaoying Li
- Department of Pathology, Jincheng People's Hospital, Jincheng, China
| | - Xiaoe Fan
- Department of Ophthalmology, Jincheng People's Hospital, Shanxi Province, China
| |
Collapse
|
10
|
Shukla V, Kaushal JB, Kumar R, Popli P, Agnihotri PK, Mitra K, Dwivedi A. Microtubule depolymerization attenuates WNT4/CaMKIIα signaling in mouse uterus and leads to implantation failure. Reproduction 2019; 158:47-59. [DOI: 10.1530/rep-18-0611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Microtubule (MT) dynamics plays a crucial role in fertilization and early embryonic development; however its involvement in uterus during embryo implantation remains unclear. Herein, we report the effect of microtubule depolymerization during embryo implantation in BALB/c mice. Intrauterine treatment with depolymerizing agent nocodazole at pre-implantation phase (D4, 07:00 h) in mice resulted into mitigation in receptivity markers viz. LIF, HoxA10, Integrin-β3, IHH, WNT4 and led to pregnancy failure. MT depolymerization in endometrial epithelial cells (EECs) also inhibited the blastocyst attachment and the adhesion. The decreased expression of MT polymerization-related proteins TPPP and α/β-tubulin in luminal and glandular epithelial cells along with the alteration in morphology of pinopodes in the luminal epithelium was observed in nocodazole receiving uteri. Nocodazole treatment also led to increased intracellular Ca+2levels in EECs, which indicated that altered Ca+2homeostasis might be responsible for implantation failure. Microtubule depolymerization inhibited WNT4 and Fz-2 interaction, thereby suppressing the downstream WNT4/CaMKIIα signaling cascades calmodulin and calcineurin which led to attenuation of NF-κB transcriptional promoter activity in EECs. MT depolymerization or CaMKIIα knockdown inhibited the transcription factor NFAT and NF-κB expression along with reduced secretion of prostaglandins PGE2 and PGF2α in mouse EECs. Overall, MT depolymerization impaired the WNT4/CaMKIIα signaling and suppressed the secretion of PGE2 and PGF2α in EECs which may be responsible for implantation failure in mice.
Collapse
|
11
|
Shukla V, Kaushal JB, Sankhwar P, Manohar M, Dwivedi A. Inhibition of TPPP3 attenuates β-catenin/NF-κB/COX-2 signaling in endometrial stromal cells and impairs decidualization. J Endocrinol 2019; 240:417-429. [PMID: 30667362 DOI: 10.1530/joe-18-0459] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Embryo implantation and decidualization are critical events that occur during early pregnancy. Decidualization is synchronized by the crosstalk of progesterone and the cAMP signaling pathway. Previously, we confirmed the role of TPPP3 during embryo implantation in mice, but the underlying role and mechanism of TPPP3 in decidualization has not yet been understood. The current study was aimed to investigate the role of TPPP3 in decidualization in vivo and in vitro. For in vivo experiments, decidual reaction was artificially induced in the uteri of BALB/c mice. TPPP3 was found to be highly expressed during decidualization, whereas in the uteri receiving TPPP3 siRNA, decidualization was suppressed and the expression of β-catenin and decidual marker prolactin was reduced. In human endometrium, TPPP3 protein was found to be predominantly expressed in the mid-secretory phase (LH+7). In the primary culture of human endometrial stromal cells (hESCs), TPPP3 siRNA knockdown inhibited stromal-to-decidual cell transition and decreased the expression of the decidualization markers prolactin and IGFBP-1. Immunofluorescence and immunoblotting experiments revealed that TPPP3 siRNA knockdown suppressed the expression of β-catenin, NF-κB and COX-2 in hESCs during decidualization. TPPP3 inhibition also decreased NF-kB nuclear accumulation in hESCs and suppressed NF-κB transcriptional promoter activity. COX-2 expression was significantly decreased in the presence of a selective NF-kB inhibitor (QNZ) implicating that NF-kB is involved in COX-2 expression in hESCs undergoing decidualization. TUNEL assay and FACS analysis revealed that TPPP3 knockdown induced apoptosis and caused loss of mitochondrial membrane potential in hESCs. The study suggested that TPPP3 plays a significant role in decidualization and its inhibition leads to the suppression of β-catenin/NF-κB/COX-2 signaling along with the induction of mitochondria-dependent apoptosis.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, India
| | - Murli Manohar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
12
|
Research advances on embryonic diapause in mammals. Anim Reprod Sci 2018; 198:1-10. [DOI: 10.1016/j.anireprosci.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|