1
|
Long AB, Wilson IM, Terry TT, Van Sciver RE, Caspary T. ARL13B-Cerulean rescues Arl13b-null mouse from embryonic lethality and reveals a role for ARL13B in spermatogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644968. [PMID: 40196635 PMCID: PMC11974714 DOI: 10.1101/2025.03.24.644968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
ARL13B is a regulatory GTPase enriched in cilia, making it a popular marker for this organelle. Arl13b hnn/hnn mice lack ARL13B expression, die during midgestation, and exhibit defects in ciliogenesis. The R26Arl13b-Fucci2aR biosensor mouse line directs the expression of fluorescently tagged full-length Arl13b cDNA upon Cre recombination. To determine whether constitutive, ubiquitous expression of ARL13B-Cerulean can replace endogenous gene expression, we generated Arl13b hnn/hnn animals expressing ARL13B-Cerulean. We show that Arl13b hnn/hnn ;Arl13b-Cerulean mice survive to adulthood with no obvious physical or behavioral defects, indicating that the fluorescently tagged protein can functionally replace the endogenous protein during development. However, we observed that rescued males failed to sire offspring, revealing a role for ARL13B in spermatogenesis. This work shows that the R26Arl13b-Fucci2aR mouse contains an inducible allele of Arl13b capable of functioning in most tissues and biological processes.
Collapse
Affiliation(s)
- Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Isabella M. Wilson
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Molecular Biology, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tiffany T. Terry
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Zhang X, Xu Z, Lin Q, Gao Y, Qiu X, Li J, Xie S. Identified Candidate Genes of Semen Trait in Three Pig Breeds Through Weighted GWAS and Multi-Tissue Transcriptome Analysis. Animals (Basel) 2025; 15:438. [PMID: 39943208 PMCID: PMC11816172 DOI: 10.3390/ani15030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
High-quality semen is an essential factor for the success of artificial insemination, and revealing the genetic structure of pig semen traits helps improve semen quality. This study aimed to identify candidate genes associated with semen traits in three pig breeds (Duroc, Landrace, and Yorkshire) through weighted GWAS and multi-tissue transcriptome analysis. In this study, to identify candidate genes associated with semen traits in Duroc, Landrace, and Yorkshire, we performed weighted GWAS in four traits (sperm motility, sperm progressive motility, sperm abnormality rate, and total sperm count) using 936 pigs and multi-tissue transcriptome analysis using 34 tissues RNA-seq data of 5457 pigs from FarmGTEx. It was found that 16, 9, and 12 significant SNPs associated with semen traits were identified in Duroc, Landrace, and Yorkshire, with corresponding 7, 5, and 7 candidate genes in these three breeds, respectively, which may be involved in mammal spermatogenesis, testicular function, and male fertility. Moreover, we not only found the same candidate gene DNAI2 as in previous studies but also found two new candidate genes PNLDC1 and RSPH3, which were identified simultaneously in both Landrace and Yorkshire. By integrating the GWAS and multi-tissue transcriptome analysis results, we found that candidate genes associated with semen traits of three pig breeds were highly expressed in the testis tissue. The three genotypes of rs320928244 had significant effects on the expression of the DYNLT1 gene in the testis tissue of Landrace. These results together showed that these candidate genes were mainly related to sperm motility defects. This study helps deepen the understanding of the genetic basis of semen traits and provides a theoretical foundation for improving the semen quality of Duroc, Landrace, and Yorkshire breeds.
Collapse
Affiliation(s)
- Xiaoke Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Z.X.); (Q.L.); (Y.G.); (J.L.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Z.X.); (Q.L.); (Y.G.); (J.L.)
| | - Qing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Z.X.); (Q.L.); (Y.G.); (J.L.)
| | - Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Z.X.); (Q.L.); (Y.G.); (J.L.)
| | - Xiaotian Qiu
- National Animal Husbandry Service, Beijing 100125, China;
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Z.X.); (Q.L.); (Y.G.); (J.L.)
| | - Shuihua Xie
- Agriculture Technology Extension Centre of Guangdong Province, Guangzhou 510520, China
| |
Collapse
|
3
|
Chai P, Loustaunau DS, Zheng W, Yang J, Zhang K. DNAHX: a novel, non-motile dynein heavy chain subfamily, identified by cryo-EM endogenously. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633724. [PMID: 39896649 PMCID: PMC11785096 DOI: 10.1101/2025.01.18.633724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ciliogenesis and cilia motility rely on the coordinated actions of diverse dyneins, yet the complexity of these motor proteins in cilia has posed challenges for understanding their specific roles. Traditional evolutionary analyses often overlook key family members due to technical limitations. Here, we present a cryo-EM-based, bottom-up approach for large-scale, de novo protein identification and functional prediction of endogenous axonemal dynein complexes. This approach led to the identification of a novel dynein heavy chain subfamily (XP_041462850), designated as DNAHX, from sea urchin sperm. Phylogenetic analysis indicates that DNAHX branches from the outer-arm dynein alpha chain during evolution and is found in specific animal lineages with external fertilization. DNAHX contains multiple insertions throughout the protein, locking DNAHX permanently in a pre-powerstroke state. The AAA1 site exhibits poor conservation of essential ATPase motifs, consistent with DNAHX's non-motile nature. DNAHX also forms a heterodimeric dynein complex, which we named dynein-X, with another dynein heavy chain and accessory chains. Furthermore, a subset of dynein-X displays an autoinhibited phi particle conformation, potentially facilitating the intraflagellar transport of axonemal dyneins. Our discovery of the novel, non-motile dynein heavy chain and the dynein-X complex provides valuable insights into the evolution of dyneins and potentially their diverse cellular functions.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University
| | | | - Wan Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University
| |
Collapse
|
4
|
Liu Y, Fang Y, Dhikhirullahi O, Zhang L, Zhang Z. Intraflagellar Transport (IFT) and Sperm Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:395-409. [PMID: 40301266 DOI: 10.1007/978-3-031-82990-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Intraflagellar transport (IFT) is a conserved mechanism for cilia formation. Twenty-two IFT components form the IFT-A complex (six components) and IFT-B complex (sixteen components). Driven by kinesin and dynein motor proteins, these IFT complexes are involved in the trafficking of proteins needed for cilia assembly by anterograde transport and retrograde transport. IFT core components also associate with other proteins for cilia formation. Mutations in IFT core components result in ciliogenesis defects and human diseases, including male infertility. Sperm flagella are specialized motile cilia that not only have core axoneme structure but also possess accessory structures. IFT is required to assemble these structures to form functional sperm. This summary highlights the regulatory roles of specific IFT proteins in spermatogenesis. A deeper understanding of IFT-related mechanisms can shed light on the etiology and pathophysiology of certain male infertility cases, as well as provide insights for the development of novel male contraceptives.
Collapse
Affiliation(s)
- Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yu Fang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | | | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
5
|
Miyata H, Shimada K, Kaneda Y, Ikawa M. Development of functional spermatozoa in mammalian spermiogenesis. Development 2024; 151:dev202838. [PMID: 39036999 DOI: 10.1242/dev.202838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Infertility is a global health problem affecting one in six couples, with 50% of cases attributed to male infertility. Spermatozoa are male gametes, specialized cells that can be divided into two parts: the head and the flagellum. The head contains a vesicle called the acrosome that undergoes exocytosis and the flagellum is a motility apparatus that propels the spermatozoa forward and can be divided into two components, axonemes and accessory structures. For spermatozoa to fertilize oocytes, the acrosome and flagellum must be formed correctly. In this Review, we describe comprehensively how functional spermatozoa develop in mammals during spermiogenesis, including the formation of acrosomes, axonemes and accessory structures by focusing on analyses of mouse models.
Collapse
Affiliation(s)
- Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Guseva EA, Buev VS, Mirzaeva SE, Pletnev PI, Dontsova OA, Sergiev PV. Structure and Composition of Spermatozoa Fibrous Sheath in Diverse Groups of Metazoa. Int J Mol Sci 2024; 25:7663. [PMID: 39062905 PMCID: PMC11276731 DOI: 10.3390/ijms25147663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins.
Collapse
Affiliation(s)
- Ekaterina A. Guseva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Vitaly S. Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Faculty of Bioengeneering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sabina E. Mirzaeva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Philipp I. Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| | - Olga A. Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V. Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia; (E.A.G.); (O.A.D.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.S.B.); (S.E.M.); (P.I.P.)
| |
Collapse
|
7
|
Buranaamnuay K. Male reproductive phenotypes of genetically altered laboratory mice ( Mus musculus): a review based on pertinent literature from the last three decades. Front Vet Sci 2024; 11:1272757. [PMID: 38500604 PMCID: PMC10944935 DOI: 10.3389/fvets.2024.1272757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Laboratory mice (Mus musculus) are preferred animals for biomedical research due to the close relationship with humans in several aspects. Therefore, mice with diverse genetic traits have been generated to mimic human characteristics of interest. Some genetically altered mouse strains, on purpose or by accident, have reproductive phenotypes and/or fertility deviating from wild-type mice. The distinct reproductive phenotypes of genetically altered male mice mentioned in this paper are grouped based on reproductive organs, beginning with the brain (i.e., the hypothalamus and anterior pituitary) that regulates sexual maturity and development, the testis where male gametes and sex steroid hormones are produced, the epididymis, the accessory sex glands, and the penis which involve in sperm maturation, storage, and ejaculation. Also, distinct characteristics of mature sperm from genetically altered mice are described here. This repository will hopefully be a valuable resource for both humans, in terms of future biomedical research, and mice, in the aspect of the establishment of optimal sperm preservation protocols for individual mouse strains.
Collapse
Affiliation(s)
- Kakanang Buranaamnuay
- Molecular Agricultural Biosciences Cluster, Institute of Molecular Biosciences (MB), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
8
|
Huang D, Zuo Y, Zhang C, Sun G, Jing Y, Lei J, Ma S, Sun S, Lu H, Cai Y, Zhang W, Gao F, Peng Xiang A, Belmonte JCI, Liu GH, Qu J, Wang S. A single-nucleus transcriptomic atlas of primate testicular aging reveals exhaustion of the spermatogonial stem cell reservoir and loss of Sertoli cell homeostasis. Protein Cell 2023; 14:888-907. [PMID: 36929025 PMCID: PMC10691849 DOI: 10.1093/procel/pwac057] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
The testis is pivotal for male reproduction, and its progressive functional decline in aging is associated with infertility. However, the regulatory mechanism underlying primate testicular aging remains largely elusive. Here, we resolve the aging-related cellular and molecular alterations of primate testicular aging by establishing a single-nucleus transcriptomic atlas. Gene-expression patterns along the spermatogenesis trajectory revealed molecular programs associated with attrition of spermatogonial stem cell reservoir, disturbed meiosis and impaired spermiogenesis along the sequential continuum. Remarkably, Sertoli cell was identified as the cell type most susceptible to aging, given its deeply perturbed age-associated transcriptional profiles. Concomitantly, downregulation of the transcription factor Wilms' Tumor 1 (WT1), essential for Sertoli cell homeostasis, was associated with accelerated cellular senescence, disrupted tight junctions, and a compromised cell identity signature, which altogether may help create a hostile microenvironment for spermatogenesis. Collectively, our study depicts in-depth transcriptomic traits of non-human primate (NHP) testicular aging at single-cell resolution, providing potential diagnostic biomarkers and targets for therapeutic interventions against testicular aging and age-related male reproductive diseases.
Collapse
Grants
- 2022M712216 National Key Research and Development Program of China
- 81921006, 82125011, 92149301, 92168201, 91949209, 92049304, 92049116, 32121001, 82192863, 82122024, 82071588, 32000500, 31900523, 82201714, 82271600, 82201727 National Natural Science Foundation of China
- 11000022T000000461062 Beijing-affiliated Medical Research
- CAS-WX2021SF-0301, CAS-WX2021SF-0101, CAS-WX2022SDC-XK14 Youth Innovation Promotion Association
- CAS-WX2021SF-0301 Youth Innovation Promotion Association
Collapse
Affiliation(s)
- Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuesheng Zuo
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Chen Zhang
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Jing
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Huifen Lu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510000, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem cell and Regeneration, CAS, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| |
Collapse
|
9
|
Shimada K, Ikawa M. CCDC183 is essential for cytoplasmic invagination around the flagellum during spermiogenesis and male fertility. Development 2023; 150:dev201724. [PMID: 37882665 PMCID: PMC10629680 DOI: 10.1242/dev.201724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
Sperm flagellum plays a crucial role in male fertility. Here, we generated Ccdc183 knockout mice using the CRISPR/Cas9 system to reveal the protein function of the testis-specific protein CCDC183 in spermiogenesis. We demonstrated that the absence of CCDC183 causes male infertility with morphological and motility defects in spermatozoa. Owing to the lack of CCDC183, centrioles after elongation of axonemal microtubules do not connect the cell surface and nucleus during spermiogenesis, which causes subsequent loss of cytoplasmic invagination around the flagellum. As a result, the flagellar compartment does not form properly and cytosol-exposed axonemal microtubules collapse during spermiogenesis. In addition, ectopic localization of accessory structures, such as the fibrous sheath and outer dense fibers, and abnormal head shape as a result of abnormal sculpting by the manchette are observed in Ccdc183 knockout spermatids. Our results indicate that CCDC183 plays an essential role in cytoplasmic invagination around the flagellum to form functional spermatozoa during spermiogenesis.
Collapse
Affiliation(s)
- Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
- Regulation of Host Defense Team, Center for Infectious Disease Education and Research, Osaka University, Osaka 5650871, Japan
- Laboratory of Reproductive Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Fassad MR, Rumman N, Junger K, Patel MP, Thompson J, Goggin P, Ueffing M, Beyer T, Boldt K, Lucas JS, Mitchison HM. Defective airway intraflagellar transport underlies a combined motile and primary ciliopathy syndrome caused by IFT74 mutations. Hum Mol Genet 2023; 32:3090-3104. [PMID: 37555648 PMCID: PMC10586200 DOI: 10.1093/hmg/ddad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Ciliopathies are inherited disorders caused by defective cilia. Mutations affecting motile cilia usually cause the chronic muco-obstructive sinopulmonary disease primary ciliary dyskinesia (PCD) and are associated with laterality defects, while a broad spectrum of early developmental as well as degenerative syndromes arise from mutations affecting signalling of primary (non-motile) cilia. Cilia assembly and functioning requires intraflagellar transport (IFT) of cargos assisted by IFT-B and IFT-A adaptor complexes. Within IFT-B, the N-termini of partner proteins IFT74 and IFT81 govern tubulin transport to build the ciliary microtubular cytoskeleton. We detected a homozygous 3-kb intragenic IFT74 deletion removing the exon 2 initiation codon and 40 N-terminal amino acids in two affected siblings. Both had clinical features of PCD with bronchiectasis, but no laterality defects. They also had retinal dysplasia and abnormal bone growth, with a narrowed thorax and short ribs, shortened long bones and digits, and abnormal skull shape. This resembles short-rib thoracic dysplasia, a skeletal ciliopathy previously linked to IFT defects in primary cilia, not motile cilia. Ciliated nasal epithelial cells collected from affected individuals had reduced numbers of shortened motile cilia with disarranged microtubules, some misorientation of the basal feet, and disrupted cilia structural and IFT protein distributions. No full-length IFT74 was expressed, only truncated forms that were consistent with N-terminal deletion and inframe translation from downstream initiation codons. In affinity purification mass spectrometry, exon 2-deleted IFT74 initiated from the nearest inframe downstream methionine 41 still interacts as part of the IFT-B complex, but only with reduced interaction levels and not with all its usual IFT-B partners. We propose that this is a hypomorphic mutation with some residual protein function retained, which gives rise to a primary skeletal ciliopathy combined with defective motile cilia and PCD.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- Department of Human Genetics, Medical Research Institute, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria 21526, Egypt
| | - Nisreen Rumman
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital and Al-Quds University, East Jerusalem 91220, Palestine
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St #441, New Haven, CT 06520, United States
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Mitali P Patel
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, United Kingdom
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Marius Ueffing
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Tina Beyer
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Elfreide-Alhorn-Strasse 5-7, Tübingen 72076, Germany
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Research and Teaching Department, University College London, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
11
|
Bakey Z, Cabrera OA, Hoefele J, Antony D, Wu K, Stuck MW, Micha D, Eguether T, Smith AO, van der Wel NN, Wagner M, Strittmatter L, Beales PL, Jonassen JA, Thiffault I, Cadieux-Dion M, Boyes L, Sharif S, Tüysüz B, Dunstheimer D, Niessen HWM, Devine W, Lo CW, Mitchison HM, Schmidts M, Pazour GJ. IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans. PLoS Genet 2023; 19:e1010796. [PMID: 37315079 DOI: 10.1371/journal.pgen.1010796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 06/16/2023] Open
Abstract
Motile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs. In contrast, disruption of motile cilia function causes subfertility, disruption of the left-right body axis, and recurrent airway infections with progressive lung damage. In this work, we characterize allele specific phenotypes resulting from IFT74 dysfunction in human and mice. We identified two families carrying a deletion encompassing IFT74 exon 2, the first coding exon, resulting in a protein lacking the first 40 amino acids and two individuals carrying biallelic splice site mutations. Homozygous exon 2 deletion cases presented a ciliary chondrodysplasia with narrow thorax and progressive growth retardation along with a mucociliary clearance disorder phenotype with severely shorted cilia. Splice site variants resulted in a lethal skeletal chondrodysplasia phenotype. In mice, removal of the first 40 amino acids likewise results in a motile cilia phenotype but with little effect on primary cilia structure. Mice carrying this allele are born alive but are growth restricted and developed hydrocephaly in the first month of life. In contrast, a strong, likely null, allele of Ift74 in mouse completely blocks ciliary assembly and causes severe heart defects and midgestational lethality. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia resulting from increased mechanical stress and repair needs could account for the motile cilia phenotype observed in human and mice.
Collapse
Affiliation(s)
- Zeineb Bakey
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Oscar A Cabrera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Julia Hoefele
- Institute for Human Genetics, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Kaman Wu
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Michael W Stuck
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thibaut Eguether
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, United States of America
| | - Nicole N van der Wel
- Electron microscopy Center Amsterdam, Department of Medical Biology, VUMC, Amsterdam, The Netherlands
| | - Matias Wagner
- Institute for Human Genetics, Technical University Munich (TUM), School of Medicine, Munich, Germany
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Philip L Beales
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie A Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri, United States of America
| | - Maxime Cadieux-Dion
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri, United States of America
| | - Laura Boyes
- West Midlands Genomic Medicine Hub, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Saba Sharif
- West Midlands Genomic Medicine Hub, Birmingham Women's Hospital, Birmingham, United Kingdom
| | - Beyhan Tüysüz
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical Faculty, University-Cerrahpasa, Istanbul, Turkey
| | - Desiree Dunstheimer
- Center for Pediatrics and Adolescent Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Hans W M Niessen
- Department of Pathology, Amsterdam University Medical Center (AUMC), Amsterdam, The Netherlands
| | - William Devine
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, Pittsburgh, Pennsylvania, United States of America
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
- Human Genetics Department, Radboud University Medical Center Nijmegen and Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Biotech II, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Li Q, Wang Y, Zheng W, Guo J, Zhang S, Gong F, Lu GX, Lin G, Dai J. Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility. Hum Reprod 2023:7142890. [PMID: 37140151 DOI: 10.1093/humrep/dead079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
STUDY QUESTION What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly? SUMMARY ANSWER Deficiency in IQCN causes sperm flagellar assembly defects and male infertility. WHAT IS KNOWN ALREADY The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization. Variants in IQCN lead to total fertilization failure and defective acrosome structure phenotypes. However, the function of IQCN in sperm flagellar assembly is still unknown. STUDY DESIGN, SIZE, DURATION Fifty men with infertility were recruited from a university-affiliated center from January 2014 to October 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from the peripheral blood samples of all 50 individuals for whole-exome sequencing. The ultrastructure of the spermatozoa was assessed by transmission electron microscopy. Computer-assisted sperm analysis (CASA) was used to test the parameters of curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). An Iqcn knockout (Iqcn-/-) mouse model was generated by CRISPR-Cas9 technology to evaluate sperm motility and the ultrastructure of the flagellum. Hyperactivation and sperm fertilizing ability were assessed in a mouse model. Immunoprecipitation followed by liquid chromatography-mass spectrometry was used to detect IQCN-binding proteins. Immunofluorescence was used to validate the localization of IQCN-binding proteins. MAIN RESULTS AND THE ROLE OF CHANCE Biallelic variants in IQCN (c.3913A>T and c.3040A>G; c.2453_2454del) were identified in our cohort of infertile men. The sperm from the affected individuals showed an irregular '9 + 2' structure of the flagellum, which resulted in abnormal CASA parameters. Similar phenotypes were observed in Iqcn-/- male mice. VSL, VCL, and VAP in the sperm of Iqcn-/- male mice were significantly lower than those in Iqcn+/+ male mice. Partial peripheral doublet microtubules (DMTs) and outer dense fibers (ODFs) were absent, or a chaotic arrangement of DMTs was observed in the principal piece and end piece of the sperm flagellum. Hyperactivation and IVF ability were impaired in Iqcn-/- male mice. In addition, we investigated the causes of motility defects and identified IQCN-binding proteins including CDC42 and the intraflagellar transport protein families that regulate flagellar assembly during spermiogenesis. LIMITATIONS, REASONS FOR CAUTION More cases are needed to demonstrate the relation between IQCN variants and phenotypes. WIDER IMPLICATIONS OF THE FINDINGS Our findings expand the genetic and phenotypic spectrum of IQCN variants in causing male infertility, providing a genetic marker for sperm motility deficiency and male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81974230 and 82202053), the Changsha Municipal Natural Science Foundation (kq2202072), the Hunan Provincial Natural Science Foundation (2022JJ40658), and the Scientific Research Foundation of Reproductive and Genetic Hospital of CITIC-Xiangya (YNXM-202114 and YNXM-202201). No conflicts of interest were declared. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
| | - Yize Wang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Wei Zheng
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Guo
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Shunji Zhang
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Fei Gong
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Guang-Xiu Lu
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Ge Lin
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| | - Jing Dai
- Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning Commission, Changsha, China
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, China
| |
Collapse
|
13
|
Yap YT, Li W, Huang Q, Zhou Q, Zhang D, Sheng Y, Mladenovic-Lucas L, Yee SP, Orwig KE, Granneman JG, Williams DC, Hess RA, Toure A, Zhang Z. DNALI1 interacts with the MEIG1/PACRG complex within the manchette and is required for proper sperm flagellum assembly in mice. eLife 2023; 12:e79620. [PMID: 37083624 PMCID: PMC10185345 DOI: 10.7554/elife.79620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/12/2023] [Indexed: 04/22/2023] Open
Abstract
The manchette is a transient and unique structure present in elongating spermatids and required for proper differentiation of the germ cells during spermatogenesis. Previous work indicated that the MEIG1/PACRG complex locates in the manchette and is involved in the transport of cargos, such as SPAG16L, to build the sperm flagellum. Here, using co-immunoprecipitation and pull-down approaches in various cell systems, we established that DNALI1, an axonemal component originally cloned from Chlamydomonas reinhardtii, recruits and stabilizes PACRG and we confirm in vivo, the co-localization of DNALI1 and PACRG in the manchette by immunofluorescence of elongating murine spermatids. We next generated mice with a specific deficiency of DNALI1 in male germ cells, and observed a dramatic reduction of the sperm cells, which results in male infertility. In addition, we observed that the majority of the sperm cells exhibited abnormal morphology including misshapen heads, bent tails, enlarged midpiece, discontinuous accessory structure, emphasizing the importance of DNALI1 in sperm differentiation. Examination of testis histology confirmed impaired spermiogenesis in the mutant mice. Importantly, while testicular levels of MEIG1, PACRG, and SPAG16L proteins were unchanged in the Dnali1 mutant mice, their localization within the manchette was greatly affected, indicating that DNALI1 is required for the formation of the MEIG1/PACRG complex within the manchette. Interestingly, in contrast to MEIG1 and PACRG-deficient mice, the DNALI1-deficient mice also showed impaired sperm spermiation/individualization, suggesting additional functions beyond its involvement in the manchette structure. Overall, our work identifies DNALI1 as a protein required for sperm development.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Wei Li
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Qian Huang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - Qi Zhou
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and TechnologyWuhanChina
| | - David Zhang
- College of William and MaryWilliamsburgUnited States
| | - Yi Sheng
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Ljljiana Mladenovic-Lucas
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health CenterFarmingtonUnited States
| | - Kyle E Orwig
- Molecular Genetics and Developmental Biology Graduate Program, Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of MedicineDetroitUnited States
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North CarolinaChapel HillUnited States
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of IllinoisUrbanaUnited States
| | - Aminata Toure
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Physiology and Pathophysiology of Sperm cells, Institute for Advanced BiosciencesGrenobleFrance
| | - Zhibing Zhang
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
- Department of Obstetrics & Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
14
|
Bakey Z, Cabrera OA, Hoefele J, Antony D, Wu K, Stuck MW, Micha D, Eguether T, Smith AO, van der Wel NN, Wagner M, Strittmatter L, Beales PL, Jonassen JA, Thiffault I, Cadieux-Dion M, Boyes L, Sharif S, Tüysüz B, Dunstheimer D, Niessen HW, Devine W, Lo CW, Mitchison HM, Schmidts M, Pazour GJ. IFT74 variants cause skeletal ciliopathy and motile cilia defects in mice and humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.23.23286106. [PMID: 36865301 PMCID: PMC9980244 DOI: 10.1101/2023.02.23.23286106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Motile and non-motile cilia are critical to mammalian development and health. Assembly of these organelles depends on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). A series of human and mouse IFT74 variants were studied to understand the function of this IFT subunit. Humans missing exon 2, which codes for the first 40 residues, presented an unusual combination of ciliary chondrodysplasia and mucociliary clearance disorders while individuals carrying biallelic splice site variants developed a lethal skeletal chondrodysplasia. In mice, variants thought to remove all Ift74 function, completely block ciliary assembly and result in midgestational lethality. A mouse allele that removes the first 40 amino acids, analogous to the human exon 2 deletion, results in a motile cilia phenotype with mild skeletal abnormalities. In vitro studies suggest that the first 40 amino acids of IFT74 are dispensable for binding of other IFT subunits but are important for tubulin binding. Higher demands on tubulin transport in motile cilia compared to primary cilia could account for the motile cilia phenotype observed in human and mice.
Collapse
|
15
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Delvallée C, Dollfus H. Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies. Cold Spring Harb Perspect Med 2023; 13:a041303. [PMID: 36596648 PMCID: PMC9808547 DOI: 10.1101/cshperspect.a041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal degeneration due to photoreceptor ciliary-related proteins dysfunction accounts for more than 25% of all inherited retinal dystrophies. The cilium, being an evolutionarily conserved and ubiquitous organelle implied in many cellular functions, can be investigated by way of many models from invertebrate models to nonhuman primates, all these models have massively contributed to the pathogenesis understanding of human ciliopathies. Taking the Bardet-Biedl syndrome (BBS) as an emblematic example as well as other related syndromic ciliopathies, the contribution of a wide range of models has enabled to characterize the role of the BBS proteins in the archetypical cilium but also at the level of the connecting cilium of the photoreceptors. There are more than 24 BBS genes encoding for proteins that form different complexes such as the BBSome and the chaperone proteins complex. But how they lead to retinal degeneration remains a matter of debate with the possible accumulation of proteins in the inner segment and/or accumulation of unwanted proteins in the outer segment that cannot return in the inner segment machinery. Many BBS proteins (but not the chaperonins for instance) can be modeled in primitive organisms such as Paramecium, Chlamydomonas reinardtii, Trypanosoma brucei, and Caenorhabditis elegans These models have enabled clarifying the role of a subset of BBS proteins in the primary cilium as well as their relations with other modules such as the intraflagellar transport (IFT) module, the nephronophthisis (NPHP) module, or the Meckel-Gruber syndrome (MKS)/Joubert syndrome (JBTS) module mostly involved with the transition zone of the primary cilia. Assessing the role of the primary cilia structure of the connecting cilium of the photoreceptor cells has been very much studied by way of zebrafish modeling (Danio rerio) as well as by a plethora of mouse models. More recently, large animal models have been described for three BBS genes and one nonhuman primate model in rhesus macaque for BBS7 In completion to animal models, human cell models can now be used notably thanks to gene editing and the use of induced pluripotent stem cells (iPSCs). All these models are not only important for pathogenesis understanding but also very useful for studying therapeutic avenues, their pros and cons, especially for gene replacement therapy as well as pharmacological triggers.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| |
Collapse
|
17
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
18
|
Dai J, Li Q, Zhou Q, Zhang S, Chen J, Wang Y, Guo J, Gu Y, Gong F, Tan Y, Lu G, Zheng W, Lin G. IQCN disruption causes fertilization failure and male infertility due to manchette assembly defect. EMBO Mol Med 2022; 14:e16501. [PMID: 36321563 PMCID: PMC9728048 DOI: 10.15252/emmm.202216501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Total fertilization failure (TFF) is an important cause of infertility; however, the genetic basis of TFF caused by male factors remains to be clarified. In this study, whole-exome sequencing was firstly used to screen for genetic causes of TFF after intracytoplasmic sperm injection (ICSI), and homozygous variants in the novel gene IQ motif-containing N (IQCN) were identified in two affected individuals with abnormal acrosome structures. Then, Iqcn-knockout mice were generated by CRISPR-Cas9 technology and showed that the knockout male mice resembled the human phenotypes. Additionally, we found that IQCN regulates microtubule nucleation during manchette assembly via calmodulin and related calmodulin-binding proteins, which resulted in head deformity with aberrant oocyte activation factor PLCζ. Fortunately, ICSI with assisted oocyte activation can overcome IQCN-associate TFF and male infertility. Thus, our study firstly identified the function of IQCN, highlights the relationship between the manchette assembly and fertilization, and provides a genetic marker and a therapeutic option for male-source TFF.
Collapse
Affiliation(s)
- Jing Dai
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Qi Li
- Reproductive Medicine Center, Xiangya HospitalCentral South UniversityChangShaChina
| | - Qinwei Zhou
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Shen Zhang
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Junru Chen
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Yize Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina
| | - Jing Guo
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Yifan Gu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Guangxiu Lu
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical ScienceCentral South UniversityChangShaChina,Reproductive and Genetic Hospital of CITIC‐XIANGYAChangShaChina,Clinical Research Center for Reproduction and Genetics in Hunan ProvinceChangShaChina,Laboratory of Reproductive and Stem Cell Engineering, National Health and Family Planning CommissionChangShaChina
| |
Collapse
|
19
|
Whole-Genome Profile of Greek Patients with Teratozοοspermia: Identification of Candidate Variants and Genes. Genes (Basel) 2022; 13:genes13091606. [PMID: 36140773 PMCID: PMC9498395 DOI: 10.3390/genes13091606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/09/2023] Open
Abstract
Male infertility is a global health problem that affects a large number of couples worldwide. It can be categorized into specific subtypes, including teratozoospermia. The present study aimed to identify new variants associated with teratozoospermia in the Greek population and to explore the role of genes on which these were identified. For this reason, whole-genome sequencing (WGS) was performed on normozoospermic and teratozoospermic individuals, and after selecting only variants found in teratozoospermic men, these were further prioritized using a wide range of tools, functional and predictive algorithms, etc. An average of 600,000 variants were identified, and of them, 61 were characterized as high impact and 153 as moderate impact. Many of these are mapped in genes previously associated with male infertility, yet others are related for the first time to teratozoospermia. Furthermore, pathway enrichment analysis and Gene ontology (GO) analyses revealed the important role of the extracellular matrix in teratozoospermia. Therefore, the present study confirms the contribution of genes studied in the past to male infertility and sheds light on new molecular mechanisms by providing a list of variants and candidate genes associated with teratozoospermia in the Greek population.
Collapse
|
20
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
21
|
MEIG1 determines the manchette localization of IFT20 and IFT88, two intraflagellar transport components in male germ cells. Dev Biol 2022; 485:50-60. [PMID: 35257720 DOI: 10.1016/j.ydbio.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Sperm flagella formation is a complex process that requires cargo transport systems to deliver structural proteins for sperm flagella assembly. Two cargo transport systems, the intramanchette transport (IMT) and intraflagellar transport (IFT), have been shown to play critical roles in spermatogenesis and sperm flagella formation. IMT exists only in elongating spermatids, while IFT is responsible for delivering cargo proteins in the developing cilia/flagella. Our laboratory discovered that mouse meiosis expressed gene 1 (MEIG1), a gene essential for sperm flagella formation, is present in the manchette of elongating spermatids. IFT complex components, IFT20 and IFT88, are also present in the manchette of the elongating spermatids. Given that the three proteins have the same localization in elongating spermatids and are essential for normal spermatogenesis and sperm flagella formation, we hypothesize that they are in the same complex, which is supported by co-immunoprecipitation assay using mouse testis extracts. In the Meig1 knockout mice, neither IFT20 nor IFT88 was present in the manchette in the elongating spermatids even though their localizations were normal in spermatocytes and round spermatids. However, MEIG1 was still present in the manchette in elongating spermatids of the conditional Ift20 knockout mice. In the sucrose gradient assay, both IFT20 and IFT88 proteins drifted from higher density fractions to lighter ones in the Meig1 knockout mice. MEIG1 distribution was not changed in the conditional Ift20 knockout mice. Finally, testicular IFT20 and IFT88 protein and mRNA levels were significantly reduced in Meig1 knockout mice. Our data suggests that MEIG1 is a key protein in determining the manchette localization of certain IFT components, including IFT20 and IFT88, in male germ cells.
Collapse
|
22
|
Yogo K. Molecular basis of the morphogenesis of sperm head and tail in mice. Reprod Med Biol 2022; 21:e12466. [PMID: 35619659 PMCID: PMC9126569 DOI: 10.1002/rmb2.12466] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background The spermatozoon has a complex molecular apparatus necessary for fertilization in its head and flagellum. Recently, numerous genes that are needed to construct the molecular apparatus of spermatozoa have been identified through the analysis of genetically modified mice. Methods Based on the literature information, the molecular basis of the morphogenesis of sperm heads and flagella in mice was summarized. Main findings (Results) The molecular mechanisms of vesicular trafficking and intraflagellar transport in acrosome and flagellum formation were listed. With the development of cryo‐electron tomography and mass spectrometry techniques, the details of the axonemal structure are becoming clearer. The fine structure and the proteins needed to form the central apparatus, outer and inner dynein arms, nexin‐dynein regulatory complex, and radial spokes were described. The important components of the formation of the mitochondrial sheath, fibrous sheath, outer dense fiber, and the annulus were also described. The similarities and differences between sperm flagella and Chlamydomonas flagella/somatic cell cilia were also discussed. Conclusion The molecular mechanism of formation of the sperm head and flagellum has been clarified using the mouse as a model. These studies will help to better understand the diversity of sperm morphology and the causes of male infertility.
Collapse
Affiliation(s)
- Keiichiro Yogo
- Department of Applied Life Sciences Faculty of Agriculture Shizuoka University Shizuoka Japan
| |
Collapse
|
23
|
Zhang S, Liu Y, Huang Q, Yuan S, Liu H, Shi L, Yap YT, Li W, Zhen J, Zhang L, Hess RA, Zhang Z. Murine germ cell-specific disruption of Ift172 causes defects in spermiogenesis and male fertility. Reproduction 2021; 159:409-421. [PMID: 31958312 DOI: 10.1530/rep-17-0789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/20/2020] [Indexed: 01/21/2023]
Abstract
Intraflagellar transport (IFT) is a conserved mechanism essential for the assembly and maintenance of most eukaryotic cilia and flagella. IFT172 is a component of the IFT complex. Global disruption of mouse Ift172 gene caused typical phenotypes of ciliopathy. Mouse Ift172 gene appears to translate two major proteins; the full-length protein is highly expressed in the tissues enriched in cilia and the smaller 130 kDa one is only abundant in the testis. In male germ cells, IFT172 is highly expressed in the manchette of elongating spermatids. A germ cell-specific Ift172 mutant mice were generated, and the mutant mice did not show gross abnormalities. There was no difference in testis/body weight between the control and mutant mice, but more than half of the adult homozygous mutant males were infertile and associated with abnormally developed germ cells in the spermiogenesis phase. The cauda epididymides in mutant mice contained less developed sperm that showed significantly reduced motility, and these sperm had multiple defects in ultrastructure and bent tails. In the mutant mice, testicular expression levels of some IFT components, including IFT20, IFT27, IFT74, IFT81 and IFT140, and a central apparatus protein SPAG16L were not changed. However, expression levels of ODF2, a component of the outer dense fiber, and AKAP4, a component of fibrous sheath, and two IFT components IFT25 and IFT57 were dramatically reduced. Our findings demonstrate that IFT172 is essential for normal male fertility and spermiogenesis in mice, probably by modulating specific IFT proteins and transporting/assembling unique accessory structural proteins into spermatozoa.
Collapse
Affiliation(s)
- Shiyang Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Yunhao Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Hong Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan, USA
| | - Jingkai Zhen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
Lorès P, Kherraf ZE, Amiri-Yekta A, Whitfield M, Daneshipour A, Stouvenel L, Cazin C, Cavarocchi E, Coutton C, Llabador MA, Arnoult C, Thierry-Mieg N, Ferreux L, Patrat C, Hosseini SH, Mustapha SFB, Zouari R, Dulioust E, Ray PF, Touré A. A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet-Biedl syndrome. Hum Genet 2021; 140:1031-1043. [PMID: 33689014 DOI: 10.1007/s00439-021-02270-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Cilia and flagella are formed around an evolutionary conserved microtubule-based axoneme and are required for fluid and mucus clearance, tissue homeostasis, cell differentiation and movement. The formation and maintenance of cilia and flagella require bidirectional transit of proteins along the axonemal microtubules, a process called intraflagellar transport (IFT). In humans, IFT defects contribute to a large group of systemic diseases, called ciliopathies, which often display overlapping phenotypes. By performing exome sequencing of a cohort of 167 non-syndromic infertile men displaying multiple morphological abnormalities of the sperm flagellum (MMAF) we identified two unrelated patients carrying a homozygous missense variant adjacent to a splice donor consensus site of IFT74 (c.256G > A;p.Gly86Ser). IFT74 encodes for a core component of the IFT machinery that is essential for the anterograde transport of tubulin. We demonstrate that this missense variant affects IFT74 mRNA splicing and induces the production of at least two distinct mutant proteins with abnormal subcellular localization along the sperm flagellum. Importantly, while IFT74 deficiency was previously implicated in two cases of Bardet-Biedl syndrome, a pleiotropic ciliopathy with variable expressivity, our data indicate that this missense mutation only results in primary male infertility due to MMAF, with no other clinical features. Taken together, our data indicate that the nature of the mutation adds a level of complexity to the clinical manifestations of ciliary dysfunction, thus contributing to the expanding phenotypical spectrum of ciliopathies.
Collapse
Affiliation(s)
- Patrick Lorès
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjorie Whitfield
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Laurence Stouvenel
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Caroline Cazin
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Emma Cavarocchi
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | - Charles Coutton
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Marie-Astrid Llabador
- Laboratoire de Biologie de la Reproduction, Groupe Hospitalier Universitaire Paris Nord Val de Seine, Assistante Publique-Hôpitaux de Paris, 75018, Paris, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France
| | | | - Lucile Ferreux
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Catherine Patrat
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Seyedeh-Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003, Tunis, Tunisia
| | - Emmanuel Dulioust
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.,Laboratoire d'Histologie Embryologie, Biologie de la Reproduction, CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Pierre F Ray
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.,CHU de Grenoble, UM GI-DPI, 38000, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, Institut pour l'avancée des Biosciences, INSERM, CNRS, 38000, Grenoble, France.
| |
Collapse
|
25
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
26
|
Zhang Z. Some thoughts about intraflagellar transport in reproduction. Mol Reprod Dev 2021; 88:115-118. [PMID: 33507597 DOI: 10.1002/mrd.23451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Zhibing Zhang
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
27
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
28
|
Zhang B, Khan I, Liu C, Ma A, Khan A, Zhang Y, Zhang H, Kakakhel MBS, Zhou J, Zhang W, Li Y, Ali A, Jiang X, Murtaza G, Khan R, Zubair M, Yuan L, Khan M, Wang L, Zhang F, Wang X, Ma H, Shi Q. Novel loss-of-function variants in DNAH17 cause multiple morphological abnormalities of the sperm flagella in humans and mice. Clin Genet 2020; 99:176-186. [PMID: 33070343 DOI: 10.1111/cge.13866] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Multiple morphological abnormalities of the flagella (MMAF) is a genetically heterogeneous disorder leading to male infertility. Recent studies have revealed that DNAH17 variants are associated with MMAF, yet there is no functional evidence in support of their pathnogenicity. Here, we recruited two consanguineous families of Pakistani and Chinese origins, respectively, diagnosed with MMAF. Whole-exome sequencing identified novel homozygous DNAH17 variants, which led to loss of DNAH17 proteins, in the patients. Transmission electron microscope analyses revealed completely disorganized axonemal structure as the predominant anomaly and increased frequencies of missings of microtubule doublet(s) 4-7 in sperm flagella of patients. Similar to those found in patients, Dnah17-/- mice also displayed MMAF phenotype along with completely disorganized axonemal structures. Clusters of disorganized microtubules and outer dense fibers were observed in developing spermatids, indicating impaired sperm flagellar assembly. Besides, we also noticed many elongating spermatids with a deformed nuclear shape and abnormal step 16 spermatids that failed to spermiate, which subsequently underwent apoptosis in Dnah17-null mice. These findings present direct evidence establishing that DNAH17 is a MMAF-related gene in humans and mice, extend the clinical interpretations of DNAH17 variants, and highlight an essential and complex role of DNAH17 in spermatogenesis.
Collapse
Affiliation(s)
- Beibei Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ihsan Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Ao Ma
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Asad Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Yuanwei Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Huan Zhang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Mian Basit Shah Kakakhel
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Jianteng Zhou
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Wen Zhang
- Fudan University Pudong Medical Center, Institutes of Biomedical Sciences, The Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200011, China
| | - Yang Li
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Asim Ali
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ghulam Murtaza
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Ranjha Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Zubair
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Limin Yuan
- Analysis and test center, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Mazhar Khan
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Li Wang
- The Center of Cryo-Electron Microscopy (CCEM), Zhejiang University, Hangzhou 310058, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Xiong Wang
- Department of Reproductive Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Hui Ma
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| | - Qinghua Shi
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
29
|
Wright BR, Farquharson KA, McLennan EA, Belov K, Hogg CJ, Grueber CE. A demonstration of conservation genomics for threatened species management. Mol Ecol Resour 2020; 20:1526-1541. [DOI: 10.1111/1755-0998.13211] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Belinda R. Wright
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine A. Farquharson
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Elspeth A. McLennan
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Katherine Belov
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
| | - Catherine E. Grueber
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney NSW Australia
- San Diego Zoo Global San Diego CA USA
| |
Collapse
|
30
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
31
|
Nozawa K, Zhang Q, Miyata H, Devlin DJ, Yu Z, Oura S, Koyano T, Matsuyama M, Ikawa M, Matzuk MM. Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male mice†. Biol Reprod 2020; 103:244-253. [PMID: 32301969 PMCID: PMC7401026 DOI: 10.1093/biolre/ioaa040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Globozoospermia (sperm with an abnormally round head shape) and asthenozoospermia (defective sperm motility) are known causes of male infertility in human patients. Despite many studies, the molecular details of the globozoospermia etiology are still poorly understood. Serine-rich single-pass membrane protein 1 (Ssmem1) is a conserved testis-specific gene in mammals. In this study, we generated Ssmem1 knockout (KO) mice using the CRISPR/Cas9 system, demonstrated that Ssmem1 is essential for male fertility in mice, and found that SSMEM1 protein is expressed during spermatogenesis but not in mature sperm. The sterility of the Ssmem1 KO (null) mice is associated with globozoospermia and loss of sperm motility. To decipher the mechanism causing the phenotype, we analyzed testes with transmission electron microscopy and discovered that Ssmem1-disrupted spermatids have abnormal localization of Golgi at steps eight and nine of spermatid development. Immunofluorescence analysis with anti-Golgin-97 to label the trans-Golgi network, also showed delayed movement of the Golgi to the spermatid posterior region, which causes failure of sperm head shaping, disorganization of the cell organelles, and entrapped tails in the cytoplasmic droplet. In summary, SSMEM1 is crucial for intracellular Golgi movement to ensure proper spatiotemporal formation of the sperm head that is required for fertilization. These studies and the pathway in which SSMEM1 functions have implications for human male infertility and identifying potential targets for nonhormonal contraception.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Qian Zhang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Darius J Devlin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX.,Interdepartmental Program in Translational Biology & Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| | - Seiya Oura
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
32
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
33
|
Liu C, He X, Liu W, Yang S, Wang L, Li W, Wu H, Tang S, Ni X, Wang J, Gao Y, Tian S, Zhang L, Cong J, Zhang Z, Tan Q, Zhang J, Li H, Zhong Y, Lv M, Li J, Jin L, Cao Y, Zhang F. Bi-allelic Mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. Am J Hum Genet 2019; 105:1168-1181. [PMID: 31735294 DOI: 10.1016/j.ajhg.2019.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022] Open
Abstract
As a type of severe asthenoteratospermia, multiple morphological abnormalities of the flagella (MMAF) are characterized by the presence of immotile spermatozoa with severe flagellar malformations. MMAF is a genetically heterogeneous disorder, and the known MMAF-associated genes can only account for approximately 60% of human MMAF cases. Here we conducted whole-exome sequencing and identified bi-allelic truncating mutations of the TTC29 (tetratricopeptide repeat domain 29) gene in three (3.8%) unrelated cases from a cohort of 80 MMAF-affected Han Chinese men. TTC29 is preferentially expressed in the testis, and TTC29 protein contains the tetratricopeptide repeat domains that play an important role in cilia- and flagella-associated functions. All of the men harboring TTC29 mutations presented a typical MMAF phenotype and dramatic disorganization in axonemal and/or other peri-axonemal structures. Immunofluorescence assays of spermatozoa from men harboring TTC29 mutations showed deficiency of TTC29 and remarkably reduced staining of intraflagellar-transport-complex-B-associated proteins (TTC30A and IFT52). We also generated a Ttc29-mutated mouse model through the use of CRISPR-Cas9 technology. Remarkably, Ttc29-mutated male mice also presented reduced sperm motility, abnormal flagellar ultrastructure, and male subfertility. Furthermore, intracytoplasmic sperm injections performed for Ttc29-mutated mice and men harboring TTC29 mutations consistently acquired satisfactory outcomes. Collectively, our experimental observations in humans and mice suggest that bi-allelic mutations in TTC29, as an important genetic pathogeny, can induce MMAF-related asthenoteratospermia. Our study also provided effective guidance for clinical diagnosis and assisted reproduction treatments.
Collapse
|