1
|
Sinha N, Israely S, Ben Harosh O, Harel R, Dewald JP, Prut Y. Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595172. [PMID: 38826200 PMCID: PMC11142089 DOI: 10.1101/2024.05.21.595172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Patients with cerebellar damage experience various motor impairments, but the specific sequence of primary and compensatory processes that contribute to these deficits remains uncertain. To clarify this, we reversibly blocked cerebellar outflow in monkeys engaged in planar reaching tasks. This intervention led to a spatially selective reduction in hand velocity, primarily due to decreased muscle torque, especially in movements requiring high inter-joint torque coupling. When examining repeated reaches to the same target, we found that the reduced velocity resulted from both an immediate deficit and a gradually developing compensatory slowing to reduce passive inter-joint interactions. However, the slowed hand velocity did not account for the fragmented and variable movement trajectories observed during the cerebellar block. Our findings indicate that cerebellar impairment results in motor deficits due to both inadequate muscle torque and an altered compensatory control strategy for managing impaired limb dynamics. Additionally, impaired motor control elevates noise, which cannot be entirely mitigated through compensatory strategies.
Collapse
|
2
|
Cao D, Wilkinson MGT, Bastian AJ, Cowan NJ. Feedback and feedforward control are differentially delayed in cerebellar ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637327. [PMID: 39990312 PMCID: PMC11844357 DOI: 10.1101/2025.02.09.637327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Damage to the cerebellum can cause ataxia, a condition associated with impaired movement coordination. Typically, coordinated movement relies on a combination of anticipatory mechanisms (specifically, feedforward control) and corrective mechanisms (embodied by feedback control). Here, we show that in 3D reaching in VR, ataxia preserves the visuomotor feedforward and feedback control structure compared to the control group. However, the ataxia group exhibits a small increase in feedback delay (~ 20 ms) and a substantial increase in feedforward delay (~ 70 ms) together with a reduced feedback gain (~ 25% lower). Our results suggest that the feedforward and feedback pathways remain largely intact in ataxia, but that time delay deficits and temoral discoordination amongst these control pathways may contribute to the disorder. We also find that providing a preview-analogous to driving on a clear night and seeing the road ahead vs. driving in the fog-improves tracking performance in the ataxia group, although the control group was significantly better able to exploit this preview information. Overall, our results indicate that the feedforward control and preview utilization are relatively well-preserved in individuals with cerebellar ataxia, and that preview could potentially be leveraged to enhance the feedforward performance of those with ataxia.
Collapse
|
3
|
Kim S, Min K, Kim Y, Igarashi S, Kim D, Kim H, Lee J. Analysis of Differences in Single-Joint Movement of Dominant and Non-Dominant Hands for Human-like Robotic Control. SENSORS (BASEL, SWITZERLAND) 2023; 23:9443. [PMID: 38067818 PMCID: PMC10708805 DOI: 10.3390/s23239443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Although several previous studies on laterality of upper limb motor control have reported functional differences, this conclusion has not been agreed upon. It may be conjectured that the inconsistent results were caused because upper limb motor control was observed in multi-joint tasks that could generate different inter-joint motor coordination for each arm. Resolving this, we employed a single wrist joint tracking task to reduce the effect of multi-joint dynamics and examined the differences between the dominant and non-dominant hands in terms of motor control. Specifically, we defined two sections to induce feedback (FB) and feedforward (FF) controls: the first section involved a visible target for FB control, and the other section involved an invisible target for FF control. We examined the differences in the position errors of the tracer and the target. Fourteen healthy participants performed the task. As a result, we found that during FB control, the dominant hand performed better than the non-dominant hand, while we did not observe significant differences in FF control. In other words, in a single-joint movement that is not under the influence of the multi-joint coordination, only FB control showed laterality and not FF control. Furthermore, we confirmed that the dominant hand outperformed the non-dominant hand in terms of responding to situations that required a change in control strategy.
Collapse
Affiliation(s)
- Samyoung Kim
- Division of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi 923-1292, Japan;
| | - Kyuengbo Min
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan;
| | - Yeongdae Kim
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, CO 80204, USA;
| | - Shigeyuki Igarashi
- Division of Health Sciences, Komatsu University, Komatsu 923-0961, Japan;
| | - Daeyoung Kim
- Department of Clinical Engineering, Kanagawa Institute of Technology, Atsugi 243-0292, Japan;
| | - Hyeonseok Kim
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA
| | - Jongho Lee
- Department of Clinical Engineering, Komatsu University, Komatsu 923-0961, Japan
| |
Collapse
|
4
|
Boven E, Pemberton J, Chadderton P, Apps R, Costa RP. Cerebro-cerebellar networks facilitate learning through feedback decoupling. Nat Commun 2023; 14:51. [PMID: 36599827 DOI: 10.1038/s41467-022-35658-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Behavioural feedback is critical for learning in the cerebral cortex. However, such feedback is often not readily available. How the cerebral cortex learns efficiently despite the sparse nature of feedback remains unclear. Inspired by recent deep learning algorithms, we introduce a systems-level computational model of cerebro-cerebellar interactions. In this model a cerebral recurrent network receives feedback predictions from a cerebellar network, thereby decoupling learning in cerebral networks from future feedback. When trained in a simple sensorimotor task the model shows faster learning and reduced dysmetria-like behaviours, in line with the widely observed functional impact of the cerebellum. Next, we demonstrate that these results generalise to more complex motor and cognitive tasks. Finally, the model makes several experimentally testable predictions regarding cerebro-cerebellar task-specific representations over learning, task-specific benefits of cerebellar predictions and the differential impact of cerebellar and inferior olive lesions. Overall, our work offers a theoretical framework of cerebro-cerebellar networks as feedback decoupling machines.
Collapse
Affiliation(s)
- Ellen Boven
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Joseph Pemberton
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK
| | - Paul Chadderton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Rui Ponte Costa
- Bristol Computational Neuroscience Unit, Intelligent Systems Labs, SCEEM, Faculty of Engineering, University of Bristol, Bristol, BS8 1TH, UK.
| |
Collapse
|
5
|
Smoothness metrics for reaching performance after stroke. Part 1: which one to choose? J Neuroeng Rehabil 2021; 18:154. [PMID: 34702281 PMCID: PMC8549250 DOI: 10.1186/s12984-021-00949-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background Smoothness is commonly used for measuring movement quality of the upper paretic limb during reaching tasks after stroke. Many different smoothness metrics have been used in stroke research, but a ‘valid’ metric has not been identified. A systematic review and subsequent rigorous analysis of smoothness metrics used in stroke research, in terms of their mathematical definitions and response to simulated perturbations, is needed to conclude whether they are valid for measuring smoothness. Our objective was to provide a recommendation for metrics that reflect smoothness after stroke based on: (1) a systematic review of smoothness metrics for reaching used in stroke research, (2) the mathematical description of the metrics, and (3) the response of metrics to simulated changes associated with smoothness deficits in the reaching profile.
Methods The systematic review was performed by screening electronic databases using combined keyword groups Stroke, Reaching and Smoothness. Subsequently, each metric identified was assessed with mathematical criteria regarding smoothness: (a) being dimensionless, (b) being reproducible, (c) being based on rate of change of position, and (d) not being a linear transform of other smoothness metrics. The resulting metrics were tested for their response to simulated changes in reaching using models of velocity profiles with varying reaching distances and durations, harmonic disturbances, noise, and sub-movements. Two reaching tasks were simulated; reach-to-point and reach-to-grasp. The metrics that responded as expected in all simulation analyses were considered to be valid. Results The systematic review identified 32 different smoothness metrics, 17 of which were excluded based on mathematical criteria, and 13 more as they did not respond as expected in all simulation analyses. Eventually, we found that, for reach-to-point and reach-to-grasp movements, only Spectral Arc Length (SPARC) was found to be a valid metric. Conclusions Based on this systematic review and simulation analyses, we recommend the use of SPARC as a valid smoothness metric in both reach-to-point and reach-to-grasp tasks of the upper limb after stroke. However, further research is needed to understand the time course of smoothness measured with SPARC for the upper limb early post stroke, preferably in longitudinal studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00949-6.
Collapse
|
6
|
Visuomotor control of intermittent circular tracking movements with visually guided orbits in 3D VR environment. PLoS One 2021; 16:e0251371. [PMID: 34043647 PMCID: PMC8158929 DOI: 10.1371/journal.pone.0251371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
The analysis of visually guided tracking movements is important to the understanding of imitation exercises and movements carried out using the human visuomotor control system. In this study, we analyzed the characteristics of visuomotor control in the intermittent performance of circular tracking movements by applying a system that can differentiate between the conditions of invisible and visible orbits and visible and invisible target phases implemented in a 3D VR space. By applying visuomotor control based on velocity control, our study participants were able to track objects with visible orbits with a precision of approximately 1.25 times greater than they could track objects with invisible orbits. We confirmed that position information is an important parameter related to intermittent motion at low speeds (below 0.5 Hz) and that tracked target velocity information could be obtained more precisely than position information at speeds above 0.5 Hz. Our results revealed that the feedforward (FF) control corresponding to velocity was delayed under the visible-orbit condition at speeds over 0.5 Hz, suggesting that, in carrying out imitation exercises and movements, the use of visually presented 3D guides can interfere with exercise learning and, therefore, that the effects of their use should be carefully considered.
Collapse
|
7
|
Paparella G, Fasano A, Hallett M, Berardelli A, Bologna M. Emerging concepts on bradykinesia in non-parkinsonian conditions. Eur J Neurol 2021; 28:2403-2422. [PMID: 33793037 DOI: 10.1111/ene.14851] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Bradykinesia is one of the cardinal motor symptoms of Parkinson's disease. However, clinical and experimental studies indicate that bradykinesia may also be observed in various neurological diseases not primarily characterized by parkinsonism. These conditions include hyperkinetic movement disorders, such as dystonia, chorea, and essential tremor. Bradykinesia may also be observed in patients with neurological conditions that are not seen as "movement disorders," including those characterized by the involvement of the cerebellum and corticospinal system, dementia, multiple sclerosis, and psychiatric disorders. METHODS We reviewed clinical reports and experimental studies on bradykinesia in non-parkinsonian conditions and discussed the major findings. RESULTS Bradykinesia is a common motor abnormality in non-parkinsonian conditions. From a pathophysiological standpoint, bradykinesia in neurological conditions not primarily characterized by parkinsonism may be explained by brain network dysfunction. CONCLUSION In addition to the pathophysiological implications, the present paper highlights important terminological issues and the need for a new, more accurate, and more widely used definition of bradykinesia in the context of movement disorders and other neurological conditions.
Collapse
Affiliation(s)
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Therrien AS, Statton MA, Bastian AJ. Reinforcement Signaling Can Be Used to Reduce Elements of Cerebellar Reaching Ataxia. CEREBELLUM (LONDON, ENGLAND) 2021; 20:62-73. [PMID: 32880848 PMCID: PMC7927977 DOI: 10.1007/s12311-020-01183-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Damage to the cerebellum causes a disabling movement disorder called ataxia, which is characterized by poorly coordinated movement. Arm ataxia causes dysmetria (over- or under-shooting of targets) with many corrective movements. As a result, people with cerebellar damage exhibit reaching movements with highly irregular and prolonged movement paths. Cerebellar patients are also impaired in error-based motor learning, which may impede rehabilitation interventions. However, we have recently shown that cerebellar patients can learn a simple reaching task using a binary reinforcement paradigm, in which feedback is based on participants' mean performance. Here, we present a pilot study that examined whether patients with cerebellar damage can use this reinforcement training to learn a more complex motor task-to decrease the path length of their reaches. We compared binary reinforcement training to a control condition of massed practice without reinforcement feedback. In both conditions, participants made target-directed reaches in 3-dimensional space while vision of their movement was occluded. In the reinforcement training condition, reaches with a path length below participants' mean were reinforced with an auditory stimulus at reach endpoint. We found that patients were able to use reinforcement signaling to significantly reduce their reach paths. Massed practice produced no systematic change in patients' reach performance. Overall, our results suggest that binary reinforcement training can improve reaching movements in patients with cerebellar damage and the benefit cannot be attributed solely to repetition or reduced visual control.
Collapse
Affiliation(s)
- Amanda S Therrien
- Moss Rehabilitation Research Institute, 50 Township Line Rd., Elkins Park, PA, 19027, USA.
| | | | - Amy J Bastian
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Jo H, Choi W, Lee G, Park W, Kim J. Analysis of Visuo Motor Control between Dominant Hand and Non-Dominant Hand for Effective Human-Robot Collaboration. SENSORS 2020; 20:s20216368. [PMID: 33171652 PMCID: PMC7664673 DOI: 10.3390/s20216368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
The human-in-the-loop technology requires studies on sensory-motor characteristics of each hand for an effective human-robot collaboration. This study aims to investigate the differences in visuomotor control between the dominant (DH) and non-dominant hands in tracking a target in the three-dimensional space. We compared the circular tracking performances of the hands on the frontal plane of the virtual reality space in terms of radial position error (ΔR), phase error (Δθ), acceleration error (Δa), and dimensionless squared jerk (DSJ) at four different speeds for 30 subjects. ΔR and Δθ significantly differed at relatively high speeds (ΔR: 0.5 Hz; Δθ: 0.5, 0.75 Hz), with maximum values of ≤1% compared to the target trajectory radius. DSJ significantly differed only at low speeds (0.125, 0.25 Hz), whereas Δa significantly differed at all speeds. In summary, the feedback-control mechanism of the DH has a wider range of speed control capability and is efficient according to an energy saving model. The central nervous system (CNS) uses different models for the two hands, which react dissimilarly. Despite the precise control of the DH, both hands exhibited dependences on limb kinematic properties at high speeds (0.75 Hz). Thus, the CNS uses a different strategy according to the model for optimal results.
Collapse
Affiliation(s)
- Hanjin Jo
- Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Korea; (H.J.); (G.L.); (W.P.)
| | - Woong Choi
- Department of Information and Computer Engineering, National Institute of Technology, Gunma College, Maebashi 371–8530, Japan
- Correspondence: (W.C.); (J.K.)
| | - Geonhui Lee
- Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Korea; (H.J.); (G.L.); (W.P.)
| | - Wookhyun Park
- Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Korea; (H.J.); (G.L.); (W.P.)
| | - Jaehyo Kim
- Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Korea; (H.J.); (G.L.); (W.P.)
- Correspondence: (W.C.); (J.K.)
| |
Collapse
|
10
|
Zimmet AM, Cao D, Bastian AJ, Cowan NJ. Cerebellar patients have intact feedback control that can be leveraged to improve reaching. eLife 2020; 9:53246. [PMID: 33025903 PMCID: PMC7577735 DOI: 10.7554/elife.53246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
It is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here, we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.
Collapse
Affiliation(s)
- Amanda M Zimmet
- Kennedy Krieger Institute, Baltimore, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Di Cao
- Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States
| | - Amy J Bastian
- Kennedy Krieger Institute, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Noah J Cowan
- Department of Mechanical Engineering and Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
11
|
Wissing MBG, Golenia L, Smith J, Bongers RM. Adjustments in end-effector trajectory and underlying joint angle synergies after a target switch: Order of adjustment is flexible. PLoS One 2020; 15:e0238561. [PMID: 32886715 PMCID: PMC7473537 DOI: 10.1371/journal.pone.0238561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Goal-directed reaching adapts to meet changing task requirements after unexpected perturbations such as a sudden switch of target location. Literature on adaptive behavior using a target switch has primarily focused on adjustments of the end-effector trajectory, addressing proposed feedback and feedforward processes in planning adjusted actions. Starting from a dynamical systems approach to motor coordination, the current paper focusses on coordination of joint angles after a target switch, which has received little attention in the literature. We argue that joint angles are coordinated in synergies, temporary task-specific units emerging from interactions amongst task, organism, and environmental constraints. We asked whether after a target switch: i) joint angles were coordinated in synergies, ii) joint angles were coordinated in a different synergy than the synergy used when moving to the original target, and iii) synergies or end-effector trajectory was adjusted first. Participants (N = 12) performed manual reaching movements toward a target on a table (stationary target trials), where in some trials the target could unexpectedly switch to a new location (switch trials). Results showed that the end-effector curved to the switched target. Joint angles were synergistically organized as shown by the large extent of co-variation based on Uncontrolled Manifold analyses. At the end of the target switch movement, joint angle configurations differed from the joint angle configurations used to move to the original stationary target. Hence, we argue, a new synergy emerged after the target switch. The order of adjustment in the synergies and in the end-effector was flexible within participants, though most often synergies were adjusted first. These findings support the two-step framework of Kay (1988) to understand the coordination of abundant degrees of freedom and to explain adaptive actions. The flexibility in the order of adjustments of synergies suggests that the coordination of DOF emerges from self-organization.
Collapse
Affiliation(s)
- Maureen B. G. Wissing
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Golenia
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- MEDIAN Unternehmensgruppe, Medicine and Quality Management, Berlin, Germany
| | - Joanne Smith
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Raoul M. Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Analysis of Control Characteristics between Dominant and Non-Dominant Hands by Transient Responses of Circular Tracking Movements in 3D Virtual Reality Space. SENSORS 2020; 20:s20123477. [PMID: 32575627 PMCID: PMC7348742 DOI: 10.3390/s20123477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/05/2022]
Abstract
Human movement is a controlled result of the sensory-motor system, and the motor control mechanism has been studied through diverse movements. The present study examined control characteristics of dominant and non-dominant hands by analyzing the transient responses of circular tracking movements in 3D virtual reality space. A visual target rotated in a circular trajectory at four different speeds, and 29 participants tracked the target with their hands. The position of each subject’s hand was measured, and the following three parameters were investigated: normalized initial peak velocity (IPV2), initial peak time (IPT2), and time delay (TD2). The IPV2 of both hands decreased as target speed increased. The results of IPT2 revealed that the dominant hand reached its peak velocity 0.0423 s earlier than the non-dominant hand, regardless of target speed. The TD2 of the hands diminished by 0.0218 s on average as target speed increased, but the dominant hand statistically revealed a 0.0417-s shorter TD2 than the non-dominant hand. Velocity-control performances from the IPV2 and IPT2 suggested that an identical internal model controls movement in both hands, whereas the dominant hand is likely more experienced than the non-dominant hand in reacting to neural commands, resulting in better reactivity in the movement task.
Collapse
|
13
|
Sano N, Nakayama Y, Ishida H, Chiken S, Hoshi E, Nambu A, Nishimura Y. Cerebellar outputs contribute to spontaneous and movement-related activity in the motor cortex of monkeys. Neurosci Res 2020; 164:10-21. [PMID: 32294524 DOI: 10.1016/j.neures.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Cerebellar outputs originate from the dentate nucleus (DN), project to the primary motor cortex (M1) via the motor thalamus, control M1 activity, and play an essential role in coordinated movements. However, it is unclear when and how the cerebellar outputs contribute to M1 activity. To address this question, we examined the response of M1 neurons to electrical stimulation of the DN and M1 activity during performance of arm-reaching tasks. Based on response patterns to DN stimulation, M1 neurons were classified into facilitation-, suppression-, and no-response-types. During tasks, not only facilitation- and suppression-type M1 neurons, but also no response-type M1 neurons increased or decreased their firing rates in relation to arm reaching movements. However, the firing rates of facilitation- and suppression-type neurons were higher than those of no-response-type neurons during both inter-trial intervals and arm reaching movements. These results imply that cerebellar outputs contribute to both spontaneous and movement-related activity in the M1, which help to maintain muscle tones and execute coordinated movements, although other inputs also contribute to movement-related activity. Pharmacological inactivation of the DN supports this notion, in that DN inactivation reduced both spontaneous firing rates and movement-related activity in the M1.
Collapse
Affiliation(s)
- Nobuya Sano
- Frontal Lobe Function Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan; Neural Prosthetics Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan; Japan Society for Promotion of Science, Chiyoda, 102-0083, Tokyo, Japan
| | - Yoshihisa Nakayama
- Frontal Lobe Function Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan; Neural Prosthetics Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan
| | - Hiroaki Ishida
- Frontal Lobe Function Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan; Neural Prosthetics Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Aichi, Japan
| | - Eiji Hoshi
- Frontal Lobe Function Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan.
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Aichi, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Aichi, Japan.
| | - Yukio Nishimura
- Neural Prosthetics Project, Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Setagaya, 156-8506, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| |
Collapse
|
14
|
Characteristic of Motor Control in Three-Dimensional Circular Tracking Movements during Monocular Vision. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3867138. [PMID: 31815133 PMCID: PMC6878803 DOI: 10.1155/2019/3867138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
Abstract
Analysis of visually guided tracking movements is an important component of understanding human visuomotor control system. The aim of our study was to investigate the effects of different target speeds and different circular tracking planes, which provide different visual feedback of depth information, on temporal and spatial tracking accuracy. In this study, we analyze motor control characteristic of circular tracking movements during monocular vision in three-dimensional space using a virtual reality system. Three parameters in polar coordinates were analyzed: ΔR, the difference in the distance from the fixed pole; Δθ, the difference in the position angle; and Δω, the difference in the angular velocity. We compare the accuracy of visually guided circular tracking movements during monocular vision in two conditions: (1) movement in the frontal plane relative to the subject that requires less depth information and (2) movement in the sagittal plane relative to the subject that requires more depth information. We also examine differences in motor control at four different target speeds. The results show that depth information affects both spatial and temporal accuracy of circular tracking movement, whereas target speed only affects temporal accuracy of circular tracking movement. This suggests that different strategies of feedforward and feedback controls are performed in the tracking of movements.
Collapse
|
15
|
Pourazar M, Mirakhori F, Hemayattalab R, Bagherzadeh F. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Dev Neurorehabil 2018; 21:515-520. [PMID: 28933977 DOI: 10.1080/17518423.2017.1368730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the training effects of Virtual Reality (VR) intervention program on reaction time in children with cerebral palsy. METHODS Thirty boys ranging from 7 to 12 years (mean = 11.20; SD = .76) were selected by available sampling method and randomly divided into the experimental and control groups. Simple Reaction Time (SRT) and Discriminative Reaction Time (DRT) were measured at baseline and 1 day after completion of VR intervention. Multivariate analysis of variance (MANOVA) and paired sample t-test were performed to analyze the results. RESULTS MANOVA test revealed significant effects for group in posttest phase, with lower reaction time in both measures for the experimental group. Based on paired sample t-test results, both RT measures significantly improved in experimental group following the VR intervention program. CONCLUSIONS This paper proposes VR as a promising tool into the rehabilitation process for improving reaction time in children with cerebral palsy.
Collapse
Affiliation(s)
- Morteza Pourazar
- a Department of Physical Education and Sport Sciences , University of Tehran , Tehran , Iran
| | - Fatemeh Mirakhori
- a Department of Physical Education and Sport Sciences , University of Tehran , Tehran , Iran
| | - Rasool Hemayattalab
- a Department of Physical Education and Sport Sciences , University of Tehran , Tehran , Iran
| | - Fazlolah Bagherzadeh
- a Department of Physical Education and Sport Sciences , University of Tehran , Tehran , Iran
| |
Collapse
|
16
|
Gulde P, Hermsdörfer J. Smoothness Metrics in Complex Movement Tasks. Front Neurol 2018; 9:615. [PMID: 30258393 PMCID: PMC6143727 DOI: 10.3389/fneur.2018.00615] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/09/2018] [Indexed: 12/02/2022] Open
Abstract
Smoothness is a main characteristic of goal-directed human movements. The suitability of approaches quantifying movement smoothness is dependent on the analyzed signal's structure. Recently, activities of daily living (ADL) received strong interest in research on aging and neurorehabilitation. Such tasks have complex signal structures and kinematic parameters need to be adapted. In the present study we examined four different approaches to quantify movement smoothness in ADL. We tested the appropriateness of these approaches, namely the number of velocity peaks per meter (NoP), the spectral arc length (SAL), the speed metric (SM) and the log dimensionless jerk (LDJ), by comparing movement signals from eight healthy elderly (67.1a ± 7.1a) with eight healthy young (26.9a ± 2.1a) participants performing an activity of daily living (making a cup of tea). All approaches were able to identify group differences in smoothness (Cohen's d NoP = 2.53, SAL = 1.95, SM = 1.69, LDJ = 4.19), three revealed high to very high sensitivity (z-scores: NoP = 1.96 ± 0.55, SAL = 1.60 ± 0.64, SM = 3.41 ± 3.03, LDJ = 5.28 ± 1.52), three showed low within-group variance (NoP = 0.72, SAL = 0.60, SM = 0.11, LDJ = 0.71), two showed strong correlations between the first and the second half of the task execution (intra-trial R2s: NoP = 0.22 n.s., SAL = 0.33, SM = 0.36, LDJ = 0.91), and one was independent of other kinematic parameters (SM), while three showed strong models of multiple linear regression (R2s: NoP = 0.61, SAL = 0.48, LDJ = 0.70). Based on our results we make suggestion toward use examined smoothness measures. In total the log dimensionless jerk proved to be the most appropriate in ADL, as long as trial durations are controlled.
Collapse
Affiliation(s)
- Philipp Gulde
- Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
17
|
Development of a quantitative evaluation system for visuo-motor control in three-dimensional virtual reality space. Sci Rep 2018; 8:13439. [PMID: 30194427 PMCID: PMC6128926 DOI: 10.1038/s41598-018-31758-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
The process of learning a human's movement and motor control mechanisms by watching and mimicking human motions was based on visuo-motor control in three dimensional space. However, previous studies regarding the visuo-motor control in three dimensional space have focused on analyzing the tracking tasks along one-dimensional lines or two-dimensional planes using single or multi-joint movements. Therefore, in this study, we developed a new system to quantitatively evaluate visuo-motor control in three-dimensional space based on virtual reality (VR) environment. Our proposed system is designed to analyze circular tracking movements on frontal and sagittal planes in VR space with millimeter level accuracy. In particular, we compared the circular tracking movements under monocular and binocular vision conditions. The results showed that the accuracy of circular tracking movements drops approximately 4.5 times in monocular vision than that in binocular vision on both frontal and sagittal planes. We also found that significant difference can be observed between frontal and sagittal planes for only the accuracy of X-axis in both monocular and binocular visions.
Collapse
|
18
|
Li L, Hartigan J, Peduzzi P, Guarino P, Beed AT, Wu X, Wininger M. Clustering of Directions Improves Goodness of Fit in Kinematic Data Collected in the Transverse Plane During Robot-Assisted Rehabilitation of Stroke Patients. Front Robot AI 2018; 5:57. [PMID: 33500939 PMCID: PMC7805826 DOI: 10.3389/frobt.2018.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/27/2022] Open
Abstract
The kinematic character of hand trajectory in reaching tasks varies by movement direction. Often, direction is not included as a factor in the analysis of data collected during multi-directional reach tasks; consequently, this directionally insensitive model (DI) may be prone to type-II error due to unexplained variance. On the other hand, directionally specific models (DS) that account separately for each movement direction, may reduce statistical power by increasing the amount of data groupings. We propose a clustered-by-similarity (CS) in which movement directions with similar kinematic features are grouped together, maximizing model fit by decreasing unexplained variance while also decreasing uninformative sub-groupings. We tested model quality in measuring change over time in 10 kinematic features extracted from 72 chronic stroke patients participating in the VA-ROBOTICS trial, performing a targeted reaching task over 16 movement directions (8 targets, back- and forth from center) in the horizontal plane. Across 49 participants surviving a quality control sieve, 4.3 ± 1.1 (min: 3; max: 7) clusters were found among the 16 movement directions; clusters varied between participants. Among 49 participants, and averaged across 10 features, the better-fitting model for predicting change in features was found to be CS assessed by the Akaike Information criterion (61.6 ± 7.3%), versus DS (31.0 ± 7.8%) and DI (7.1 ± 7.1%). Confirmatory analysis via Extra Sum of Squares F-test showed the DS and CS models out-performed the DI model in head-to-head (pairwise) comparison in >85% of all specimens. Thus, we find overwhelming evidence that it is necessary to adjust for direction in the models of multi-directional movements, and that clustering kinematic data by feature similarly may yield the optimal configuration for this co-variate.
Collapse
Affiliation(s)
- Ling Li
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - John Hartigan
- Department of Statistics, Yale University, New Haven, CT, United States
| | - Peter Peduzzi
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Peter Guarino
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States.,Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Alexander T Beed
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Xiaotian Wu
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States.,Department of Biostatistics, Brown University, Providence, RI, United States
| | - Michael Wininger
- Cooperative Studies Program, Department of Veterans Affairs, West Haven, CT, United States.,Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States.,Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
19
|
Pila O, Duret C, Laborne FX, Gracies JM, Bayle N, Hutin E. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. J Neuroeng Rehabil 2017; 14:105. [PMID: 29029633 PMCID: PMC5640903 DOI: 10.1186/s12984-017-0315-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 10/03/2017] [Indexed: 01/19/2023] Open
Abstract
Background When exploring changes in upper limb kinematics and motor impairment associated with motor recovery in subacute post stroke during intensive therapies involving robot-assisted training, it is not known whether trained joints improve before non-trained joints and whether target reaching capacity improves before movement accuracy. Methods Twenty-two subacute stroke patients (mean delay post-stroke at program onset 63 ± 29 days, M2) underwent 50 ± 17 (mean ± SD) 45-min sessions of robot-assisted (InMotion™) shoulder/elbow training over 3 months, in addition to conventional occupational therapy. Monthly evaluations (M2 to M5) included Fugl-Meyer Assessment (FM), with subscores per joint, and four robot-based kinematic measures: mean target distance covered, mean velocity, direction accuracy (inverse of root mean square error from straight line) and movement smoothness (inverse of mean number of zero-crossings in the velocity profile). We assessed delays to reach statistically significant improvement for each outcome measure. Results At M5, all clinical and kinematic parameters had markedly improved: Fugl-Meyer, +65% (median); distance covered, +87%; mean velocity, +101%; accuracy, +134%; and smoothness, +96%. Delays to reach statistical significance were M3 for the shoulder/elbow Fugl-Meyer subscore (+43%), M4 for the hand (+80%) and M5 for the wrist (+133%) subscores. For kinematic parameters, delays to significant improvements were M3 for distance (+68%), velocity (+65%) and smoothness (+50%), and M5 for accuracy (+134%). Conclusions An intensive rehabilitation program combining robot-assisted shoulder/elbow training and conventional occupational therapy was associated with improvement in shoulder and elbow movements first, which suggests focal behavior-related brain plasticity. Findings also suggested that recovery of movement quantity related parameters (range of motion, velocity and smoothness) might precede that of movement quality (accuracy). Trial registration EudraCT 2016–005121-36. Date of Registration: 2016–12-20. Date of enrolment of the first participant to the trial: 2009–11-24 (retrospective data).
Collapse
Affiliation(s)
- Ophélie Pila
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 19 rue du Château, Boissise-Le-Roi, 77310, France. .,EA 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement (ARM), Université Paris-Est Créteil, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil, 94010, France.
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Médecine Physique et de Réadaptation, Unité de Neurorééducation, 19 rue du Château, Boissise-Le-Roi, 77310, France
| | - François-Xavier Laborne
- SAMU 91, Centre Hospitalier Sud Francilien, 116 Boulevard Jean Jaurès, Corbeil-Essonnes, 91100, France
| | - Jean-Michel Gracies
- EA 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement (ARM), Université Paris-Est Créteil, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil, 94010, France
| | - Nicolas Bayle
- EA 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement (ARM), Université Paris-Est Créteil, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil, 94010, France
| | - Emilie Hutin
- EA 7377 BIOTN, Laboratoire Analyse et Restauration du Mouvement (ARM), Université Paris-Est Créteil, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris, 51 Avenue du Maréchal de Lattre de Tassigny, Créteil, 94010, France
| |
Collapse
|
20
|
Frullo JM, Elinger J, Pehlivan AU, Fitle K, Nedley K, Francisco GE, Sergi F, O'Malley MK. Effects of Assist-As-Needed Upper Extremity Robotic Therapy after Incomplete Spinal Cord Injury: A Parallel-Group Controlled Trial. Front Neurorobot 2017; 11:26. [PMID: 28659784 PMCID: PMC5469353 DOI: 10.3389/fnbot.2017.00026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/18/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Robotic rehabilitation of the upper limb following neurological injury has been supported through several large clinical studies for individuals with chronic stroke. The application of robotic rehabilitation to the treatment of other neurological injuries is less developed, despite indications that strategies successful for restoration of motor capability following stroke may benefit individuals with incomplete spinal cord injury (SCI) as well. Although recent studies suggest that robot-aided rehabilitation might be beneficial after incomplete SCI, it is still unclear what type of robot-aided intervention contributes to motor recovery. METHODS We developed a novel assist-as-needed (AAN) robotic controller to adjust challenge and robotic assistance continuously during rehabilitation therapy delivered via an upper extremity exoskeleton, the MAHI Exo-II, to train independent elbow and wrist joint movements. We further enrolled seventeen patients with incomplete spinal cord injury (AIS C and D levels) in a parallel-group balanced controlled trial to test the efficacy of the AAN controller, compared to a subject-triggered (ST) controller that does not adjust assistance or challenge levels continuously during therapy. The conducted study is a stage two, development-of-concept pilot study. RESULTS We validated the AAN controller in its capability of modulating assistance and challenge during therapy via analysis of longitudinal robotic metrics. For the selected primary outcome measure, the pre-post difference in ARAT score, no statistically significant change was measured in either group of subjects. Ancillary analysis of secondary outcome measures obtained via robotic testing indicates gradual improvement in movement quality during the therapy program in both groups, with the AAN controller affording greater increases in movement quality over the ST controller. CONCLUSION The present study demonstrates feasibility of subject-adaptive robotic therapy after incomplete spinal cord injury, but does not demonstrate gains in arm function occurring as a result of the robot-assisted rehabilitation program, nor differential gains obtained as a result of the developed AAN controller. Further research is warranted to better quantify the recovery potential provided by AAN control strategies for robotic rehabilitation of the upper limb following incomplete SCI. ClinicalTrials.gov registration number: NCT02803255.
Collapse
Affiliation(s)
- John Michael Frullo
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Jared Elinger
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Ali Utku Pehlivan
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | - Kyle Fitle
- Department of Mechanical Engineering, Rice University, Houston, TX, United States
| | | | - Gerard E Francisco
- TIRR Memorial Hermann, Houston, TX, United States.,Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, United States
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Marcia K O'Malley
- Department of Mechanical Engineering, Rice University, Houston, TX, United States.,TIRR Memorial Hermann, Houston, TX, United States
| |
Collapse
|
21
|
Kim J, Lee J, Kakei S, Kim J. Motor control characteristics for circular tracking movements of human wrist. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1266121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jihun Kim
- Department of Mechanical and Control Engineering, Handong Global University, Pohang, Republic of Korea
| | - Jongho Lee
- Motor Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinji Kakei
- Motor Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jaehyo Kim
- Department of Mechanical and Control Engineering, Handong Global University, Pohang, Republic of Korea
| |
Collapse
|
22
|
Feys P, Helsen WF, Liu X, Lavrysen A, Loontjens V, Nuttin B, Ketelaer P. Effect of visual information on step-tracking movements in patients with intention tremor due to multiple sclerosis. Mult Scler 2016; 9:492-502. [PMID: 14582776 DOI: 10.1191/1352458503ms949oa] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effect of visual information on step-tracking movements was studied in 18 patients with intention tremor due to multiple sclerosis (MS) and 15 healthy controls. Participants performed a slow wrist step-tracking task with stationary targets under five visual feedback conditions. The display of the target and movement cues was selectively withdrawn to examine the effects of visual information on intention tremor and movement accuracy. Results showed that intentio n tremor was most pronounced when visual display of both target and movement cues was available. Withdrawing visual information of the limb movement reduced tremor more than withdrawing the visual display of the target cues. Both the patient and control group was less accurate when the display of limb movement was occluded. Patients, however, were more dependent on visual information of the limb movement for accurate motor performance than healthy controls. When the visual display of the limb movement was partially occluded between or near to the targets, tremor decreased without deterioration of movement accuracy.
Collapse
Affiliation(s)
- P Feys
- Katholieke Universiteit Leuven, Department of Kinesiology, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
ABSTRACT:A feature of cerebellar ataxia is dysmetria, which is characterized by inaccurate movements. Studies of rapid movements at a single joint show prolonged acceleration phases and prolonged initial bursts of EMG activity in the agonist muscle. These two features correlate with each other, suggesting that the prolongation of the neural signal is responsible for the kinematic abnormality. This explains a tendency to hypermetria. Studies of multijoint movements show abnormalities in relative timing of the different joints. During locomotion, knee and ankle motions can be delayed differentially with respect to the gait cycle. Subjects attempting straight-line movements with the arm have systematic deviations that reflect incoordination of the shoulder and elbow with respect to each other. A possible explanation of dysmetria is a failure of sufficient force generation within the necessary time to accomplish a coordinated movement. Another possible explanation is that the cerebellum is responsible for timing of brain functions.
Collapse
|
24
|
Abstract
ABSTRACT:This manuscript reviews a series of experiments which support the notion that the cerebellum and more specifically the cerebellar cortex is principally involved in real time operations required for the regulation of coordinated motor activity. Experiments are reviewed which illustrate: (1) that the climbing fiber inputs to Purkinje cells can induce a short-lasting enhancement of their responses to mossy fiber-granule cell-parallel fiber inputs, (2) that the cerebellum is not essential for the acquisition and performance of the classically conditioned nictitating membrane reflex (NMR) of the rabbit, and (3) that the observations resulting from the microinjection of lidocaine and multiple single unit recordings within the brainstem support the notion that cell populations in this region may participate in establishing the modifications in neuronal interactions required for the acquisition of the conditioned NMR. In addition, preliminary data are shown comparing the capacity of a normal subject and a patient with a massive ipsilateral cerebellar stroke to learn certain tracing tasks and to redraw these learned tracing movements 90° to the orientation of the original image. The data support the notion that the cerebellum is essential, not for the initial learning of the tracing movement, but rather for performing the learned movement with the required rotation of the original image.
Collapse
|
25
|
Lee J, Kagamihara Y, Kakei S. A New Method for Functional Evaluation of Motor Commands in Patients with Cerebellar Ataxia. PLoS One 2015; 10:e0132983. [PMID: 26186225 PMCID: PMC4505901 DOI: 10.1371/journal.pone.0132983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
Quantitative evaluation of motor functions of patients with cerebellar ataxia is vital for evidence-based treatments and has been a focus in previous investigations of movement kinematics. Due to redundancy of the musculoskeletal system, muscle activities contain more information than the movement kinematics. Therefore, it is preferable to analyze causal anomalies of muscle activities to evaluate motor functions in patients. Here we propose a new method to evaluate the motor functions at the level of muscle activities and movement kinematics. Nineteen patients and 10 control subjects performed two movement tasks of the wrist joint, a step-tracking task and a pursuit task, with a manipulandum. The movements of the wrist joint and activities of the four wrist prime movers were recorded. We developed a linear model for the wrist joint to approximate the causal relationship between muscle activities and movement kinematics in terms of the wrist joint torque. We used a canonical correlation analysis to verify the causality between the muscle activities and the movement kinematics in the model. We found that the activities of the four muscles were related almost entirely to the position and velocity, with negligible correlation with the acceleration of the wrist joint. Moreover, the ratio of the weights for position- and velocity-related torque components characterized the contents of the muscle activities in terms of the movement kinematics. Next, we compared the ratios for the two movement tasks between the controls and patients. In control subjects, the ratios indicated clear task-specific changes that conformed to the functional requirements of the tasks. In contrast, in patients, the task-specific changes diminished highly significantly. The present results indicate that this ability to accommodate motor commands to the task requirements provides a novel quantitative parameter to characterize motor functions in patients with cerebellar ataxia.
Collapse
Affiliation(s)
- Jongho Lee
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuhiro Kagamihara
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Shinji Kakei
- Movement Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
26
|
Adaptive intermittent control: A computational model explaining motor intermittency observed in human behavior. Neural Netw 2015; 67:92-109. [PMID: 25897510 DOI: 10.1016/j.neunet.2015.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 11/21/2022]
Abstract
It is a fundamental question how our brain performs a given motor task in a real-time fashion with the slow sensorimotor system. Computational theory proposed an influential idea of feed-forward control, but it has mainly treated the case that the movement is ballistic (such as reaching) because the motor commands should be calculated in advance of movement execution. As a possible mechanism for operating feed-forward control in continuous motor tasks (such as target tracking), we propose a control model called "adaptive intermittent control" or "segmented control," that brain adaptively divides the continuous time axis into discrete segments and executes feed-forward control in each segment. The idea of intermittent control has been proposed in the fields of control theory, biological modeling and nonlinear dynamical system. Compared with these previous models, the key of the proposed model is that the system speculatively determines the segmentation based on the future prediction and its uncertainty. The result of computer simulation showed that the proposed model realized faithful visuo-manual tracking with realistic sensorimotor delays and with less computational costs (i.e., with fewer number of segments). Furthermore, it replicated "motor intermittency", that is, intermittent discontinuities commonly observed in human movement trajectories. We discuss that the temporally segmented control is an inevitable strategy for brain which has to achieve a given task with small computational (or cognitive) cost, using a slow control system in an uncertain variable environment, and the motor intermittency is the side-effect of this strategy.
Collapse
|
27
|
A wavelet-based method for extracting intermittent discontinuities observed in human motor behavior. Neural Netw 2015; 62:91-101. [DOI: 10.1016/j.neunet.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 11/21/2022]
|
28
|
Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. ROBOTICA 2014. [DOI: 10.1017/s0263574714001490] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYRobotic devices are well-suited to provide high intensity upper limb therapy in order to induce plasticity and facilitate recovery from brain and spinal cord injury. In order to realise gains in functional independence, devices that target the distal joints of the arm are necessary. Further, the robotic device must exhibit key dynamic properties that enable both high dynamic transparency for assessment, and implementation of novel interaction control modes that significantly engage the participant. In this paper, we present the kinematic design, dynamical characterization, and clinical validation of the RiceWrist-S, a serial robotic mechanism that facilitates rehabilitation of the forearm in pronation-supination, and of the wrist in flexion-extension and radial-ulnar deviation. The RiceWrist-Grip, a grip force sensing handle, is shown to provide grip force measurements that correlate well with those acquired from a hand dynamometer. Clinical validation via a single case study of incomplete spinal cord injury rehabilitation for an individual with injury at the C3-5 level showed moderate gains in clinical outcome measures. Robotic measures of movement smoothness also captured gains, supporting our hypothesis that intensive upper limb rehabilitation with the RiceWrist-S would show beneficial outcomes.
Collapse
|
29
|
Stevenson JKR, Lee C, Lee BS, Talebifard P, Ty E, Aseeva K, Oishi MMK, McKeown MJ. Excessive Sensitivity to Uncertain Visual Input in L-DOPA-Induced Dyskinesias in Parkinson's Disease: Further Implications for Cerebellar Involvement. Front Neurol 2014; 5:8. [PMID: 24550883 PMCID: PMC3912458 DOI: 10.3389/fneur.2014.00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/10/2014] [Indexed: 12/03/2022] Open
Abstract
When faced with visual uncertainty during motor performance, humans rely more on predictive forward models and proprioception and attribute lesser importance to the ambiguous visual feedback. Though disrupted predictive control is typical of patients with cerebellar disease, sensorimotor deficits associated with the involuntary and often unconscious nature of l-DOPA-induced dyskinesias in Parkinson’s disease (PD) suggests dyskinetic subjects may also demonstrate impaired predictive motor control. Methods: We investigated the motor performance of 9 dyskinetic and 10 non-dyskinetic PD subjects on and off l-DOPA, and of 10 age-matched control subjects, during a large-amplitude, overlearned, visually guided tracking task. Ambiguous visual feedback was introduced by adding “jitter” to a moving target that followed a Lissajous pattern. Root mean square (RMS) tracking error was calculated, and ANOVA, robust multivariate linear regression, and linear dynamical system analyses were used to determine the contribution of speed and ambiguity to tracking performance. Results: Increasing target ambiguity and speed contributed significantly more to the RMS error of dyskinetic subjects off medication. l-DOPA improved the RMS tracking performance of both PD groups. At higher speeds, controls and PDs without dyskinesia were able to effectively de-weight ambiguous visual information. Conclusion: PDs’ visually guided motor performance degrades with visual jitter and speed of movement to a greater degree compared to age-matched controls. However, there are fundamental differences in PDs with and without dyskinesia: subjects without dyskinesia are generally slow, and less responsive to dynamic changes in motor task requirements, but in PDs with dyskinesia, there was a trade-off between overall performance and inappropriate reliance on ambiguous visual feedback. This is likely associated with functional changes in posterior parietal–ponto–cerebellar pathways.
Collapse
Affiliation(s)
- James K R Stevenson
- Kinsmen Laboratory of Neurological Research, Department of Neuroscience, University of British Columbia , Vancouver, BC , Canada
| | - Chonho Lee
- School of Computer Engineering, Nanyang Technological University , Singapore , Singapore
| | - Bu-Sung Lee
- School of Computer Engineering, Nanyang Technological University , Singapore , Singapore
| | - Pouria Talebifard
- Department of Electrical and Computer Engineering, University of British Columbia , Vancouver, BC , Canada
| | - Edna Ty
- Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| | - Kristina Aseeva
- Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| | - Meeko M K Oishi
- Department of Electrical and Computer Engineering, University of New Mexico , Albuquerque, NM , USA
| | - Martin J McKeown
- Kinsmen Laboratory of Neurological Research, Department of Neuroscience, University of British Columbia , Vancouver, BC , Canada ; Department of Electrical and Computer Engineering, University of British Columbia , Vancouver, BC , Canada ; Pacific Parkinson's Research Centre, University Hospital, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
30
|
Periodic change in phase relationship between target and hand motion during visuo-manual tracking task: behavioral evidence for intermittent control. Hum Mov Sci 2013; 33:211-26. [PMID: 24355067 DOI: 10.1016/j.humov.2013.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 10/07/2013] [Accepted: 10/19/2013] [Indexed: 11/24/2022]
Abstract
When one performs visuo-manual tracking tasks, velocity profile of hand movements shows discontinuous patterns even if the target moves smoothly. A crucial factor of this "intermittency" is considerable delay in the sensorimotor feedback loop, and several researchers have suggested that the cause is intermittent correction of motor commands. However, when and how the brain monitors task performance and updates motor commands in a continuous motor task is uncertain. We examined how tracking error was affected by the timing of target disappearance during a tracking task. Results showed that tracking error, defined as the average phase difference between target and hand, varied periodically in all conditions. Hand preceded target at one specific phase but followed it at another, implying that motor control was not performed in a temporally uniform manner. Tracking stability was evaluated by the variance in phase difference, and changed depending on the timing of target-removal. The variability was larger when target disappeared around turning points than that when it disappeared around the center of motion. This shows that visual information at turning points is more effectively exploited for motor control of sinusoidal target tracking, suggesting that our brain controls hand movements with intermittent reference to visual information.
Collapse
|
31
|
Gibo TL, Bastian AJ, Okamura AM. Cerebellar ataxia impairs modulation of arm stiffness during postural maintenance. J Neurophysiol 2013; 110:1611-20. [PMID: 23843434 PMCID: PMC4042412 DOI: 10.1152/jn.00294.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022] Open
Abstract
Impedance control enables humans to effectively interact with their environment during postural and movement tasks, adjusting the mechanical behavior of their limbs to account for instability. Previous work has shown that people are able to selectively modulate the end-point stiffness of their arms, adjusting for varying directions of environmental disturbances. Behavioral studies also suggest that separate controllers are used for impedance modulation versus joint torque coordination. Here we tested whether people with cerebellar damage have deficits in impedance control. It is known that these individuals have poor motor coordination, which has typically been attributed to deficits in joint torque control. Subjects performed a static postural maintenance task with two different types of directional force perturbations. On average, patients with cerebellar ataxia modified stiffness differentially for the two perturbation conditions, although significantly less than age-matched control subjects. Thus cerebellar damage may impair the ability to modulate arm impedance. Surprisingly, the patients' intact ability to generally alter their limb stiffness during the postural task (albeit less than age-matched control subjects) improved their movement performance in a subsequent tracing task. The transfer of stiffness control from the static to the movement task may be a strategy that can be used by patients to compensate for their motor deficits.
Collapse
Affiliation(s)
- Tricia L Gibo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | | | | |
Collapse
|
32
|
Gowen E, Hamilton A. Motor abilities in autism: a review using a computational context. J Autism Dev Disord 2013; 43:323-44. [PMID: 22723127 DOI: 10.1007/s10803-012-1574-0] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Altered motor behaviour is commonly reported in Autism Spectrum Disorder, but the aetiology remains unclear. Here, we have taken a computational approach in order to break down motor control into different components and review the functioning of each process. Our findings suggest abnormalities in two areas--poor integration of information for efficient motor planning, and increased variability in basic sensory inputs and motor outputs. In contrast, motor learning processes are relatively intact and there is inconsistent evidence for deficits in predictive control. We suggest future work on motor abilities in autism should focus on sensorimotor noise and on higher level motor planning, as these seem to have a significant role in causing motor difficulties for autistic individuals.
Collapse
Affiliation(s)
- Emma Gowen
- Faculty of Life Sciences, University of Manchester, Carys Bannister Building, Dover Street, Manchester M13 9PT, UK.
| | | |
Collapse
|
33
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
34
|
Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.baga.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Lee J, Kagamihara Y, Tomatsu S, Kakei S. The functional role of the cerebellum in visually guided tracking movement. THE CEREBELLUM 2012; 11:426-33. [PMID: 22396331 DOI: 10.1007/s12311-012-0370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We propose a new method to provide a functional interpretation of motor commands (i.e., muscle activities) and their relationship to movement kinematics. We evaluated our method by analyzing the motor commands of normal controls and patients with cerebellar disorders for visually guided tracking movement of the wrist joint. Six control subjects and six patients with cerebellar disorders participated in this study. We asked the subjects to perform visually guided smooth tracking movement of the wrist joint with a manipulandum, and recorded the movements of the wrist joint and activities of the four wrist prime movers with surface electrodes. We found a symmetric relationship between the second-order linear equation of motion for the wrist joint and the linear sum of activities of the four wrist prime movers. The symmetric relationship determined a set of parameters to characterize the muscle activities and their similarity to the components of movement kinematics of the wrist joint. We found that muscle activities of the normal controls encoded both the velocity and the position of the moving target, resulting in precise tracking of the target. In contrast, muscle activities of the cerebellar patients were characterized by a severer impairment for velocity control and more dependence on position control, resulting in poor tracking of the smoothly moving target with many step-like awkward movements. Our results suggest that the cerebellum plays an important role in the generation of motor commands for smooth velocity and position control.
Collapse
Affiliation(s)
- Jongho Lee
- Research Project for Motor Control, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Ebner TJ, Hewitt AL, Popa LS. What features of limb movements are encoded in the discharge of cerebellar neurons? THE CEREBELLUM 2012; 10:683-93. [PMID: 21203875 DOI: 10.1007/s12311-010-0243-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review examines the signals encoded in the discharge of cerebellar neurons during voluntary arm and hand movements, assessing the state of our knowledge and the implications for hypotheses of cerebellar function. The evidence for the representation of forces, joint torques, or muscle activity in the discharge of cerebellar neurons is limited, questioning the validity of theories that the cerebellum directly encodes the motor command. In contrast, kinematic parameters such as position, direction, and velocity are widely and robustly encoded in the activity of cerebellar neurons. These findings favor hypotheses that the cerebellum plans or controls movements in a kinematic framework, such as the proposal that the cerebellum provides a forward internal model. Error signals are needed for on-line correction and motor learning, and several hypotheses postulate the need for their representations in the cerebellum. Error signals have been described mostly in the complex spike discharge of Purkinje cells, but no consensus has emerged on the exact information signaled by complex spikes during limb movements. Newer studies suggest that simple spike firing may also encode error signals. Finally, Purkinje cells located more posterior and laterally in the cerebellar cortex and dentate neurons encode nonmotor, task-related signals such as visual cues. These results suggest that cerebellar neurons provide a complement of information about motor behaviors. We assert that additional single unit studies are needed using rich movement paradigms, given the power of this approach to directly test specific hypotheses about cerebellar function.
Collapse
Affiliation(s)
- Timothy J Ebner
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
37
|
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. CEREBELLUM (LONDON, ENGLAND) 2012; 11:457-87. [PMID: 22161499 PMCID: PMC4347949 DOI: 10.1007/s12311-011-0331-9] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS, ULB Erasme, 808 Route de Lennik, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wininger M, Kim NH, Craelius W. Reformulation in the phase plane enhances smoothness rater accuracy in stroke. J Mot Behav 2012; 44:149-59. [PMID: 22420840 DOI: 10.1080/00222895.2012.663012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To improve the characterization of motor impairment, we compared the sensitivities of a phase plane metric with temporal domain measures derived from integrated squared jerk (ISJ). Five subjects with stroke and a cohort of 21 neurologically intact volunteers performed self-paced, isolated elbow flexions. Analysis of angular trajectories from the stroke group revealed that temporal domain metrics failed to detect a performance deficit at the p < .05 level, while the phase plane metric did resolve a deficit (p < .01). When applied to a subset of movements with arrest periods, the phase measure also uniquely identified impairment (Wilcoxon rank-sum test, p < .001). Finally, when tested on a data-driven model, the phase measure, but not temporal metrics, increased monotonically with the severity of trajectory distortions. We conclude that motion smoothness can be accurately measured in the phase plane.
Collapse
Affiliation(s)
- Michael Wininger
- National Institute of Mental Health, Clinical Disorders Branch, Building 10, Room 4N313D, Neuropathology Section, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
39
|
Abstract
This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is 'The trainee consistently demonstrates a knowledge of management approaches for specific impairments including spasticity, ataxia.'
Collapse
Affiliation(s)
- Jon Marsden
- School of Health Professions, Peninsula Allied Health Centre, Derriford Road, University of Plymouth, PL6 8BH, UK.
| | | |
Collapse
|
40
|
Küper M, Hermsdörfer J, Brandauer B, Thürling M, Schoch B, Theysohn N, Timmann D. Lesions of the dentate and interposed nuclei are associated with impaired prehension in cerebellar patients. Neurosci Lett 2011; 499:132-6. [PMID: 21658432 DOI: 10.1016/j.neulet.2011.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 01/22/2023]
Abstract
In a recent study using voxel based lesion symptom mapping (VLSM) in cerebellar patients following stroke we found associations of prehensile deficits to lesions of the cerebellar cortex and dentate nucleus (DN). Associations to lesions of the interposed nucleus (IN), which has been shown to contribute to prehension in monkeys, could not be established. One possible reason was that the IN was largely unaffected in the stroke patients. To further address the question of IN involvement in prehension we performed VLSM in patients with surgical cerebellar lesions (n=20), exhibiting high lesion overlap in the medial and intermediate cerebellum including the IN. Prehensile deficits were quantified by analyses of movement kinematics and finger forces. In the patient population prehensile deficits comprised lower movement velocity in reaching and increased lift-off time in grasping. These were associated with lesions of the intermediate and lateral cerebellar cortex together with their output nuclei. Specifically, IN lesions were linked to increased lift-off time in grasping and not to slower reaching movements. Thus, our data support IN contribution particularly for the fluent production of grip forces during dexterous prehension in humans.
Collapse
Affiliation(s)
- M Küper
- Department of Neurology, University of Duisburg-Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
43
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
|
45
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
47
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
|
49
|
Yadav V, Schmiedeler JP, McDowell S, Worthen-Chaudhari L. Quantifying age-related differences in human reaching while interacting with a rehabilitation robotic device. Appl Bionics Biomech 2010. [DOI: 10.1080/11762322.2010.523628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 2010; 41:529-34. [PMID: 19892658 DOI: 10.3200/35-09-004-rc] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Studies of sensory-motor performance, including those concerned with changes because of age, disease, or therapeutic intervention, often use measures based on jerk, the time derivative of acceleration, to quantify smoothness and coordination. However, results have been mixed: some researchers report sensitive discrimination of subtle differences, whereas others fail to find significant differences even when they are obviously present. One reason for this is that different measures have been used with different scaling factors. These measures are sensitive to movement amplitude or duration to different degrees. The authors show that jerk-based measures with dimensions vary counterintuitively with movement smoothness, whereas a dimensionless jerk-based measure properly quantifies common deviations from smooth, coordinated movement.
Collapse
Affiliation(s)
- Neville Hogan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| | | |
Collapse
|