1
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
2
|
Robinson D, Morgan-Kiss RM, Wang Z, Takacs-Vesbach C. Antarctic lake viromes reveal potential virus associated influences on nutrient cycling in ice-covered lakes. Front Microbiol 2024; 15:1422941. [PMID: 39318431 PMCID: PMC11421388 DOI: 10.3389/fmicb.2024.1422941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
The McMurdo Dry Valleys (MDVs) of Antarctica are a mosaic of extreme habitats which are dominated by microbial life. The MDVs include glacial melt holes, streams, lakes, and soils, which are interconnected through the transfer of energy and flux of inorganic and organic material via wind and hydrology. For the first time, we provide new data on the viral community structure and function in the MDVs through metagenomics of the planktonic and benthic mat communities of Lakes Bonney and Fryxell. Viral taxonomic diversity was compared across lakes and ecological function was investigated by characterizing auxiliary metabolic genes (AMGs) and predicting viral hosts. Our data suggest that viral communities differed between the lakes and among sites: these differences were connected to microbial host communities. AMGs were associated with the potential augmentation of multiple biogeochemical processes in host, most notably with phosphorus acquisition, organic nitrogen acquisition, sulfur oxidation, and photosynthesis. Viral genome abundances containing AMGs differed between the lakes and microbial mats, indicating site specialization. Using procrustes analysis, we also identified significant coupling between viral and bacterial communities (p = 0.001). Finally, host predictions indicate viral host preference among the assembled viromes. Collectively, our data show that: (i) viruses are uniquely distributed through the McMurdo Dry Valley lakes, (ii) their AMGs can contribute to overcoming host nutrient limitation and, (iii) viral and bacterial MDV communities are tightly coupled.
Collapse
Affiliation(s)
- David Robinson
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | | | - Zhong Wang
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | | |
Collapse
|
3
|
Hüner NPA, Ivanov AG, Szyszka-Mroz B, Savitch LV, Smith DR, Kata V. Photostasis and photosynthetic adaptation to polar life. PHOTOSYNTHESIS RESEARCH 2024; 161:51-64. [PMID: 38865029 DOI: 10.1007/s11120-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.
Collapse
Affiliation(s)
- Norman P A Hüner
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Beth Szyszka-Mroz
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - David R Smith
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Victoria Kata
- Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
4
|
Dutta A, Connors E, Trinh R, Erazo N, Dasarathy S, Ducklow HW, Steinberg DK, Schofield OM, Bowman JS. Depth drives the distribution of microbial ecological functions in the coastal western Antarctic Peninsula. Front Microbiol 2023; 14:1168507. [PMID: 37275172 PMCID: PMC10232865 DOI: 10.3389/fmicb.2023.1168507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP). We developed an in silico metagenomics pipeline (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles. A novel analytical approach based on gene coverage was used to understand the differences in microbial community functions across depth and region. Our results showed that microbial community functions were partitioned based on depth. Bacterial members harbored diverse genes for carbohydrate transformation, indicating the availability of processes to convert complex carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new perspective on the role of prokaryotes in the coastal wAP. In particular, the presence of mixotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated a metabolically flexible community, which we hypothesize enables survival under rapidly changing conditions. Overall, the study identified key microbial community functions and created a valuable sequence library collection for future Antarctic genomics research.
Collapse
Affiliation(s)
- Avishek Dutta
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Department of Geology, University of Georgia, Athens, GA, United States
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Elizabeth Connors
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Rebecca Trinh
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Natalia Erazo
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Srishti Dasarathy
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Hugh W. Ducklow
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States
| | - Deborah K. Steinberg
- Department of Biological Science, College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Oscar M. Schofield
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Anand KP, Suthindhiran K. Microbial signature and biosynthetic gene cluster profiling of poly extremophilic marine actinobacteria isolated from Vhan Island, Tamil Nadu, India. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Hudson AR, Peters DPC, Blair JM, Childers DL, Doran PT, Geil K, Gooseff M, Gross KL, Haddad NM, Pastore MA, Rudgers JA, Sala O, Seabloom EW, Shaver G. Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network. Bioscience 2022; 72:889-907. [PMID: 36034512 PMCID: PMC9405733 DOI: 10.1093/biosci/biab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
Collapse
Affiliation(s)
- Amy R Hudson
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | - Debra P C Peters
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
- US Department of Agriculture Agricultural Research Service's Jornada Experimental Range, Las Cruces , New Mexico, United States
- New Mexico State University , Las Cruces, New Mexico, United States
| | - John M Blair
- Kansas State University, Manhattan , Kansas, United States
| | | | - Peter T Doran
- Louisiana State University , Baton Rouge, Louisiana, United States
| | - Kerrie Geil
- Agricultural Research Service's Big Data Initiative and SCINet Program for Scientific Computing in Berwyn Heights , Maryland, United States
| | | | - Katherine L Gross
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | - Nick M Haddad
- W. K. Kellogg Biological Station, Vermont , United States
- Department of Plant Biology, Vermont , United States
| | | | | | - Osvaldo Sala
- Arizona State University , Tempe, Arizona, United States
- Global Drylands Center and the School of Life Sciences, Arizona State University , Tempe, Arizona, United States
| | - Eric W Seabloom
- University of Minnesota , St. Paul, Minnesota, United States
| | - Gaius Shaver
- Marine Biological Laboratory, Woods Hole , Massachusetts, United States
| |
Collapse
|
7
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
9
|
Extant Earthly Microbial Mats and Microbialites as Models for Exploration of Life in Extraterrestrial Mat Worlds. Life (Basel) 2021; 11:life11090883. [PMID: 34575032 PMCID: PMC8468739 DOI: 10.3390/life11090883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
As we expand the search for life beyond Earth, a water-dominated planet, we turn our eyes to other aquatic worlds. Microbial life found in Earth's many extreme habitats are considered useful analogs to life forms we are likely to find in extraterrestrial bodies of water. Modern-day benthic microbial mats inhabiting the low-oxygen, high-sulfur submerged sinkholes of temperate Lake Huron (Michigan, USA) and microbialites inhabiting the shallow, high-carbonate waters of subtropical Laguna Bacalar (Yucatan Peninsula, Mexico) serve as potential working models for exploration of extraterrestrial life. In Lake Huron, delicate mats comprising motile filaments of purple-pigmented cyanobacteria capable of oxygenic and anoxygenic photosynthesis and pigment-free chemosynthetic sulfur-oxidizing bacteria lie atop soft, organic-rich sediments. In Laguna Bacalar, lithification by cyanobacteria forms massive carbonate reef structures along the shoreline. Herein, we document studies of these two distinct earthly microbial mat ecosystems and ponder how similar or modified methods of study (e.g., robotics) would be applicable to prospective mat worlds in other planets and their moons (e.g., subsurface Mars and under-ice oceans of Europa). Further studies of modern-day microbial mat and microbialite ecosystems can add to the knowledge of Earth's biodiversity and guide the search for life in extraterrestrial hydrospheres.
Collapse
|
10
|
Gu Z, Liu K, Pedersen MW, Wang F, Chen Y, Zeng C, Liu Y. Community assembly processes underlying the temporal dynamics of glacial stream and lake bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143178. [PMID: 33153747 DOI: 10.1016/j.scitotenv.2020.143178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Community assembly processes are important in structuring aquatic microbial communities; however, the influence of these processes on the dynamics of bacterial communities in glacial streams and lakes remains largely unstudied. To investigate the assembly processes underlying the temporal variation of the bacterial community, we collected 50 water samples over five months in an ephemeral glacial stream and its downstream lake at the terminus of the Qiangyong glacier on the Tibetan Plateau. Using the V4 hypervariable region of the bacterial 16S rRNA gene combined with environmental measurements, such as water temperature, pH, total nitrogen (TN), dissolved organic carbon (DOC) and water conductivity, we found that temporal variation in the environmental factors promoted the shift in the proglacial stream and the lake bacterial communities. The quantification of ecological processes showed that the stream microbial communities were influenced by the ecological drift (40%) in June, then changed to homogeneous selection (40%) in July and variable selection (60%) in September, while the dynamic pattern of proglacial lake bacterioplankton was governed by homogeneous selection (≥ 50%) over the time. Overall, the dynamic of bacterial community in the proglacial stream and lake water is influenced by environmental factors, and the community composition assembly of the Qiangyong glacial stream and lake could be dynamic and primarily governed by deterministic processes.
Collapse
Affiliation(s)
- Zhengquan Gu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keshao Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China.
| | - Mikkel Winther Pedersen
- The Globe Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen C 1350, Denmark
| | - Feng Wang
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Chen
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zeng
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China
| | - Yongqin Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, China
| |
Collapse
|
11
|
Somers DJ, Strock KE, Saros JE. Environmental Controls on Microbial Diversity in Arctic Lakes of West Greenland. MICROBIAL ECOLOGY 2020; 80:60-72. [PMID: 31848649 DOI: 10.1007/s00248-019-01474-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
We assessed the microbial community structure of six arctic lakes in West Greenland and investigated relationships to lake physical and chemical characteristics. Lakes from the ice sheet region exhibited the highest species richness, while inland and plateau lakes had lower observed taxonomical diversity. Lake habitat differentiation during summer stratification appeared to alter within lake microbial community composition in only a subset of lakes, while lake variability across regions was a consistent driver of microbial community composition in these arctic lakes. Principal coordinate analysis revealed differentiation of communities along two axes: each reflecting differences in morphometric (lake surface area), geographic (latitude and distance from the ice sheet), physical lake variables (water clarity), and lakewater chemistry (dissolved organic carbon [DOC], dissolved oxygen [DO], total nitrogen [TN], and conductivity). Understanding these relationships between environmental variables and microbial communities is especially important as heterotrophic microorganisms are key to organic matter decomposition, nutrient cycling, and carbon flow through nutrient poor aquatic environments in the Arctic.
Collapse
Affiliation(s)
- Dana J Somers
- Biology Department, Dickinson College, Carlisle, PA, USA.
| | - Kristin E Strock
- Environmental Science Department, Dickinson College, Carlisle, PA, USA.
| | - Jasmine E Saros
- Climate Change Institute, School of Biology and Ecology, University of Maine, Orono, ME, USA
| |
Collapse
|
12
|
Diatom-Derived Polyunsaturated Aldehydes Are Unlikely to Influence the Microbiota Composition of Laboratory-Cultured Diatoms. Life (Basel) 2020; 10:life10030029. [PMID: 32213870 PMCID: PMC7151586 DOI: 10.3390/life10030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Diatom-derived oxylipins, including polyunsaturated aldehydes (PUA), are considered to have infochemical, allelochemical and bacteriostatic properties, with plausible roles as grazing deterrents and regulators of inter- and intraspecific competition. However, the extent and mechanisms of how PUA influence diatom–bacteria interactions remain unresolved. In this study, impacts on the diversity of the associated bacterial communities (microbiota) of two contrasting Skeletonema marinoi strains (a PUA and a non-PUA producer) were investigated under three nitrate conditions in batch culture. Further, the response of the culture microbiota was studied when spiked with PUA at ecologically relevant concentrations (86nM octadienal and 290nM heptadienal). Of the 741 identified OTUs, Proteobacteria was the most abundant phylum (62.10%), followed by Bacteroidetes (12.33%) and Firmicutes (6.11%). Escherichia/Shigella were the most abundant genera for all treatments. Similar communities were present in both spiked and non-spiked cultures suggesting they can tolerate PUA exposure at realistic concentrations. This study suggests that PUA are not major drivers of diatom–bacteria interactions in laboratory cultures.
Collapse
|
13
|
Biodiversity and Abundance of Cultured Microfungi from the Permanently Ice-Covered Lake Fryxell, Antarctica. Life (Basel) 2018; 8:life8030037. [PMID: 30200614 PMCID: PMC6160923 DOI: 10.3390/life8030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 11/25/2022] Open
Abstract
In this work, we explore the biodiversity of culturable microfungi from the water column of a permanently ice-covered lake in Taylor Valley, Antarctica from austral field seasons in 2003, 2008 and 2010, as well as from glacial stream input (2010). The results revealed that there was a sharp decline in total culturable fungal abundance between 9 and 11 m lake depth with a concurrent shift in diversity. A total of 29 species were identified from all three water sources with near even distribution between Ascomycota and Basidomycota (15 and 14 respectively). The most abundant taxa isolated from Lake Fryxell in 2008 were Glaciozyma watsonii (59%) followed by Penicillium spp. (10%), both of which were restricted to 9 m and above. Although seven species were found below the chemocline of 11 m in 2008, their abundance comprised only 10% of the total culturable fungi. The taxa of isolates collected from glacial source input streams had little overlap with those found in Lake Fryxell. The results highlight the spatial discontinuities of fungal populations that can occur within connected oligotrophic aquatic habitats.
Collapse
|
14
|
Koo H, Hakim JA, Morrow CD, Crowley MR, Andersen DT, Bej AK. Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems. Life (Basel) 2018; 8:life8030029. [PMID: 29997353 PMCID: PMC6161096 DOI: 10.3390/life8030029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
This study describes microbial community compositions, and various cold-responsive stress genes, encompassing cold-induced proteins (CIPs) and cold-associated general stress-responsive proteins (CASPs) in selected Antarctic lake water, sediment, and soil metagenomes. Overall, Proteobacteria and Bacteroidetes were the major taxa in all metagenomes. Prochlorococcus and Thiomicrospira were highly abundant in waters, while Myxococcus, Anaeromyxobacter, Haliangium, and Gloeobacter were dominant in the soil and lake sediment metagenomes. Among CIPs, genes necessary for DNA replication, translation initiation, and transcription termination were highly abundant in all metagenomes. However, genes for fatty acid desaturase (FAD) and trehalose synthase (TS) were common in the soil and lake sediment metagenomes. Interestingly, the Lake Untersee water and sediment metagenome samples contained histone-like nucleoid structuring protein (H-NS) and all genes for CIPs. As for the CASPs, high abundances of a wide range of genes for cryo- and osmo-protectants (glutamate, glycine, choline, and betaine) were identified in all metagenomes. However, genes for exopolysaccharide biosynthesis were dominant in Lake Untersee water, sediment, and other soil metagenomes. The results from this study indicate that although diverse microbial communities are present in various metagenomes, they share common cold-responsive stress genes necessary for their survival and sustenance in the extreme Antarctic conditions.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Joseph A Hakim
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Michael R Crowley
- Department of Genetics, Heflin Center Genomics Core, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Dale T Andersen
- Carl Sagan Center, SETI Institute, Mountain View, California, CA 94043, USA.
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Bowman JS, Kavanaugh MT, Doney SC, Ducklow HW. Recurrent seascape units identify key ecological processes along the western Antarctic Peninsula. GLOBAL CHANGE BIOLOGY 2018; 24:3065-3078. [PMID: 29635875 DOI: 10.1111/gcb.14161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The western Antarctic Peninsula (WAP) is a bellwether of global climate change and natural laboratory for identifying interactions between climate and ecosystems. The Palmer Long-Term Ecological Research (LTER) project has collected data on key ecological and environmental processes along the WAP since 1993. To better understand how key ecological parameters are changing across space and time, we developed a novel seascape classification approach based on in situ temperature, salinity, chlorophyll a, nitrate + nitrite, phosphate, and silicate. We anticipate that this approach will be broadly applicable to other geographical areas. Through the application of self-organizing maps (SOMs), we identified eight recurrent seascape units (SUs) in these data. These SUs have strong fidelity to known regional water masses but with an additional layer of biogeochemical detail, allowing us to identify multiple distinct nutrient profiles in several water masses. To identify the temporal and spatial distribution of these SUs, we mapped them across the Palmer LTER sampling grid via objective mapping of the original parameters. Analysis of the abundance and distribution of SUs since 1993 suggests two year types characterized by the partitioning of chlorophyll a into SUs with different spatial characteristics. By developing generalized linear models for correlated, time-lagged external drivers, we conclude that early spring sea ice conditions exert a strong influence on the distribution of chlorophyll a and nutrients along the WAP, but not necessarily the total chlorophyll a inventory. Because the distribution and density of phytoplankton biomass can have an impact on biomass transfer to the upper trophic levels, these results highlight anticipated links between the WAP marine ecosystem and climate.
Collapse
Affiliation(s)
- Jeff S Bowman
- Scripps Institution of Oceanography, La Jolla, California
| | | | | | - Hugh W Ducklow
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
| |
Collapse
|
16
|
Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ Microbiol 2017; 19:2258-2271. [PMID: 28276129 DOI: 10.1111/1462-2920.13721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Miye Kwon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | | | - Jaejin Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sang Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ok-Sun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
17
|
Bacterial community segmentation facilitates the prediction of ecosystem function along the coast of the western Antarctic Peninsula. ISME JOURNAL 2017; 11:1460-1471. [PMID: 28106879 DOI: 10.1038/ismej.2016.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/16/2016] [Indexed: 11/09/2022]
Abstract
Bacterial community structure can be combined with observations of ecophysiological data to build predictive models of microbial ecosystem function. These models are useful for understanding how function might change in response to a changing environment. Here we use five spring-summer seasons of bacterial community structure and flow cytometry data from a productive coastal site along the western Antarctic Peninsula to construct models of bacterial production (BP), an ecosystem function that heterotrophic bacteria provide. Through a novel application of emergent self-organizing maps we identified eight recurrent modes in the structure of the bacterial community. A model that combined bacterial abundance, mode and the fraction of cells belonging to the high nucleic acid population (fHNA; R2=0.730, P<0.001) best described BP. Abrupt transitions between modes during the 2013-2014 spring-summer season corresponded to rapid shifts in fHNA. We conclude that parameterizing community structure data via segmentation can yield useful insights into microbial ecosystem function and ecosystem processes.
Collapse
|
18
|
Fountain AG, Saba G, Adams B, Doran P, Fraser W, Gooseff M, Obryk M, Priscu JC, Stammerjohn S, Virginia RA. The Impact of a Large-Scale Climate Event on Antarctic Ecosystem Processes. Bioscience 2016. [DOI: 10.1093/biosci/biw110] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Obryk MK, Doran PT, Friedlaender AS, Gooseff MN, Li W, Morgan-Kiss RM, Priscu JC, Schofield O, Stammerjohn SE, Steinberg DK, Ducklow HW. Responses of Antarctic Marine and Freshwater Ecosystems to Changing Ice Conditions. Bioscience 2016. [DOI: 10.1093/biosci/biw109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
20
|
Teufel AG, Li W, Kiss AJ, Morgan-Kiss RM. Impact of nitrogen and phosphorus on phytoplankton production and bacterial community structure in two stratified Antarctic lakes: a bioassay approach. Polar Biol 2016. [DOI: 10.1007/s00300-016-2025-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|