1
|
Wang B, Yu R, Zhang Z, Peng Y, Li L. Exosomes secreted from adipose-derived stem cells inhibit M1 macrophage polarization ameliorate chronic endometritis by regulating SIRT2/NLRP3. Mol Cell Biochem 2025:10.1007/s11010-025-05283-2. [PMID: 40257720 DOI: 10.1007/s11010-025-05283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/06/2025] [Indexed: 04/22/2025]
Abstract
Chronic endometritis (CE) is a key factor in adverse pregnancy outcomes such as miscarriage and infertility. Macrophages are an important immune cell type that secrete pro-inflammatory and anti-inflammatory cytokines that are essential for maintaining endometrial function. This study aimed to investigate the key mechanisms by which exosomes derived from adipose-derived mesenchymal stem cells (ADSCs) regulate macrophage polarization through the sirtuin 2 (SIRT2)/NOD-like receptor pyrin containing 3 (NLRP3) axis and exert a protective effect on CE. Exosomes were obtained from ADSCs (ADSCs-exo) using the classical ultracentrifugation method and characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. ADSCs-exo protective effects on CE mice and RAW 264.7 cells and its related molecular mechanisms were investigated using real-time quantitative polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence, immunoprecipitation, hematoxylin and eosin staining, and immunohistochemistry. ADSCs-exo significantly inhibited M1 macrophage polarization, as evidenced by a 54% reduction in tumor necrosis factor alfa (TNF-α), a 46% reduction in interleukin 1β (IL-1β), and a 36% reduction in interleukin 6 (IL-6) levels in LPS-induced RAW264.7 cells. In vivo, ADSCs-exo treatment reduced the expression of TNF-α by 50%, IL-1β by 58%, and IL-6 by 49% in the uterine tissues of CE mice. Moreover, ADSCs-exo upregulated the expression of SIRT2, promoted the deacetylation modification of NLRP3 to inhibit NLRP3 inflammasome activation, and further suppressed M1 macrophage polarization. However, these trends were reversed after SIRT2 silencing. Our experimental results demonstrate that ADSCs-exo alleviate CE by regulating the SIRT2/NLRP3 axis to inhibit M1 macrophage polarization. This provides a potential theoretical basis for the therapeutic role of stem cells in CE.
Collapse
Affiliation(s)
- Bin Wang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Ruizhu Yu
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Zhao Zhang
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China
| | - Yuhong Peng
- Department of Reproduction, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| | - Li Li
- Department of Rheumatology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), No.78, Wandao Road, Wanjiang District, Dongguan, 523059, Guangdong Province, China.
| |
Collapse
|
2
|
Nong W, Wei H, Dou S, He L, Lin L, Lu D, Wei B, Zhang S, Huo P, Dong M. The NLRP3 activation-related signature predicts the diagnosis and indicates immune characteristics in endometriosis. J Reprod Immunol 2025; 168:104443. [PMID: 39904070 DOI: 10.1016/j.jri.2025.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Endometriosis (EMS) is a prevalent gynecological disease that leads to chronic pelvic pain and infertility in women of reproductive age. However, the underlying pathogenic genes and effective treatment for EMS remain unclear. Therefore, this study aims to identify key genes influencing the diagnosis and treatment of EMS. The GSE7307 dataset, comprising 18 EMS and 23 control samples, was obtained from the GEO database. Fourteen differential genes related to NOD-like receptor protein 3 (NLRP3) activation and EMS were extracted from endometrial samples in GSE7307 through differential analysis. GO and KEGG analyses revealed that these genes were primarily involved in the production and regulation of the cytokine IL-1β and the NOD-like receptor signaling pathway. Random Forest (RF) and support vector machine recursive feature elimination algorithms were employed to select four diagnostic markers related to NLRP3 activation (NLRP3, IL-1β, LY96, and PDIA3) for constructing the EMS diagnostic model. These markers were validated using western blotting and tested in GSE7305 and GSE23339 datasets. The AUC values demonstrated the model's robust diagnostic performance. Additionally, the infiltration of immune cells in the samples and the correlation between different immune factors and diagnostic markers were explored. These results suggest that the four diagnostic markers may also play a crucial role in EMS immunity. Finally, the DrugBank database indicated that niclosamide could be effective for NLRP3-targeted therapy. In conclusion, we identified four key diagnostic genes for EMS, and niclosamide emerged as a potential drug for NLRP3-targeted therapy in EMS.
Collapse
Affiliation(s)
- Weihua Nong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China.
| | - Huimei Wei
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China; Department of Gynecology, Maoming People's Hospital, Maoming, China.
| | - Sheng Dou
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Liqiao He
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Luping Lin
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Donglin Lu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Bixiao Wei
- Clinical Laboratory, The People's Hospital of Baise, Baise, China.
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, China.
| | - Peng Huo
- School of Public Health, Guilin Medical University, Guilin, China.
| | - Mingyou Dong
- Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project of the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China; Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
3
|
Liao Z, Monsivais D, Matzuk MM. The long road of drug development for endometriosis - Pains, gains, and hopes. J Control Release 2024; 376:429-440. [PMID: 39427778 PMCID: PMC11884332 DOI: 10.1016/j.jconrel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Endometriosis, defined by the growth of endometrial tissues outside of the uterine cavity, is a global health burden for ∼200 million women. Patients with endometriosis usually present with chronic pain and are often diagnosed with infertility. The pathogenesis of endometriosis is still an open question; however, tissue stemness and immunological and genetic factors have been extensively discussed in the establishment of endometriotic lesions. Current treatments for endometriosis can be categorized into pharmacological management of hormone levels and surgical removal of the lesions. Both approaches have limited efficacy, with recurrences often encountered; thus, there is no complete cure for the disease or its symptoms. We review the current knowledge of the etiology of endometriosis and summarize the advancement of pharmacological management of endometriosis. We also discuss our efforts in applying DNA-encoded chemistry technology (DEC-Tec) to identify bioactive molecules for the treatment of endometriosis, offering new avenues for developing non-hormonal treatment options for those patients who seek spontaneous pregnancies.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Gołąbek-Grenda A, Juzwa W, Kaczmarek M, Olejnik A. Resveratrol and Its Natural Analogs Mitigate Immune Dysregulation and Oxidative Imbalance in the Endometriosis Niche Simulated in a Co-Culture System of Endometriotic Cells and Macrophages. Nutrients 2024; 16:3483. [PMID: 39458478 PMCID: PMC11510005 DOI: 10.3390/nu16203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Inflammation and immune cell dysfunction are critical facilitators of endometriosis pathophysiology. Macrophages are renowned for stimulating lesion growth, vascularization, innervation, and pain generation. By combining macrophages and endometriotic cells, we determined if resveratrol and its natural analogs can target the immune dysregulation and oxidative imbalance in endometriosis. Methods: After treatment with compounds (5, 10, 25 µM), we evaluated the expression of key inflammatory and oxidative stress markers, cytokines release, and ROS production by applying q-PCR, ELISA, Cytometric Beads Array, and multiplexed fluorogenic staining and flow cytometry analysis with bioimaging. Results: The results showed that endometriosis-related macrophages treated with stilbenes have impaired expression of pro-inflammatory markers (IL6, IL8, IL1B, TNF, CCL2, CXCL10, PTGS2). The effect of resveratrol, pterostilbene, and piceatannol was observed, especially in reducing IL1B, CCL2, and CXCL10 genes up to 3.5-, 5-, and 7.7-fold at 25 µM, respectively. Also, with piceatannol or polydatin exposure, the IL-6 decrease was noticeable. This study reported an antioxidant effect by reducing ROS-positive cells from 96% to 48% by pterostilbene. Results from flow cytometry correlated with the transcript activation of detoxification enzymes (SOD, GPX). Conclusions: Prospects for potential therapy based on regulating the immune microenvironment and reducing the accumulation of free radicals with stilbenes application were described in the article.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Garbary 15 St., 61-866 Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland; (A.G.-G.); (W.J.)
| |
Collapse
|
5
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
6
|
Ji X, Hu Q, Yang C, Huang L, Huang Y, Deng L, Song X, Zhang Y, Wang Y. Modified Hongteng Baijiang decoction enema improves sequelae of pelvic inflammatory disease by regulating the LIF/JAK2/STAT3 pathway and gut microbiota. Immun Inflamm Dis 2024; 12:e1300. [PMID: 38896093 PMCID: PMC11186298 DOI: 10.1002/iid3.1300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The sequelae of pelvic inflammatory disease (SPID) are major causes of secondary infertility. Modified Hongteng Baijiang decoction (MHTBD) has produced positive results in the treatment of patients with chronic pelvic inflammatory disease; however, its role in SPID remains elusive. Therefore, this study clarified the role of MHTBD in SPID pathogenesis. METHODS The main components in MHTBD were analyzed by using liquid chromatography‒mass spectrometry (LC/MS). An SPID rat model was established, and the rats were treated with different doses of MHTBD (0.504 g of raw drug/kg, 1.008 g of raw drug/kg, and 2.016 g of raw drug/kg). Endometrial pinopodes were observed via scanning electron microscopy, endometrial thickness and inflammatory cell infiltration were assessed via HE staining, and the expression of estrogen receptor (ER), progesterone receptor (PR), integrin β3 (ITGB3), and CD31 in the endometrium was detected by using immunohistochemistry. Western blot analysis was used to detect the protein expression of LIF, JAK2, p-JAK2, STAT3, and p-STAT3 in the endometrium. Moreover, the changes in the gut microbiota were analyzed via 16S rRNA sequencing. RESULTS MHTBD improved endometrial receptivity, attenuated endometrial pathologic damage, reduced inflammatory cell infiltration, decreased ER and PR expression in the endometrium, and promoted the expression of LIF, p-JAK2, and p-STAT3 in the endometrium (p < .05) in SPID rats. Additionally, MHTBD treatment affected the composition of the gut microbiota in SPID rats. Furthermore, MHTBD attenuated endometrial receptivity and pathological damage in SPID rats by promoting the LIF/JAK2/STAT3 pathway. CONCLUSION MHTBD attenuates SPID in rats by promoting the LIF/JAK2/STAT3 pathway and improving the composition of the gut microbiota. MHTBD may be a valuable drug for SPID therapy.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Quan Hu
- Department of GeriatricsHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Chengcheng Yang
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Li Huang
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yefang Huang
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Linwen Deng
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xiaoqing Song
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yongqing Zhang
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Yan Wang
- Department of GynecologyHospital of Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
7
|
Niclosamide targets the dynamic progression of macrophages for the resolution of endometriosis in a mouse model. Commun Biol 2022; 5:1225. [DOI: 10.1038/s42003-022-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractDue to the vital roles of macrophages in the pathogenesis of endometriosis, targeting macrophages could be a promising therapeutic direction. Here, we investigated the efficacy of niclosamide for the resolution of a perturbed microenvironment caused by dysregulated macrophages in a mouse model of endometriosis. Single-cell transcriptomic analysis revealed the heterogeneity of macrophages including three intermediate subtypes with sharing characteristics of traditional “small” or “large” peritoneal macrophages (SPMs and LPMs) in the peritoneal cavity. Endometriosis-like lesions (ELL) enhanced the differentiation of recruited macrophages, promoted the replenishment of resident LPMs, and increased the ablation of embryo-derived LPMs, which were stepwise suppressed by niclosamide. In addition, niclosamide restored intercellular communications between macrophages and B cells. Therefore, niclosamide rescued the perturbed microenvironment in endometriosis through its fine regulations on the dynamic progression of macrophages. Validation of similar macrophage pathogenesis in patients will further promote the clinical usage of niclosamide for endometriosis treatment.
Collapse
|
8
|
Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation 2022; 128:67-82. [DOI: 10.1016/j.diff.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
9
|
Liu Y, Wang J, Zhang X. An Update on the Multifaceted Role of NF-kappaB in Endometriosis. Int J Biol Sci 2022; 18:4400-4413. [PMID: 35864971 PMCID: PMC9295070 DOI: 10.7150/ijbs.72707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Endometriosis remains a common but challenging gynecological disease among reproductive-aged women with an unclear pathogenesis and limited therapeutic options. Numerous pieces of evidence suggest that NF-κB signaling, a major regulator of inflammatory responses, is overactive in endometriotic lesions and contributes to the onset, progression, and recurrence of endometriosis. Several factors, such as estrogen, progesterone, oxidative stress, and noncoding RNAs, can regulate NF-κB signaling in endometriosis. In the present review, we discuss the mechanisms by which these factors regulate NF-κB during endometriosis progression and provide an update on the role of NF-κB in affecting endometriotic cells, peritoneal macrophages (PMs) as well as endometriosis-related symptoms, such as pain and infertility. Furthermore, the preclinical drugs for blocking NF-κB signaling in endometriosis are summarized, including plant-derived medicines, NF-κB inhibitors, other known drugs, and the potential anti-NF-κB drugs predicted through the Drug-Gene Interaction Database. The present review discusses most of the studies concerning the multifaceted role of NF-κB signaling in endometriosis and provides a summary of NF-κB-targeted treatment in detail.
Collapse
Affiliation(s)
- Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China.,Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
10
|
Gołąbek-Grenda A, Olejnik A. In vitro modeling of endometriosis and endometriotic microenvironment - Challenges and recent advances. Cell Signal 2022; 97:110375. [PMID: 35690293 DOI: 10.1016/j.cellsig.2022.110375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
Abstract
Endometriosis is a chronic condition with high prevalence in reproductive age women, defined as the growth of endometrial tissue outside the uterine cavity, most commonly on the pelvic peritoneum. The ectopic endometrial lesions exist in a unique microenvironment created by the interaction of epithelial, stromal, endothelial, glandular, and immune cell components, dominated by inflammatory, angiogenic, and endocrine signals. Current research is directed at understanding the complex microenvironment of the lesions and its relationship with different endometriosis stages, phenotypes, and disease symptoms and at the development of novel diagnostic and therapeutic concepts that minimalize the undesirable side effects of current medical management. Recreating pathophysiological cellular and molecular mechanisms and identifying clinically relevant metrics to assess drug efficacy is a great challenge for the experimental disease models. This review summarizes the complete range of available in vitro experimental systems used in endometriotic studies, which reflect the multifactorial nature of the endometriotic lesion. The article discusses the simplistic in vitro models such as primary endometrial cells and endometriotic cell lines to heterogeneous 2D co-cultures, and recently more common, 3D systems based on self-organization and controlled assembly, both in microfluidic or bioprinting methodologies. Basic research models allow studying fundamental pathological mechanisms by which menstrual endometrium adheres, invades, and establishes lesions in ectopic sites. The advanced endometriosis experimental models address the critical challenges and unsolved problems and provide an approach to drug screening and medicine discovery by mimicking the complicated behaviors of the endometriotic lesion.
Collapse
Affiliation(s)
- Agata Gołąbek-Grenda
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland.
| |
Collapse
|
11
|
MacLean JA, Hayashi K. Progesterone Actions and Resistance in Gynecological Disorders. Cells 2022; 11:647. [PMID: 35203298 PMCID: PMC8870180 DOI: 10.3390/cells11040647] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Estrogen and progesterone and their signaling mechanisms are tightly regulated to maintain a normal menstrual cycle and to support a successful pregnancy. The imbalance of estrogen and progesterone disrupts their complex regulatory mechanisms, leading to estrogen dominance and progesterone resistance. Gynecological diseases are heavily associated with dysregulated steroid hormones and can induce chronic pelvic pain, dysmenorrhea, dyspareunia, heavy bleeding, and infertility, which substantially impact the quality of women's lives. Because the menstrual cycle repeatably occurs during reproductive ages with dynamic changes and remodeling of reproductive-related tissues, these alterations can accumulate and induce chronic and recurrent conditions. This review focuses on faulty progesterone signaling mechanisms and cellular responses to progesterone in endometriosis, adenomyosis, leiomyoma (uterine fibroids), polycystic ovary syndrome (PCOS), and endometrial hyperplasia. We also summarize the association with gene mutations and steroid hormone regulation in disease progression as well as current hormonal therapies and the clinical consequences of progesterone resistance.
Collapse
Affiliation(s)
- James A. MacLean
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Kanako Hayashi
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Sekulovski N, Whorton AE, Tanaka T, Hirota Y, Shi M, MacLean JA, de Mola JRL, Groesch K, Diaz-Sylvester P, Wilson T, Hayashi K. Niclosamide suppresses macrophage-induced inflammation in endometriosis†. Biol Reprod 2021; 102:1011-1019. [PMID: 31950153 DOI: 10.1093/biolre/ioaa010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a common gynecological disease, which causes chronic pelvic pain and infertility in women of reproductive age. Due to limited efficacy of current treatment options, a critical need exists to develop new and effective treatments for endometriosis. Niclosamide is an efficacious and FDA-approved drug for the treatment of helminthosis in humans that has been used for decades. We have reported that niclosamide reduces growth and progression of endometriosis-like lesions via targeting STAT3 and NFĸB signaling in a mouse model of endometriosis. To examine the effects of niclosamide on macrophage-induced inflammation in endometriosis, a total of 29 stage III-IV endometrioma samples were used to isolate human endometriotic stromal cells (hESCs). M1 or M2 macrophages were isolated and differentiated from fresh human peripheral blood samples. Then, hESCs were cultured in conditioned media (CM) from macrophages with/without niclosamide. Niclosamide dose dependently reduced cell viability and the activity of STAT3 and NFκB signaling in hESCs. While macrophage CM stimulated cell viability in hESCs, niclosamide inhibited this stimulation. Macrophage CM stimulated the secretion of proinflammatory cytokines and chemokines from hESCs. Most of these secreted factors were inhibited by niclosamide. These results indicate that niclosamide is able to reduce macrophage-induced cell viability and cytokine/chemokine secretion in hESCs by inhibiting inflammatory mechanisms via STAT3 and/or NFκB signaling.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Tomoki Tanaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo Japan
| | - Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA
| | - Julio Ricardo Loret de Mola
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kathleen Groesch
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Paula Diaz-Sylvester
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Teresa Wilson
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA.,Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois USA.,Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois USA
| |
Collapse
|
13
|
Shi M, Sekulovski N, Whorton AE, MacLean JA, Greaves E, Hayashi K. Efficacy of niclosamide on the intra-abdominal inflammatory environment in endometriosis. FASEB J 2021; 35:e21584. [PMID: 33860549 PMCID: PMC10777336 DOI: 10.1096/fj.202002541rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
Endometriosis, a common gynecological disease, causes chronic pelvic pain and infertility in women of reproductive age. Due to the limited efficacy of current therapies, a critical need exists to develop new treatments for endometriosis. Inflammatory dysfunction, instigated by abnormal macrophage (MΦ) function, contributes to disease development and progression. However, the fundamental role of the heterogeneous population of peritoneal MΦ and their potential druggable functions is uncertain. Here we report that GATA6-expressing large peritoneal MΦ (LPM) were increased in the peritoneal cavity following lesion induction. This was associated with increased cytokine and chemokine secretion in the peritoneal fluid (PF), as well as MΦ infiltration, vascularization and innervation in endometriosis-like lesions (ELL). Niclosamide, an FDA-approved anti-helminthic drug, was effective in reducing LPM number, but not small peritoneal MΦ (SPM), in the PF. Niclosamide also inhibits aberrant inflammation in the PF, ELL, pelvic organs (uterus and vagina) and dorsal root ganglion (DRG), as well as MΦ infiltration, vascularization and innervation in the ELL. PF from ELL mice stimulated DRG outgrowth in vitro, whereas the PF from niclosamide-treated ELL mice lacked the strong stimulatory nerve growth response. These results suggest LPM induce aberrant inflammation in endometriosis promoting lesion progression and establishment of the inflammatory environment that sensitizes peripheral nociceptors in the lesions and other pelvic organs, leading to increased hyperalgesia. Our findings provide the rationale for targeting LPM and their functions with niclosamide and its efficacy in endometriosis as a new non-hormonal therapy to reduce aberrant inflammation which may ultimately diminish associated pain.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Allison E. Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
14
|
Sekulovski N, MacLean JA, Bheemireddy SR, Yu Z, Okuda H, Pru C, Plunkett KN, Matzuk M, Hayashi K. Niclosamide's potential direct targets in ovarian cancer†. Biol Reprod 2021; 105:403-412. [PMID: 33855343 DOI: 10.1093/biolre/ioab071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that niclosamide is an anti-cancer compound that is able to inhibit several signaling pathways. Although niclosamide has previously been identified by high-throughput screening platforms as a potential effective compound against several cancer types, no direct binding interactions with distinct biological molecule(s) has been established. The present study identifies key signal transduction mechanisms altered by niclosamide in ovarian cancer. Using affinity purification with a biotin-modified niclosamide derivative and mass spectrometry analysis, several RNA-binding proteins (RBPs) were identified. We chose the two RBPs, FXR1 and IGF2BP2, for further analysis. A significant correlation exists in which high-expression of FXR1 or IGF2BP2 is associated with reduced survival of ovarian cancer patients. Knockdown of FXR1 or IGF2BP2 in ovarian cancer cells resulted in significantly reduced cell viability, adhesion, and migration. Furthermore, FXR1 or IGF2BP2 deficient ovarian cancer cells exhibited reduced response to most doses of niclosamide showing greater cell viability than those with intact RBPs. These results suggest that FXR1 and IGF2BP2 are direct targets of niclosamide and could have critical activities that drive multiple oncogenic pathways in ovarian cancer.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | | | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Hiroshi Okuda
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, Japan
| | - Cindy Pru
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Kyle N Plunkett
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, USA
| | - Martin Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
15
|
Espinós JJ, Fabregues F, Fontes J, García-Velasco JA, Llácer J, Requena A, Checa MÁ, Bellver J. Impact of chronic endometritis in infertility: a SWOT analysis. Reprod Biomed Online 2021; 42:939-951. [PMID: 33736994 DOI: 10.1016/j.rbmo.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Chronic endometritis is a pathology often associated with reproductive failure, but there are still no clear recommendations on whether its inclusion in the initial study of infertile couples is necessary. In this discussion paper, based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis, the different aspects of the repercussions of chronic endometritis in fertility are evaluated. To avoid possible subjectivity in the analysis and results of this study, the researchers followed the Oxford criteria for the evaluation of evidence. The results from the evaluation of the reviewed literature seem to indicate that, pending new evidence, it would be advisable not to include chronic endometritis in the initial baseline study before assisted reproduction in order not to delay other assisted reproduction treatments. However, it would be advisable in cases of repetitive implantation failure and pregnancy loss after having undergone IVF with viable embryos and before continuing with costly reproductive processes, since results could be improved. The development of randomized studies assessing the impact of antibiotic treatment as a possible therapeutic option in infertile women with chronic endometritis, as well as the possible impact on endometrial microbiota and receptivity/implantation, would allow for the establishment of more precise clinical guidelines in this regard.
Collapse
Affiliation(s)
- Juan J Espinós
- Fertty, Barcelona, Spain, Universidad Autónoma de Barcelona, Bellaterra Barcelona, Spain.
| | - Francisco Fabregues
- Institut Clinic Gynecology, Obstetrics and Neonatology (ICGON), Hospital Clinic Barcelona, Spain
| | - Juan Fontes
- Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | - José Bellver
- Departamento de Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Valencia, Spain, Instituto Valenciano de Infertilidad (IVI-RMA) Valencia, Valencia, Spain
| | | |
Collapse
|
16
|
Machairiotis N, Vasilakaki S, Thomakos N. Inflammatory Mediators and Pain in Endometriosis: A Systematic Review. Biomedicines 2021; 9:54. [PMID: 33435569 PMCID: PMC7826862 DOI: 10.3390/biomedicines9010054] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND pain is one of the main symptoms of endometriosis and it has a deleterious effect on a patients' personal and social life. To date, the clinical management of pain includes prolonged medication use and, in some cases, surgery, both of which are disruptive events for patients. Hence, there is an urgency for the development of a sufficient non-invasive medical treatment. Inflammation is one of the causative factors of pain in endometriosis. It is well established that inflammatory mediators promote angiogenesis and interact with the sensory neurons inducing the pain signal; the threshold of pain varies and it depends on the state and location of the disease. The inhibition of inflammatory mediators' synthesis might offer a novel and effective treatment of the pain that is caused by inflammation in endometriosis. OBJECTIVES patients with endometriosis experience chronic pelvic pain, which is moderate to severe in terms of intensity. The objective of this systematic review is to highlight the inflammatory mediators that contribute to the induction of pain in endometriosis and present their biological mechanism of action. In addition, the authors aim to identify new targets for the development of novel treatments for chronic pelvic pain in patients with endometriosis. DATA SOURCES three databases (PubMed, Scopus, and Europe PMC) were searched in order to retrieve articles with the keywords 'inflammation, pain, and endometriosis' between the review period of 1 January 2016 to 31 December 2020. This review has been registered with PROSPERO (registry number: CRD42020171018). Eligibility Criteria: only original articles that presented the regulation of inflammatory mediators and related biological molecules in endometriosis and their contribution in the stimulation of pain signal were included. DATA EXTRACTION two authors independently extracted data from articles, using predefined criteria. RESULTS the database search yielded 1871 articles, which were narrowed down to 56 relevant articles of interest according to the eligibility criteria. CONCLUSIONS inflammatory factors that promote angiogenesis and neuroangiogenesis are promising targets for the treatment of inflammatory pain in endometriosis. Specifically, CXC chemokine family, chemokine fractalkine, and PGE2 have an active role in the induction of pain. Additionally, IL-1β appears to be the primary interleukin (IL), which stimulates the majority of the inflammatory factors that contribute to neuroangiogenesis along with IL-6. Finally, the role of Ninj1 and BDNF proteins needs further investigation.
Collapse
Affiliation(s)
- Nikolaos Machairiotis
- Department of Obstetrics and Gynaecology, Accredited Endometriosis Centre, Northwick Park Hospital, London North West University Healthcare, London HA1 3UJ, UK
| | - Sofia Vasilakaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece;
| | - Nikolaos Thomakos
- 1st Department of Obstetrics and Gynecology, Alexandra Hospital, Gynecologic Oncology Unit, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| |
Collapse
|
17
|
Yang Y, Liu S, Liu J, Ta N. Inhibition of TLR2/TLR4 alleviates the Neisseria gonorrhoeae infection damage in human endometrial epithelial cells via Nrf2 and NF-Kβsignaling. J Reprod Immunol 2020; 142:103192. [PMID: 32950783 DOI: 10.1016/j.jri.2020.103192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neisseria gonorrhoeae (N.g) is Gram-negative bacteria and can lead to endometritis in female. Toll-like receptors regulate immune response in various diseases. However, the roles of TLR2 and TLR4 in. Neisseria gonorrhoeae-induced infection damage in human endometrial epithelia were investigated. METHODS hEECs were infected with N.g (MOI 10 and 100) and cell viability and apoptosis were measured by CCK8 and flow cytometry assays in both infected groups with the uninfected normal hEECs as negative control. TLR2/TLR4 proteins were measured by ELISA method. Pro-inflammatory markers NLRP3, PGES (PGE2) and TNF-α were assessed by RT-qPCR (mRNA expression) and Elisa (protein concentrations). Transfection assays were performed to up- or down- regulate expression of TLR2 and TLR4 so as to study the functions of TLR2/TLR4 in. N.g-infected hEECs, followed by apoptosis and inflammation assessment. Similarly, we explored the interactions between TLR2/TLR4 and Nrf2/NF-κB/p65 by knocking down TLR2/TLR4 to detect the signaling and further regulating the signaling to evaluate TLR2/ TLR4, apoptosis and inflammation in cells. RESULTS N.g suppressed cell viabilities and induced cell apoptosis and inflammation. TLR2/TLR4 downregulation inhibited the infection damage. Nrf2 was activated while NF-κB/p65 was depleted as TLR2/ TLR4 was knocked down. Activation of Nrf2 and inhibition of NF-κB resulted in decrease of TLR2/TLR4, which could retard apoptosis and inflammation induced by N.g infection. CONCLUSION TLR2/TLR4 depletion could alleviate the N.g-infected hEECs via Nrf2/NF-kB signaling, suggesting that TLR2/TLR4 inhibitors might serve as a treatment to reduce N.g infection in human endometrial epithelia.
Collapse
Affiliation(s)
- Yun Yang
- Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nankai Sanma Road Nankai District, Tianjin, 300100, China
| | - Shasha Liu
- Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nankai Sanma Road Nankai District, Tianjin, 300100, China
| | - Jixiao Liu
- Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nankai Sanma Road Nankai District, Tianjin, 300100, China.
| | - Na Ta
- Department of Gynecology and Obstetrics, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot City, Inner Mongolia Autonomous Region, 010050, China.
| |
Collapse
|
18
|
Wei Y, Liang Y, Lin H, Dai Y, Yao S. Autonomic nervous system and inflammation interaction in endometriosis-associated pain. J Neuroinflammation 2020; 17:80. [PMID: 32145751 PMCID: PMC7060607 DOI: 10.1186/s12974-020-01752-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease. Pain is the most common symptom in endometriosis. Endometriosis-associated pain is caused by inflammation, and is related to aberrant innervation. Although the specific mechanism between endometriosis-associated pain and the interaction of aberrant innervation and inflammation remains unclear, many studies have confirmed certain correlations between them. In addition, we found that some chronic inflammatory autoimmune diseases (AIDs) such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA) share similar characteristics: the changes in dysregulation of inflammatory factors as well as the function and innervation of the autonomic nervous system (ANS). The mechanisms underlying the interaction between the ANS and inflammation have provided new advances among these disorders. Therefore, the purpose of this review is to compare the changes in inflammation and ANS in endometriosis, IBD, and RA; and to explore the role and possible mechanism of sympathetic and parasympathetic nerves in endometriosis-associated inflammation by referring to IBD and RA studies to provide some reference for further endometriosis research and treatment.
Collapse
Affiliation(s)
- Yajing Wei
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanchun Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Haishan Lin
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Yujing Dai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510089, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-Sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|