1
|
Ilie G, Jaeggi AV. The modular mind and psychiatry: toward clinical integration with a focus on self-disorders. Front Psychol 2025; 16:1570049. [PMID: 40351589 PMCID: PMC12062109 DOI: 10.3389/fpsyg.2025.1570049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
One of the foundational tenets of evolutionary psychology, the modular view of the mind, offers promising applications for clinical psychiatry. This perspective conceptualizes the mind as a collection of specialized information-processing modules, shaped by natural selection to address adaptive challenges faced by our ancestors. In this paper, we propose several points of integration between the modularity framework and clinical psychiatric practice. First, we argue that the descriptive psychopathology of self-disorders provides evidence supporting the modular view, demonstrating how a dysfunctional minimal self may expose the mind's modular architecture to conscious awareness. Next, we will explore how the modular perspective can illuminate the nature of intrapsychic conflicts. Finally, we will discuss how evidence from neuropsychiatric syndromes supports the modular view of the mind and, in turn, how this perspective can provide a basis for classifying mental disorders.
Collapse
Affiliation(s)
- Gheorghe Ilie
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Duan Z, Evans MH, Lawrence B, Curtis CE. Effector general representation of movement goals in human frontal and parietal cortex. Neuroimage 2025; 310:121124. [PMID: 40054761 DOI: 10.1016/j.neuroimage.2025.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
In the nonhuman primate, discrete parts of premotor frontal and parietal cortex appear to code for movements of different effectors. However, the evidence regarding homologous effector selectivity within the human brain remains inconclusive. Here, we measured neural activity in the human brain using functional magnetic resonance imaging while participants remembered a target location and planned either saccades or reaches that matched the rich kinematics used in seminal monkey studies. We compared activity patterns during the planning period and used assumption-free multivariate searchlight analysis to identify brain regions that could decode the spatial goals of planned movements. Critically, we performed two types of decoding analyses to determine if the spatial information embedded in activation patterns was effector-specific or effector-general. For effector-specific spatial coding, we compared brain regions that could decode target locations within each effector. However, we did not identify areas that coded spatial information in one effector but not the other. For effector-general spatial coding, we performed spatial decoding using trials across effectors and conducted cross-effector decoding. Both analyses identified several areas in the frontal and parietal regions that encoded spatial information for both effectors, including precentral sulcus, superior parietal lobe, and intraparietal sulcus. Our results indicate that premotor frontal and parietal cortex encode the spatial metrics of movement goals that can be read out and converted into effector-specific motor metrics for saccades and reaches.
Collapse
Affiliation(s)
- Ziyi Duan
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Marissa H Evans
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Bonnie Lawrence
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Scholte HS, de Haan EHF. Beyond binding: from modular to natural vision. Trends Cogn Sci 2025:S1364-6613(25)00074-9. [PMID: 40234139 DOI: 10.1016/j.tics.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
The classical view of visual cortex organization as a collection of specialized modules processing distinct features like color and motion has profoundly influenced neuroscience for decades. This framework, rooted in historical philosophical distinctions between qualities, gave rise to the 'binding problem': how the brain integrates these separately processed features into coherent percepts. We present converging evidence from electrophysiology, neuroimaging, and lesion studies that challenges this framework. We argue that the binding problem may be an artifact of theoretical assumptions rather than a real computational challenge for the brain. Drawing insights from deep neural networks (DNNs) and recent empirical findings, we propose a framework where the visual cortex represents naturally co-occurring patterns of information rather than processing isolated features that need binding.
Collapse
Affiliation(s)
- H Steven Scholte
- Psychology Department, University of Amsterdam, 1001NK, Amsterdam, The Netherlands.
| | - Edward H F de Haan
- Psychology Department, University of Amsterdam, 1001NK, Amsterdam, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525GD, Nijmegen, The Netherlands; St Hugh's College, Oxford University, Oxford OX2 6LE, UK; Psychology Department, Nottingham University, Nottingham NG7 2RD, UK.
| |
Collapse
|
4
|
Yu Y, Huang Q, Liu X, Gao S, Mao X, Li A. ERP-based evidence for the independent processing of structural and functional action semantics. Front Neurosci 2025; 19:1571972. [PMID: 40206409 PMCID: PMC11979279 DOI: 10.3389/fnins.2025.1571972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
In this study, the semantic processing and neural mechanisms of manipulative actions, categorized as structural actions and functional actions, were examined to assess whether these action types involve independent cognitive processes. Using a cue-stimulus paradigm with event-related potentials (ERPs), we analyzed neural responses to various manipulative actions. Manipulating the semantic congruency of structural actions (congruent vs. incongruent) and functional action types (wave vs. press) revealed distinct neural patterns. We observed distinct neural differences for functional actions in the 30-44 ms, 144-194 ms, 218-232 ms, 300-400 ms, and 562-576 ms windows. Early activation occurred in the left medial superior frontal gyrus, whereas sustained activity spread from the occipital and parietal regions to frontal regions between 144-194 ms and 300-400 ms. Late activation, occurring in the 562-576 ms window, was localized to the left middle frontal gyrus, right orbital inferior frontal gyrus, and right superior occipital gyrus. For structural actions, neural differences emerged in the 456-470 ms and 610-660 ms windows, which activated the parietal and temporal regions, including the left postcentral gyrus and right middle temporal gyrus. These findings suggest that the semantic processing of structural actions is partially independent of functional action cognition at the neural level.
Collapse
Affiliation(s)
- Yanglan Yu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Qin Huang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xudong Liu
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Shiying Gao
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xuechen Mao
- Department of Physical Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anmin Li
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Jurkiewicz T, Vialatte A, Yeshurun Y, Pisella L. Attentional modulation of peripheral pointing hypometria in healthy participants: An insight into optic ataxia? Neuropsychologia 2025; 208:109084. [PMID: 39890056 DOI: 10.1016/j.neuropsychologia.2025.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Damage to the superior parietal lobule and intraparietal sulcus (SPL-IPS) causes optic ataxia (OA), characterized by pathological gaze-centered hypometric pointing to targets in the affected peripheral visual field. The SPL-IPS is also involved in covert attention. Here, we investigated the possible link between attention and action. This study investigated the effect of attention on pointing performance in healthy participants and two OA patients. In invalid trials, targets appeared unpredictably across different visual fields and eccentricities. Valid trials involved cued targets at specific locations. The first experiment used a central cue with 75% validity, the second used a peripheral cue with 50% validity. The effect of attention on pointing variability (noise) or time was expected as a confirmation of cueing efficiency. Critically, if OA reflects an attentional deficit, then healthy participants, in the invalid condition (without attention), were expected to produce the gaze-centered hypometric pointing bias characteristic of OA. RESULTS: revealed main effects of validity on pointing biases in all participants with central predictive cueing, but not with peripheral low predictive cueing. This suggests that the typical underestimation of visual eccentricity in OA (visual field effect) at least partially results from impaired endogenous attention orientation toward the affected visual field.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France; Centre d'Exploration de la Rétine Kléber (CERK), 50 cours Franklin Roosevelt, 69006, Lyon, France
| | - Audrey Vialatte
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France
| | - Yaffa Yeshurun
- School of Psychological Science, University of Haifa, Haifa, Israel
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, 69500, Bron, France
| |
Collapse
|
6
|
Culham JC, Buckingham G, Harvey M, Sperandio I, Johnsrude IS. Introduction to the special issue on visual cognition and visuomotor control: A tribute to Mel Goodale. Neuropsychologia 2025; 206:109015. [PMID: 39419471 DOI: 10.1016/j.neuropsychologia.2024.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| | - Gavin Buckingham
- Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Monika Harvey
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Irene Sperandio
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Ingrid S Johnsrude
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Beazley C, Giannoni S, Ionta S. Body-Related Visual Biasing Affects Accuracy of Reaching. Brain Sci 2024; 14:1270. [PMID: 39766469 PMCID: PMC11675064 DOI: 10.3390/brainsci14121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Many daily activities depend on visual inputs to improve motor accuracy and minimize errors. Reaching tasks present an ecological framework for examining these visuomotor interactions, but our comprehension of how different amounts of visual input affect motor outputs is still limited. The present study fills this gap, exploring how hand-related visual bias affects motor performance in a reaching task (to draw a line between two dots). Methods: Our setup allowed us to show and hide the visual feedback related to the hand position (cursor of a computer mouse), which was further disentangled from the visual input related to the task (tip of the line). Results: Data from 53 neurotypical participants indicated that, when the hand-related visual cue was visible and disentangled from the task-related visual cue, accommodating movements in response to spatial distortions were less accurate than when the visual cue was absent. Conclusions: We interpret these findings with reference to the concepts of motor affordance of visual cues, shifts between internally- and externally-oriented cognitive strategies to perform movements, and body-related reference frames.
Collapse
Affiliation(s)
- Claude Beazley
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Stefano Giannoni
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
| | - Silvio Ionta
- SensoriMotorLab, Department of Ophthalmology-University of Lausanne, Jules Gonin Eye Hospital-Fondation Asile des Aveugles, 1004 Lausanne, Switzerland; (C.B.); (S.G.)
- Centre de compétences pour le déficit visuel (CPHV), 1004 Lausanne, Switzerland
| |
Collapse
|
8
|
Vaziri-Pashkam M. Two "What" Networks in the Human Brain. J Cogn Neurosci 2024; 36:2584-2593. [PMID: 39106174 DOI: 10.1162/jocn_a_02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ungerleider and Mishkin, in their influential work that relied on detailed anatomical and ablation studies, suggested that visual information is processed along two distinct pathways: the dorsal "where" pathway, primarily responsible for spatial vision, and the ventral "what" pathway, dedicated to object vision. This strict division of labor has faced challenges in light of compelling evidence revealing robust shape and object selectivity within the putative "where" pathway. This article reviews evidence that supports the presence of shape selectivity in the dorsal pathway. A comparative examination of dorsal and ventral object representations in terms of invariance, task dependency, and representational content reveals similarities and differences between the two pathways. Both exhibit some level of tolerance to image transformations and are influenced by tasks, but responses in the dorsal pathway show weaker tolerance and stronger task modulations than those in the ventral pathway. Furthermore, an examination of their representational content highlights a divergence between the responses in the two pathways, suggesting that they are sensitive to distinct features of objects. Collectively, these findings suggest that two networks exist in the human brain for processing object shapes, one in the dorsal and another in the ventral visual cortex. These studies lay the foundation for future research aimed at revealing the precise roles the two "what" networks play in our ability to understand and interact with objects.
Collapse
|
9
|
MacNeil RR, Enns JT. The "What" and "How" of Pantomime Actions. Vision (Basel) 2024; 8:58. [PMID: 39449391 PMCID: PMC11503306 DOI: 10.3390/vision8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Pantomimes are human actions that simulate ideas, objects, and events, commonly used in conversation, performance art, and gesture-based interfaces for computing and controlling robots. Yet, their underlying neurocognitive mechanisms are not well understood. In this review, we examine pantomimes through two parallel lines of research: (1) the two visual systems (TVS) framework for visually guided action, and (2) the neuropsychological literature on limb apraxia. Historically, the TVS framework has considered pantomime actions as expressions of conscious perceptual processing in the ventral stream, but an emerging view is that they are jointly influenced by ventral and dorsal stream processing. Within the apraxia literature, pantomimes were historically viewed as learned motor schemas, but there is growing recognition that they include creative and improvised actions. Both literatures now recognize that pantomimes are often created spontaneously, sometimes drawing on memory and always requiring online cognitive control. By highlighting this convergence of ideas, we aim to encourage greater collaboration across these two research areas, in an effort to better understand these uniquely human behaviors.
Collapse
Affiliation(s)
- Raymond R. MacNeil
- Department of Psychology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | | |
Collapse
|
10
|
Knights E, McIntosh RD, Ford C, Buckingham G, Rossit S. Peripheral and bimanual reaching in a stroke survivor with left visual neglect and extinction. Neuropsychologia 2024; 201:108901. [PMID: 38704116 DOI: 10.1016/j.neuropsychologia.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Whether attentional deficits are accompanied by visuomotor impairments following posterior parietal lesions has been debated for quite some time. This single-case study investigated reaching in a stroke survivor (E.B.) with left visual neglect and visual extinction following right temporo-parietal-frontal strokes. Unlike most neglect patients, E.B. did not present left hemiparesis, homonymous hemianopia nor show evidence of motor neglect or extinction allowing us to examine, for the first time, if lateralised attentional deficits co-occur with deficits in peripheral and bimanual reaching. First, we found a classic optic ataxia field effect: E.B.'s accuracy was impaired when reaching to peripheral targets in her neglected left visual field (regardless of the hand used). Second, we found a larger bimanual cost for movement time in E.B. than controls when both hands reached to incongruent locations. E.B.'s visuomotor profile is similar to the one of patients with optic ataxia showing that attentional deficits are accompanied by visuomotor deficits in the affected field.
Collapse
Affiliation(s)
- Ethan Knights
- Neuropsychology Laboratory, School of Psychology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Robert D McIntosh
- Human Cognitive Neuroscience, Department of Psychology, The University of Edinburgh, EH8 9JZ, United Kingdom
| | - Catherine Ford
- Department of Clinical Psychology and Psychological Therapies, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Gavin Buckingham
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Stéphanie Rossit
- Neuropsychology Laboratory, School of Psychology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
11
|
Jurkiewicz T, Delporte L, Revol P, Rossetti Y, Pisella L. Effect of juggling expertise on pointing performance in peripheral vision. PLoS One 2024; 19:e0306630. [PMID: 38995902 PMCID: PMC11244809 DOI: 10.1371/journal.pone.0306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Juggling is a very complex activity requiring motor, visual and coordination skills. Expert jugglers experience a "third eye" monitoring leftward and rightward ball zenith positions alternately, in the upper visual fields, while maintaining their gaze straight-ahead. This "third eye" reduces their motor noise (improved body stability and decrease in hand movement variability) as it avoids the numerous head and eye movements that add noise into the system and make trajectories more uncertain. Neuroimaging studies have shown that learning to juggle induces white and grey matter hypertrophy at the posterior intraparietal sulcus. Damage to this brain region leads to optic ataxia, a clinical condition characterised by peripheral pointing bias toward gaze position. We predicted that expert jugglers would, conversely, present better accuracy in a peripheral pointing task. The mean pointing accuracy of expert jugglers was better for peripheral pointing within the upper visual field, compatible with their subjective experience of the "third eye". Further analyses showed that experts exhibited much less between-subject variability than beginners, reinforcing the interpretation of a vertically asymmetrical calibration of peripheral space, characteristic of juggling and homogenous in the expert group. On the contrary, individual pointing variability did not differ between groups neither globally nor in any sector of space, showing that the reduced motor noise of experts in juggling did not transfer to pointing. It is concluded that the plasticity of the posterior intraparietal sulcus related to juggling expertise does not consist of globally improved visual-to-motor ability. It rather consists of peripheral space calibration by practicing horizontal covert shifts of the attentional spotlight within the upper visual field, between left and right ball zenith positions.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Centre d’Exploration de la Rétine Kléber, Ophthalmology Department, Lyon, France
| | - Ludovic Delporte
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Patrice Revol
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
- Plateforme Mouvement et Handicap, Hôpital Henry Gabrielle, St-Genis-Laval, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, Bron, France
| |
Collapse
|
12
|
Musa L, Yan X, Crawford JD. Instruction alters the influence of allocentric landmarks in a reach task. J Vis 2024; 24:17. [PMID: 39073800 PMCID: PMC11290568 DOI: 10.1167/jov.24.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Allocentric landmarks have an implicit influence on aiming movements, but it is not clear how an explicit instruction (to aim relative to a landmark) influences reach accuracy and precision. Here, 12 participants performed a task with two instruction conditions (egocentric vs. allocentric) but with similar sensory and motor conditions. Participants fixated gaze near the center of a display aligned with their right shoulder while a target stimulus briefly appeared alongside a visual landmark in one visual field. After a brief mask/memory delay the landmark then reappeared at a different location (same or opposite visual field), creating an ego/allocentric conflict. In the egocentric condition, participants were instructed to ignore the landmark and point toward the remembered location of the target. In the allocentric condition, participants were instructed to remember the initial target location relative to the landmark and then reach relative to the shifted landmark (same or opposite visual field). To equalize motor execution between tasks, participants were instructed to anti-point (point to the visual field opposite to the remembered target) on 50% of the egocentric trials. Participants were more accurate and precise and quicker to react in the allocentric condition, especially when pointing to the opposite field. We also observed a visual field effect, where performance was worse overall in the right visual field. These results suggest that, when egocentric and allocentric cues conflict, explicit use of the visual landmark provides better reach performance than reliance on noisy egocentric signals. Such instructions might aid rehabilitation when the egocentric system is compromised by disease or injury.
Collapse
Affiliation(s)
- Lina Musa
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
- Departments of Biology and Kinesiology & Health Sciences, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased Functional Connectivity Between the Parietal and Occipital Modules Among Flight Cadets. Aerosp Med Hum Perform 2024; 95:375-380. [PMID: 38915163 DOI: 10.3357/amhp.6370.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Modular organization in brain regions often performs specific biological functions and is largely based on anatomically and/or functionally related brain areas. The current study aimed to explore changes in whole-brain modular organization affected by flight training.METHODS: The study included 25 male flight cadets and 24 male controls. The first assessment was performed in 2019, when the subjects were university freshmen. The second assessment was completed in 2022. High spatial resolution structural imaging (T1) and resting-state functional MRI data were collected. Then, 90 cerebral regions were organized into 6 brain modules. The intensity of intra- and intermodular communication was calculated.RESULTS: Mixed-effect regression model analysis identified significantly increased interconnections between the parietal and occipital modules in the cadet group, but significantly decreased interconnections in the control group. This change was largely attributed to flight training.DISCUSSION: Pilots need to control the aircraft (e.g., attitude, heading, etc.) using the stick and pedal in response to the current state of the aircraft displayed by the instrument panel; as such, flying requires a large amount of hand-eye coordination. Day-to-day flight training appeared to intensify the connection between the parietal and occipital modules among cadets.Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased functional connectivity between the parietal and occipital modules among flight cadets. Aerosp Med Hum Perform. 2024; 95(7):375-380.
Collapse
|
14
|
Mahon BZ, Almeida J. Reciprocal interactions among parietal and occipito-temporal representations support everyday object-directed actions. Neuropsychologia 2024; 198:108841. [PMID: 38430962 PMCID: PMC11498102 DOI: 10.1016/j.neuropsychologia.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Everyday interactions with common manipulable objects require the integration of conceptual knowledge about objects and actions with real-time sensory information about the position, orientation and volumetric structure of the grasp target. The ability to successfully interact with everyday objects involves analysis of visual form and shape, surface texture, material properties, conceptual attributes such as identity, function and typical context, and visuomotor processing supporting hand transport, grasp form, and object manipulation. Functionally separable brain regions across the dorsal and ventral visual pathways support the processing of these different object properties and, in cohort, are necessary for functional object use. Object-directed grasps display end-state-comfort: they anticipate in form and force the shape and material properties of the grasp target, and how the object will be manipulated after it is grasped. End-state-comfort is the default for everyday interactions with manipulable objects and implies integration of information across the ventral and dorsal visual pathways. We propose a model of how visuomotor and action representations in parietal cortex interact with object representations in ventral and lateral occipito-temporal cortex. One pathway, from the supramarginal gyrus to the middle and inferior temporal gyrus, supports the integration of action-related information, including hand and limb position (supramarginal gyrus) with conceptual attributes and an appreciation of the action goal (middle temporal gyrus). A second pathway, from posterior IPS to the fusiform gyrus and collateral sulcus supports the integration of grasp parameters (IPS) with the surface texture and material properties (e.g., weight distribution) of the grasp target. Reciprocal interactions among these regions are part of a broader network of regions that support everyday functional object interactions.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University, USA; Neuroscience Institute, Carnegie Mellon University, USA; Department of Neurosurgery, University of Rochester Medical Center, USA.
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
15
|
Funayama M, Hojo T, Nakagawa Y, Kurose S, Koreki A. Investigating the Link Between Subjective Depth Perception Deficits and Objective Stereoscopic Vision Deficits in Individuals With Acquired Brain Injury. Cogn Behav Neurol 2024; 37:82-95. [PMID: 38682873 DOI: 10.1097/wnn.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/03/2024] [Indexed: 05/01/2024]
Abstract
Individuals with acquired brain injury have reported subjective complaints of depth perception deficits, but few have undergone objective assessments to confirm these deficits. As a result, the literature currently lacks reports detailing the correlation between subjective depth perception deficits and objective stereoscopic vision deficits in individuals with acquired brain injury, particularly those cases that are characterized by a clearly defined lesion. To investigate this relationship, we recruited three individuals with acquired brain injury who experienced depth perception deficits and related difficulties in their daily lives. We had them take neurologic, ophthalmological, and neuropsychological examinations. We also had them take two types of stereoscopic vision tests: a Howard-Dolman-type stereoscopic vision test and the Topcon New Objective Stereo Test. Then, we compared the results with those of two control groups: a group with damage to the right hemisphere of the brain and a group of healthy controls. Performance on the two stereoscopic vision tests was severely impaired in the three patients. One of the patients also presented with cerebral diplopia. We identified the potential neural basis of these deficits in the cuneus and the posterior section of the superior parietal lobule, which play a role in vergence fusion and are located in the caudal region of the dorso-dorsal visual pathway, which is known to be crucial not only for visual spatial perception, but also for reaching, grasping, and making hand postures in the further course of that pathway.
Collapse
Affiliation(s)
- Michitaka Funayama
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Rehabilitation, Edogawa Hospital, Tokyo, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tomohito Hojo
- Department of Rehabilitation, Edogawa Hospital, Tokyo, Japan
- Department of Rehabilitation, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | | | - Shin Kurose
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Akihiro Koreki
- Department of Neuropsychiatry, Ashikaga Red Cross Hospital, Ashikaga, Japan
- Department of Psychiatry, National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| |
Collapse
|
16
|
Breveglieri R, Borgomaneri S, Bosco A, Filippini M, De Vitis M, Tessari A, Avenanti A, Galletti C, Fattori P. rTMS over the human medial parietal cortex impairs online reaching corrections. Brain Struct Funct 2024; 229:297-310. [PMID: 38141108 PMCID: PMC10917872 DOI: 10.1007/s00429-023-02735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Indirect correlational evidence suggests that the posteromedial sector of the human parietal cortex (area hV6A) is involved in reaching corrections. We interfered with hV6A functions using repetitive transcranial magnetic stimulation (rTMS) while healthy participants performed reaching movements and in-flight adjustments of the hand trajectory in presence of unexpected target shifts. rTMS over hV6A specifically altered action reprogramming, causing deviations of the shifted trajectories, particularly along the vertical dimension (i.e., distance). This study provides evidence of the functional relevance of hV6A in action reprogramming while a sudden event requires a change in performance and shows that hV6A also plays a role in state estimation during reaching. These findings are in line with neurological data showing impairments in actions performed along the distance dimension when lesions occur in the dorsal posterior parietal cortex.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy.
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Alessia Tessari
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
- Department of Psychology, University of Bologna, 40127, Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena Campus, 47521, Cesena, Italy
- Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000, Talca, Chile
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S. Donato 2, 40126, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Bosco A, Sanz Diez P, Filippini M, De Vitis M, Fattori P. A focus on the multiple interfaces between action and perception and their neural correlates. Neuropsychologia 2023; 191:108722. [PMID: 37931747 DOI: 10.1016/j.neuropsychologia.2023.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Successful behaviour relies on the appropriate interplay between action and perception. The well-established dorsal and ventral stream theories depicted two distinct functional pathways for the processes of action and perception, respectively. In physiological conditions, the two pathways closely cooperate in order to produce successful adaptive behaviour. As the coupling between perception and action exists, this requires an interface that is responsible for a common reading of the two functions. Several studies have proposed different types of perception and action interfaces, suggesting their role in the creation of the shared interaction channel. In the present review, we describe three possible perception and action interfaces: i) the motor code, including common coding approaches, ii) attention, and iii) object affordance; we highlight their potential neural correlates. From this overview, a recurrent neural substrate that underlies all these interface functions appears to be crucial: the parieto-frontal circuit. This network is involved in the mirror mechanism which underlies the perception and action interfaces identified as common coding and motor code theories. The same network is also involved in the spotlight of attention and in the encoding of potential action towards objects; these are manifested in the perception and action interfaces for common attention and object affordance, respectively. Within this framework, most studies were dedicated to the description of the role of the inferior parietal lobule; growing evidence, however, suggests that the superior parietal lobule also plays a crucial role in the interplay between action and perception. The present review proposes a novel model that is inclusive of the superior parietal regions and their relative contribution to the different action and perception interfaces.
Collapse
Affiliation(s)
- A Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy.
| | - P Sanz Diez
- Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430, Aalen, Germany; Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Elfriede-Aulhorn-Straße 7, 72076, Tuebingen, Germany
| | - M Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| | - M De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy
| | - P Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126, Bologna, Italy; Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Via Galliera 3 Bologna, 40121, Bologna, Italy
| |
Collapse
|
18
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
19
|
Henderson J, Mari T, Hewitt D, Newton‐Fenner A, Giesbrecht T, Marshall A, Stancak A, Fallon N. The neural correlates of texture perception: A systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Brain Behav 2023; 13:e3264. [PMID: 37749852 PMCID: PMC10636420 DOI: 10.1002/brb3.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Humans use discriminative touch to perceive texture through dynamic interactions with surfaces, activating low-threshold mechanoreceptors in the skin. It was largely assumed that texture was processed in primary somatosensory regions in the brain; however, imaging studies indicate heterogeneous patterns of brain activity associated with texture processing. METHODS To address this, we conducted a coordinate-based activation likelihood estimation meta-analysis of 13 functional magnetic resonance imaging studies (comprising 15 experiments contributing 228 participants and 275 foci) selected by a systematic review. RESULTS Concordant activations for texture perception occurred in the left primary somatosensory and motor regions, with bilateral activations in the secondary somatosensory, posterior insula, and premotor and supplementary motor cortices. We also evaluated differences between studies that compared touch processing to non-haptic control (e.g., rest or visual control) or those that used haptic control (e.g., shape or orientation perception) to specifically investigate texture encoding. Studies employing a haptic control revealed concordance for texture processing only in the left secondary somatosensory cortex. Contrast analyses demonstrated greater concordance of activations in the left primary somatosensory regions and inferior parietal cortex for studies with a non-haptic control, compared to experiments accounting for other haptic aspects. CONCLUSION These findings suggest that texture processing may recruit higher order integrative structures, and the secondary somatosensory cortex may play a key role in encoding textural properties. The present study provides unique insight into the neural correlates of texture-related processing by assessing the influence of non-textural haptic elements and identifies opportunities for a future research design to understand the neural processing of texture.
Collapse
Affiliation(s)
| | - Tyler Mari
- School of PsychologyUniversity of LiverpoolLiverpoolUK
| | | | - Alice Newton‐Fenner
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | | - Alan Marshall
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
| | - Andrej Stancak
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
20
|
Robles CM, Anderson B, Dukelow SP, Striemer CL. Assessment and recovery of visually guided reaching deficits following cerebellar stroke. Neuropsychologia 2023; 188:108662. [PMID: 37598808 DOI: 10.1016/j.neuropsychologia.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The cerebellum is known to play an important role in the coordination and timing of limb movements. The present study focused on how reach kinematics are affected by cerebellar lesions to quantify both the presence of motor impairment, and recovery of motor function over time. In the current study, 12 patients with isolated cerebellar stroke completed clinical measures of cognitive and motor function, as well as a visually guided reaching (VGR) task using the Kinarm exoskeleton at baseline (∼2 weeks), as well as 6, 12, and 24-weeks post-stroke. During the VGR task, patients made unassisted reaches with visual feedback from a central 'start' position to one of eight targets arranged in a circle. At baseline, 6/12 patients were impaired across several parameters of the VGR task compared to a Kinarm normative sample (n = 307), revealing deficits in both feed-forward and feedback control. The only clinical measures that consistently demonstrated impairment were the Purdue Pegboard Task (PPT; 9/12 patients) and the Montreal Cognitive Assessment (6/11 patients). Overall, patients who were impaired at baseline showed significant recovery by the 24-week follow-up for both VGR and the PPT. A lesion overlap analysis indicated that the regions most commonly damaged in 5/12 patients (42% overlap) were lobule IX and Crus II of the right cerebellum. A lesion subtraction analysis comparing patients who were impaired (n = 6) vs. unimpaired (n = 6) on the VGR task at baseline showed that the region most commonly damaged in impaired patients was lobule VIII of the right cerebellum (40% overlap). Our results lend further support to the notion that the cerebellum is involved in both feedforward and feedback control during reaching, and that cerebellar patients tend to recover relatively quickly overall. In addition, we argue that future research should study the effects of cerebellar damage on visuomotor control from a perception-action theoretical framework to better understand how the cerebellum works with the dorsal stream to control visually guided action.
Collapse
Affiliation(s)
- Chella M Robles
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Ranzini M, Ferrazzi G, D'Imperio D, Giustiniani A, Danesin L, D'Antonio V, Rigon E, Cacciante L, Rigon J, Meneghello F, Turolla A, Vallesi A, Semenza C, Burgio F. White matter tract disconnection in Gerstmann's syndrome: Insights from a single case study. Cortex 2023; 166:322-337. [PMID: 37478549 DOI: 10.1016/j.cortex.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/23/2023]
Abstract
It has been suggested that Gerstmann's syndrome is the result of subcortical disconnection rather than emerging from damage of a multifunctional brain region within the parietal lobe. However, patterns of white matter tract disconnection following parietal damage have been barely investigated. This single case study allows characterising Gerstmann's syndrome in terms of disconnected networks. We report the case of a left parietal patient affected by Gerstmann's tetrad: agraphia, acalculia, left/right orientation problems, and finger agnosia. Lesion mapping, atlas-based estimation of probability of disconnection, and DTI-based tractography revealed that the lesion was mainly located in the superior parietal lobule, and it caused disruption of both intraparietal tracts passing through the inferior parietal lobule (e.g., tracts connecting the angular, supramarginal, postcentral gyri, and the superior parietal lobule) and fronto-parietal long tracts (e.g., the superior longitudinal fasciculus). The lesion site appears to be located more superiorly as compared to the cerebral regions shown active by other studies during tasks impaired in the syndrome, and it reached the subcortical area potentially critical in the emergence of the syndrome, as hypothesised in previous studies. Importantly, the reconstruction of tracts connecting regions within the parietal lobe indicates that this critical subcortical area is mainly crossed by white matter tracts connecting the angular gyrus and the superior parietal lobule. Taken together, these findings suggest that this case study might be considered as empirical evidence of Gerstmann's tetrad caused by disconnection of intraparietal white matter tracts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Rigon
- IRCCS San Camillo Hospital, Lido of Venice, Italy
| | | | - Jessica Rigon
- UOC Cure Primarie - Distretto 3, Mirano - Dolo, AULSS 3, Serenissima, Italy
| | | | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Antonino Vallesi
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy
| | - Carlo Semenza
- Department of Neuroscience (DNS), University of Padova, Italy; Padova Neuroscience Center, University of Padova, Italy
| | | |
Collapse
|
22
|
Danielli E, Simard N, DeMatteo CA, Kumbhare D, Ulmer S, Noseworthy MD. A review of brain regions and associated post-concussion symptoms. Front Neurol 2023; 14:1136367. [PMID: 37602240 PMCID: PMC10435092 DOI: 10.3389/fneur.2023.1136367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The human brain is an exceptionally complex organ that is comprised of billions of neurons. Therefore, when a traumatic event such as a concussion occurs, somatic, cognitive, behavioral, and sleep impairments are the common outcome. Each concussion is unique in the sense that the magnitude of biomechanical forces and the direction, rotation, and source of those forces are different for each concussive event. This helps to explain the unpredictable nature of post-concussion symptoms that can arise and resolve. The purpose of this narrative review is to connect the anatomical location, healthy function, and associated post-concussion symptoms of some major cerebral gray and white matter brain regions and the cerebellum. As a non-exhaustive description of post-concussion symptoms nor comprehensive inclusion of all brain regions, we have aimed to amalgamate the research performed for specific brain regions into a single article to clarify and enhance clinical and research concussion assessment. The current status of concussion diagnosis is highly subjective and primarily based on self-report of symptoms, so this review may be able to provide a connection between brain anatomy and the clinical presentation of concussions to enhance medical imaging assessments. By explaining anatomical relevance in terms of clinical concussion symptom presentation, an increased understanding of concussions may also be achieved to improve concussion recognition and diagnosis.
Collapse
Affiliation(s)
- Ethan Danielli
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Nicholas Simard
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Carol A. DeMatteo
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Rehabilitation Sciences, McMaster University, Hamilton, ON, Canada
| | - Dinesh Kumbhare
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephan Ulmer
- Neurorad.ch, Zurich, Switzerland
- Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Michael D. Noseworthy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
- ARiEAL Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Stammler B, Rosenzopf H, Röhrig L, Smaczny S, Matuz T, Schenk T, Karnath HO. [Clinical examination of spatial neglect and other disorders of spatial cognition]. DER NERVENARZT 2023; 94:744-756. [PMID: 37535111 DOI: 10.1007/s00115-023-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
Neglect occurring after stroke, neoplasms or degenerative processes can lead to considerable disability in everyday life as can other disorders of spatial orientation. Therefore, a dedicated examination and early diagnostic classification are obligatory. Behavioral tests are helpful in this respect, enabling the clinician to obtain an initial overview of the existing deficits even at the patient's bedside. The clinical (bedside) examination of spatial neglect as well as the corresponding differential diagnostic procedure for the clarification of (possibly additionally or exclusively existing) hemianopia and extinction, as well as the examination of disorders of visuospatial perception, visuoconstructive disorders, topographic disorders, Bálint's syndrome, simultanagnosia, and optic ataxia are presented. The presentation is based on the newly revised (year 2023) guidelines of the Association of the Scientific Medical Societies in Germany (AWMF) on this subject area.
Collapse
Affiliation(s)
- Britta Stammler
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Hannah Rosenzopf
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Lisa Röhrig
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Stefan Smaczny
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Tamara Matuz
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland
| | - Thomas Schenk
- Ludwig-Maximilians-Universität München, Department Psychologie - Neuropsychologie, Leopoldstraße 13, 80802, München, Deutschland
| | - Hans-Otto Karnath
- Zentrum für Neurologie, Sektion für Neuropsychologie, Hertie-Institut für klinische Hirnforschung, Universität Tübingen, 72076, Tübingen, Deutschland.
- Zentrum für Neurologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| |
Collapse
|
24
|
Studnicki A, Ferris DP. Parieto-Occipital Electrocortical Dynamics during Real-World Table Tennis. eNeuro 2023; 10:ENEURO.0463-22.2023. [PMID: 37037603 PMCID: PMC10158585 DOI: 10.1523/eneuro.0463-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 04/12/2023] Open
Abstract
Traditional human electroencephalography (EEG) experiments that study visuomotor processing use controlled laboratory conditions with limited ecological validity. In the real world, the brain integrates complex, dynamic, multimodal visuomotor cues to guide the execution of movement. The parietal and occipital cortices are especially important in the online control of goal-directed actions. Table tennis is a whole-body, responsive activity requiring rapid visuomotor integration that presents a myriad of unanswered neurocognitive questions about brain function during real-world movement. The aim of this study was to quantify the electrocortical dynamics of the parieto-occipital cortices while playing a sport with high-density electroencephalography. We included analysis of power spectral densities (PSDs), event-related spectral perturbations, intertrial phase coherences (ITPCs), event-related potentials (ERPs), and event-related phase coherences of parieto-occipital source-localized clusters while participants played table tennis with a ball machine and a human. We found significant spectral power fluctuations in the parieto-occipital cortices tied to hit events. Ball machine trials exhibited more fluctuations in θ power around hit events, an increase in intertrial phase coherence and deflection in the event-related potential, and higher event-related phase coherence between parieto-occipital clusters as compared with trials with a human. Our results suggest that sport training with a machine elicits fundamentally different brain dynamics than training with a human.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
25
|
Rounis E, Binkofski F. Limb Apraxias: The Influence of Higher Order Perceptual and Semantic Deficits in Motor Recovery After Stroke. Stroke 2023; 54:30-43. [PMID: 36542070 DOI: 10.1161/strokeaha.122.037948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stroke is a leading cause of disability worldwide. Limb apraxia is a group of higher order motor disorders associated with greater disability and dependence after stroke. Original neuropsychology studies distinguished separate brain pathways involved in perception and action, known as the dual stream hypothesis. This framework has allowed a better understanding of the deficits identified in Limb Apraxia. In this review, we propose a hierarchical organization of this disorder, in which a distinction can be made between several visuomotor pathways that lead to purposeful actions. Based on this, executive apraxias (such as limb kinetic apraxia) cause deficits in executing fine motor hand skills, and intermediate apraxias (such as optic ataxia and tactile apraxia) cause deficits in reaching to grasp and manipulating objects in space. These disorders usually affect the contralesional limb. A further set of disorders collectively known as limb apraxias include deficits in gesture imitation, pantomime, gesture recognition, and object use. These deficits are due to deficits in integrating perceptual and semantic information to generate complex movements. Limb apraxias are usually caused by left-hemisphere lesions in right-handed stroke patients, affecting both limbs. The anterior- to posterior-axis of brain areas are disrupted depending on the increasing involvement of perceptual and semantic processes with each condition. Lower-level executive apraxias are linked to lesions in the frontal lobe and the basal ganglia, while intermediate apraxias are linked to lesions in dorso-dorsal subdivisions of the dorsal fronto-parietal networks. Limb apraxias can be caused by lesions in both dorsal and ventral subdivisions including the ventro-dorsal stream and a third visuomotor pathway, involved in body schema and social cognition. Rehabilitation of these disorders with behavioral therapies has aimed to either restore perceptuo-semantic deficits or compensate to overcome these deficits. Further studies are required to better stratify patients, using modern neurophysiology and neuroimaging techniques, to provide targeted and personalized therapies for these disorders in the future.
Collapse
Affiliation(s)
- Elisabeth Rounis
- Chelsea and Westminster NHS Foundation Trust, West Middlesex University Hospital, Isleworth, United Kingdom (E.R.).,MRC Cognition and Brain Sciences Unit, University of Cambridge, United Kingdom (E.R.).,Department of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom (E.R.)
| | - Ferdinand Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, University Hospital RWTH Aachen, Germany (F.B.).,Institute for Neuroscience and Medicine (INM-4), Research Center Juelich GmbH, Germany (F.B.).,Juelich Aachen Research Alliance - JARA, Germany (F.B.)
| |
Collapse
|
26
|
Sartin S, Ranzini M, Scarpazza C, Monaco S. Cortical areas involved in grasping and reaching actions with and without visual information: An ALE meta-analysis of neuroimaging studies. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100070. [PMID: 36632448 PMCID: PMC9826890 DOI: 10.1016/j.crneur.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
The functional specialization of the ventral stream in Perception and the dorsal stream in Action is the cornerstone of the leading model proposed by Goodale and Milner in 1992. This model is based on neuropsychological evidence and has been a matter of debate for almost three decades, during which the dual-visual stream hypothesis has received much attention, including support and criticism. The advent of functional magnetic resonance imaging (fMRI) has allowed investigating the brain areas involved in Perception and Action, and provided useful data on the functional specialization of the two streams. Research on this topic has been quite prolific, yet no meta-analysis so far has explored the spatial convergence in the involvement of the two streams in Action. The present meta-analysis (N = 53 fMRI and PET studies) was designed to reveal the specific neural activations associated with Action (i.e., grasping and reaching movements), and the extent to which visual information affects the involvement of the two streams during motor control. Our results provide a comprehensive view of the consistent and spatially convergent neural correlates of Action based on neuroimaging studies conducted over the past two decades. In particular, occipital-temporal areas showed higher activation likelihood in the Vision compared to the No vision condition, but no difference between reach and grasp actions. Frontal-parietal areas were consistently involved in both reach and grasp actions regardless of visual availability. We discuss our results in light of the well-established dual-visual stream model and frame these findings in the context of recent discoveries obtained with advanced fMRI methods, such as multivoxel pattern analysis.
Collapse
Affiliation(s)
- Samantha Sartin
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | | | - Cristina Scarpazza
- Department of General Psychology, University of Padua, Italy,IRCCS San Camillo Hospital, Venice, Italy
| | - Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy,Corresponding author. CIMeC - Center for Mind/Brain Sciences, University of Trento, Via delle Regole 101, 38123, Trento, Italy.
| |
Collapse
|
27
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
28
|
Bosco A, Bertini C, Filippini M, Foglino C, Fattori P. Machine learning methods detect arm movement impairments in a patient with parieto-occipital lesion using only early kinematic information. J Vis 2022; 22:3. [PMID: 36069943 PMCID: PMC9465938 DOI: 10.1167/jov.22.10.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Patients with lesions of the parieto-occipital cortex typically misreach visual targets that they correctly perceive (optic ataxia). Although optic ataxia was described more than 30 years ago, distinguishing this condition from physiological behavior using kinematic data is still far from being an achievement. Here, combining kinematic analysis with machine learning methods, we compared the reaching performance of a patient with bilateral occipitoparietal damage with that of 10 healthy controls. They performed visually guided reaches toward targets located at different depths and directions. Using the horizontal, sagittal, and vertical deviation of the trajectories, we extracted classification accuracy in discriminating the reaching performance of patient from that of controls. Specifically, accurate predictions of the patient's deviations were detected after the 20% of the movement execution in all the spatial positions tested. This classification based on initial trajectory decoding was possible for both directional and depth components of the movement, suggesting the possibility of applying this method to characterize pathological motor behavior in wider frameworks.
Collapse
Affiliation(s)
- Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, Italy
- CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Foglino
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
The posterior parietal area V6A: an attentionally-modulated visuomotor region involved in the control of reach-toF-grasp action. Neurosci Biobehav Rev 2022; 141:104823. [PMID: 35961383 DOI: 10.1016/j.neubiorev.2022.104823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the macaque, the posterior parietal area V6A is involved in the control of all phases of reach-to-grasp actions: the transport phase, given that reaching neurons are sensitive to the direction and amplitude of arm movement, and the grasping phase, since reaching neurons are also sensitive to wrist orientation and hand shaping. Reaching and grasping activity are corollary discharges which, together with the somatosensory and visual signals related to the same movement, allow V6A to act as a state estimator that signals discrepancies during the motor act in order to maintain consistency between the ongoing movement and the desired one. Area V6A is also able to encode the target of an action because of gaze-dependent visual neurons and real-position cells. Here, we advance the hypothesis that V6A also uses the spotlight of attention to guide goal-directed movements of the hand, and hosts a priority map that is specific for the guidance of reaching arm movement, combining bottom-up inputs such as visual responses with top-down signals such as reaching plans.
Collapse
|
30
|
Hand constraint reduces brain activity and affects the speed of verbal responses on semantic tasks. Sci Rep 2022; 12:13545. [PMID: 35941140 PMCID: PMC9360433 DOI: 10.1038/s41598-022-17702-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
According to the theory of embodied cognition, semantic processing is closely coupled with body movements. For example, constraining hand movements inhibits memory for objects that can be manipulated with the hands. However, it has not been confirmed whether body constraint reduces brain activity related to semantics. We measured the effect of hand constraint on semantic processing in the parietal lobe using functional near-infrared spectroscopy. A pair of words representing the names of hand-manipulable (e.g., cup or pencil) or nonmanipulable (e.g., windmill or fountain) objects were presented, and participants were asked to identify which object was larger. The reaction time (RT) in the judgment task and the activation of the left intraparietal sulcus (LIPS) and left inferior parietal lobule (LIPL), including the supramarginal gyrus and angular gyrus, were analyzed. We found that constraint of hand movement suppressed brain activity in the LIPS toward hand-manipulable objects and affected RT in the size judgment task. These results indicate that body constraint reduces the activity of brain regions involved in semantics. Hand constraint might inhibit motor simulation, which, in turn, would inhibit body-related semantic processing.
Collapse
|
31
|
Drudik K, Zlatkina V, Petrides M. Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain. Cereb Cortex 2022; 33:1230-1245. [PMID: 35388402 PMCID: PMC9930623 DOI: 10.1093/cercor/bhac132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
The superior parietal sulcus (SPS) is the defining sulcus within the superior parietal lobule (SPL). The morphological variability of the SPS was examined in individual magnetic resonance imaging (MRI) scans of the human brain that were registered to the Montreal Neurological Institute (MNI) standard stereotaxic space. Two primary morphological patterns were consistently identified across hemispheres: (i) the SPS was identified as a single sulcus, separating the anterior from the posterior part of the SPL and (ii) the SPS was found as a complex of multiple sulcal segments. These morphological patterns were subdivided based on whether the SPS or SPS complex remained distinct or merged with surrounding parietal sulci. The morphological variability and spatial extent of the SPS were quantified using volumetric and surface spatial probabilistic mapping. The current investigation established consistent morphological patterns in a common anatomical space, the MNI stereotaxic space, to facilitate structural and functional analyses within the SPL.
Collapse
Affiliation(s)
- Kristina Drudik
- Corresponding author: Kristina Drudik, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| |
Collapse
|
32
|
Albini F, Pisoni A, Salvatore A, Calzolari E, Casati C, Marzoli SB, Falini A, Crespi SA, Godi C, Castellano A, Bolognini N, Vallar G. Aftereffects to Prism Exposure without Adaptation: A Single Case Study. Brain Sci 2022; 12:480. [PMID: 35448011 PMCID: PMC9028811 DOI: 10.3390/brainsci12040480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Visuo-motor adaptation to optical prisms (Prism Adaptation, PA), displacing the visual scene laterally, is a behavioral method used for the experimental investigation of visuomotor plasticity, and, in clinical settings, for temporarily ameliorating and rehabilitating unilateral spatial neglect. This study investigated the building up of PA, and the presence of the typically occurring subsequent Aftereffects (AEs) in a brain-damaged patient (TMA), suffering from apperceptive agnosia and a right visual half-field defect, with bilateral atrophy of the parieto-occipital cortices, regions involved in PA and AEs. Base-Right prisms and control neutral lenses were used. PA was achieved by repeated pointing movements toward three types of stimuli: visual, auditory, and bimodal audio-visual. The presence and the magnitude of AEs were assessed by proprioceptive, visual, visuo-proprioceptive, and auditory-proprioceptive straight-ahead pointing tasks. The patient's brain connectivity was investigated by Diffusion Tensor Imaging (DTI). Unlike control participants, TMA did not show any adaptation to prism exposure, but her AEs were largely preserved. These findings indicate that AEs may occur even in the absence of PA, as indexed by the reduction of the pointing error, showing a dissociation between the classical measures of PA and AEs. In the PA process, error reduction, and its feedback, may be less central to the building up of AEs, than the sensorimotor pointing activity per se.
Collapse
Affiliation(s)
- Federica Albini
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy; (A.P.); (A.S.); (N.B.)
| | - Alberto Pisoni
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy; (A.P.); (A.S.); (N.B.)
| | - Anna Salvatore
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy; (A.P.); (A.S.); (N.B.)
| | - Elena Calzolari
- Neuro-Otology Unit, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Carlotta Casati
- Experimental Laboratory of Research in Clinical Neuropsychology, IRCCS Istituto Auxologico Italiano, 20155 Milano, Italy;
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, 20155 Milano, Italy
| | - Stefania Bianchi Marzoli
- Laboratory of Neuro-Ophthalmology and Ocular Electrophysiology, IRCCS Istituto Auxologico Italiano, 20155 Milano, Italy;
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milano, Italy; (A.F.); (S.A.C.); (C.G.); (A.C.)
| | - Sofia Allegra Crespi
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milano, Italy; (A.F.); (S.A.C.); (C.G.); (A.C.)
| | - Claudia Godi
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milano, Italy; (A.F.); (S.A.C.); (C.G.); (A.C.)
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132 Milano, Italy; (A.F.); (S.A.C.); (C.G.); (A.C.)
| | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy; (A.P.); (A.S.); (N.B.)
- Experimental Laboratory of Research in Clinical Neuropsychology, IRCCS Istituto Auxologico Italiano, 20155 Milano, Italy;
| | - Giuseppe Vallar
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy; (A.P.); (A.S.); (N.B.)
- Experimental Laboratory of Research in Clinical Neuropsychology, IRCCS Istituto Auxologico Italiano, 20155 Milano, Italy;
| |
Collapse
|
33
|
Kozuch B. Conscious vision guides motor action—rarely. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2044461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Benjamin Kozuch
- Philosophy Department, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
34
|
Unilateral resection of both cortical visual pathways in a pediatric patient alters action but not perception. Neuropsychologia 2022; 168:108182. [PMID: 35182580 DOI: 10.1016/j.neuropsychologia.2022.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
Abstract
The human cortical visual system consists of two major pathways, a ventral pathway that subserves perception and a dorsal pathway that primarily subserves visuomotor control. Previous studies have found that children with cortical resections of the ventral visual pathway retain largely normal visuoperceptual abilities. Whether visually guided actions, supported by computations carried out by the dorsal pathway, follow a similar pattern of preservation remains unknown. To address this question, we examined visuoperceptual and visuomotor behaviors in a pediatric patient, TC, who underwent a cortical resection that included portions of the left ventral and dorsal pathways. We collected kinematic data when TC used her right and left hands to perceptually estimate the width of blocks that varied in width and length, and, separately, to grasp the same blocks. TC's perceptual estimation performance was comparable to that of controls, independent of the hand used. In contrast, relative to controls, she showed reduced visuomotor sensitivity to object shape and this was more evident when she grasped the objects with her contralesional right hand. These results provide novel evidence for a striking difference in the competence of the two visual pathways to cortical injuries acquired in childhood.
Collapse
|
35
|
Abstract
The Wernicke-Lichtheim-Geschwind model of the neurology of language has served the field well despite its limited scope. More recent work has updated the basic architecture of the classical model and expanded its scope. This chapter briefly reviews the Wernicke-Lichtheim-Geschwind model and points out its shortcomings, then describes and motivates the dual stream model and how it solves several empirical shortcomings of the classical model. The chapter also (i) underscores how the dual stream model relates to the organization of nonlinguistic cortical networks, integrating language systems with the broader functional-anatomical landscape, (ii) describes recent work that further specifies the computational architecture and neural correlates of the dorsal speech production system, and (iii) summarizes recent extensions of the architectural framework to include syntax.
Collapse
|
36
|
Mitchell AG, Rossit S, Pal S, Hornberger M, Warman A, Kenning E, Williamson L, Shapland R, McIntosh RD. Peripheral reaching in Alzheimer's disease and mild cognitive impairment. Cortex 2022; 149:29-43. [PMID: 35184013 PMCID: PMC9007170 DOI: 10.1016/j.cortex.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Recent evidence has implicated areas within the posterior parietal cortex (PPC) as among the first to show pathophysiological changes in Alzheimer's disease (AD). Focal brain damage to the PPC can cause optic ataxia, a specific deficit in reaching to peripheral targets. The present study describes a novel investigation of peripheral reaching ability in AD and mild cognitive impairment (MCI), to assess whether this deficit is common among these patient groups. Individuals with a diagnosis of mild-to-moderate AD, or MCI, and healthy older adult controls were required to reach to targets presented in central vision or in peripheral vision using two reaching tasks; one in the lateral plane and another presented in radial depth. Pre-registered case–control comparisons identified 1/10 MCI and 3/17 AD patients with significant peripheral reaching deficits at the individual level, but group-level comparisons did not find significantly higher peripheral reaching error in either AD or MCI by comparison to controls. Exploratory analyses showed significantly increased reach duration in both AD and MCI groups relative to controls, accounted for by an extended Deceleration Time of the reach movement. These findings suggest that peripheral reaching deficits like those observed in optic ataxia are not a common feature of AD. However, we show that cognitive decline is associated with a generalised slowing of movement which may indicate a visuomotor deficit in reach planning or online guidance.
Collapse
Affiliation(s)
- Alexandra G Mitchell
- Department of Psychology, University of Edinburgh, Edinburgh, UK; Center for Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | - Stephanie Rossit
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
| | | | - Annie Warman
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK.
| | - Elise Kenning
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Laura Williamson
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | - Rebecca Shapland
- School of Psychology, Lawrence Stenhouse Building, University of East Anglia, Norwich, UK
| | | |
Collapse
|
37
|
Jurkiewicz T, Salemme R, Froment C, Pisella L. Role of the Dorsal Posterior Parietal Cortex in the Accurate Perception of Object Magnitude in Peripheral Vision. Iperception 2021; 12:20416695211058476. [PMID: 34900214 PMCID: PMC8652191 DOI: 10.1177/20416695211058476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Following superior parietal lobule and intraparietal sulcus (SPL-IPS) damage, optic ataxia patients underestimate the distance of objects in the ataxic visual field such that they produce hypometric pointing errors. The metrics of these pointing errors relative to visual target eccentricity fit the cortical magnification of central vision. The SPL-IPS would therefore implement an active “peripheral magnification” to match the real metrics of the environment for accurate action. We further hypothesized that this active compensation of the central magnification by the SPL-IPS contributes to actual object’ size perception in peripheral vision. Three optic ataxia patients and 10 age-matched controls were assessed in comparing the thickness of two rectangles flashed simultaneously, one in central and another in peripheral vision. The bilateral optic ataxia patient exhibited exaggerated underestimation bias and uncertainty compared to the control group in both visual fields. The two unilateral optic ataxia patients exhibited a pathological asymmetry between visual fields: size perception performance was affected in their contralesional peripheral visual field compared to their healthy side. These results demonstrate that the SPL-IPS contributes to accurate size perception in peripheral vision.
Collapse
Affiliation(s)
- Tristan Jurkiewicz
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Romeo Salemme
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Caroline Froment
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), Université de Lyon, Bron, France
| |
Collapse
|
38
|
The structure of the superior and inferior parietal lobes predicts inter-individual suitability for virtual reality. Sci Rep 2021; 11:23688. [PMID: 34880322 PMCID: PMC8654954 DOI: 10.1038/s41598-021-02957-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023] Open
Abstract
The global virtual reality (VR) market is significantly expanding and being challenged with an increased demand owing to COVID-19. Unfortunately, VR is not useful for everyone due to large interindividual variability existing in VR suitability. To understand the neurobiological basis of this variability, we obtained neural structural and functional data from the participants using 3T magnetic resonance imaging. The participants completed one of two tasks (sports training or cognitive task) using VR, which differed in the time scale (months/minutes) and domain (motor learning/attention task). Behavioral results showed that some participants improved their motor skills in the real world after 1-month training in the virtual space or obtained high scores in the 3D attention task (high suitability for VR), whereas others did not (low suitability for VR). Brain structure analysis revealed that the structural properties of the superior and inferior parietal lobes contain information that can predict an individual’s suitability for VR.
Collapse
|
39
|
Whitwell RL, Striemer CL, Cant JS, Enns JT. The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale. Curr Neurol Neurosci Rep 2021; 21:54. [PMID: 34586544 DOI: 10.1007/s11910-021-01139-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Historical and contemporary treatments of visual agnosia and neglect regard these disorders as largely unrelated. It is thought that damage to different neural processes leads directly to one or the other condition, yet apperceptive variants of agnosia and object-centered variants of neglect share remarkably similar deficits in the quality of conscious experience. Here we argue for a closer association between "apperceptive" variants of visual agnosia and "object-centered" variants of visual neglect. We introduce a theoretical framework for understanding these conditions based on "scale attention", which refers to selecting boundary and surface information at different levels of the structural hierarchy in the visual array. RECENT FINDINGS We review work on visual agnosia, the cortical structures and cortico-cortical pathways that underlie visual perception, visuospatial neglect and object-centered neglect, and attention to scale. We highlight direct and indirect pathways involved in these disorders and in attention to scale. The direct pathway involves the posterior vertical segments of the superior longitudinal fasciculus that are positioned to link the established dorsal and ventral attentional centers in the parietal cortex with structures in the inferior occipitotemporal cortex associated with visual apperceptive agnosia. The connections in the right hemisphere appear to be more important for visual conscious experience, whereas those in the left hemisphere appear to be more strongly associated with the planning and execution of visually guided grasps directed at multi-part objects such as tools. In the latter case, semantic and functional information must drive the selection of the appropriate hand posture and grasp points on the object. This view is supported by studies of grasping in patients with agnosia and in patients with neglect that show that the selection of grasp points when picking up a tool involves both scale attention and semantic contributions from inferotemporal cortex. The indirect pathways, which include the inferior fronto-occipital and horizontal components of the superior longitudinal fasciculi, involve the frontal lobe, working memory and the "multiple demands" network, which can shape the content of visual awareness through the maintenance of goal- and task-based abstractions and their influence on scale attention. Recent studies of human cortico-cortical pathways necessitate revisions to long-standing theoretical views on visual perception, visually guided action and their integrations. We highlight findings from a broad sample of seemingly disparate areas of research to support the proposal that attention to scale is necessary for typical conscious visual experience and for goal-directed actions that depend on functional and semantic information. Furthermore, we suggest that vertical pathways between the parietal and occipitotemporal cortex, along with indirect pathways that involve the premotor and prefrontal cortex, facilitate the operations of scale attention.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | - Jonathan S Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
40
|
Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule. Brain Struct Funct 2021; 226:2951-2966. [PMID: 34524542 PMCID: PMC8541979 DOI: 10.1007/s00429-021-02377-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
The dorsal visual stream, the cortical circuit that in the primate brain is mainly dedicated to the visual control of actions, is split into two routes, a lateral and a medial one, both involved in coding different aspects of sensorimotor control of actions. The lateral route, named "lateral grasping network", is mainly involved in the control of the distal part of prehension, namely grasping and manipulation. The medial route, named "reach-to-grasp network", is involved in the control of the full deployment of prehension act, from the direction of arm movement to the shaping of the hand according to the object to be grasped. In macaque monkeys, the reach-to-grasp network (the target of this review) includes areas of the superior parietal lobule (SPL) that hosts visual and somatosensory neurons well suited to control goal-directed limb movements toward stationary as well as moving objects. After a brief summary of the neuronal functional properties of these areas, we will analyze their cortical and thalamic inputs thanks to retrograde neuronal tracers separately injected into the SPL areas V6, V6A, PEc, and PE. These areas receive visual and somatosensory information distributed in a caudorostral, visuosomatic trend, and some of them are directly connected with the dorsal premotor cortex. This review is particularly focused on the origin and type of visual information reaching the SPL, and on the functional role this information can play in guiding limb interaction with objects in structured and dynamic environments.
Collapse
|
41
|
Yang SL, Han X, Dong Q. Teaching Video NeuroImages: Optic Ataxia as the Presenting Sign of the Heidenhain Variant of Creutzfeldt-Jakob Disease. Neurology 2021; 97:e326-e328. [PMID: 33903196 DOI: 10.1212/wnl.0000000000012057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shi-Lin Yang
- From the Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Han
- From the Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qiang Dong
- From the Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Hesse C, Bonnesen K, Franz VH, Schenk T. Card posting does not rely on visual orientation: A challenge to past neuropsychological dissociations. Neuropsychologia 2021; 159:107920. [PMID: 34166669 DOI: 10.1016/j.neuropsychologia.2021.107920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
A common set of tasks frequently employed in the neuropsychological assessment of patients with visuomotor or perceptual deficits are the card-posting and the perceptual orientation matching tasks. In the posting task, patients have to post a card (or their hand) through a slot of varying orientations while the matching task requires them to indicate the slot's orientation as accurately as possible. Observations that damage to different areas of the brain (dorsal vs. ventral stream) is associated with selective impairment in one of the tasks - but not the other - has led to the suggestion that different cortical pathways process visual orientation information for perception versus action. In three experiments, we show that this conclusion may be premature as posting does not seem to rely on the processing of visual orientation information but is instead performed using obstacle avoidance strategies that require an accurate judgement of egocentric distances between the card's and the slot's edges. Specifically, we found that while matching is susceptible to the oblique effect (i.e., common perceptual orientation bias with higher accuracy for cardinal than oblique orientations), this was not the case for posting, neither in immediate nor in memory-guided conditions. In contrast to matching, posting errors primarily depended on biomechanical demands and reflected a preference for performing efficient and comfortable movements. Thus, we suggest that previous dissociations between perceptual and visuomotor performance in letter posting tasks are better explained by impairments in egocentric and allocentric spatial processing than by independent visual processing systems.
Collapse
Affiliation(s)
| | | | - Volker H Franz
- Experimental Cognitive Science, Eberhard Karls University, Tuebingen, Germany
| | - Thomas Schenk
- Department of Neuropsychology, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
43
|
Patients with lesions to the intraparietal cortex show greater proprioceptive realignment after prism adaptation: Evidence from open-loop pointing and manual straight ahead. Neuropsychologia 2021; 158:107913. [PMID: 34139246 DOI: 10.1016/j.neuropsychologia.2021.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
Reaching toward a target viewed through laterally refracting prisms results in adaptation of both visual and (limb) proprioceptive spatial representations. Common ways to measure adaptation after-effect are to ask a person to point straight ahead with their eyes closed ("manual straight ahead", MSA), or to a seen target using their unseen hand ("open-loop pointing", OLP). MSA measures changes in proprioception only, whereas OLP measures the combined visual and proprioceptive shift. The behavioural and neurological mechanisms of prism adaptation have come under scrutiny following reports of reduced hemispatial neglect in patients following this procedure. We present evidence suggesting that shifts in proprioceptive spatial representations induced by prism adaptation are larger following lesions to the intraparietal cortex - a brain region that integrates retinotopic visual signals with signals of eye position in the orbit and that is activated during prism adaptation. Six healthy participants and six patients with unilateral intraparietal cortex lesions underwent prism adaptation. After-effects were measured with OLP and MSA. After-effects of control participants were larger when measured with OLP than with MSA, consistent with previous research and with the additional contribution of visual shift to OLP after-effects. However, patients' OLP shifts were not significantly different to their MSA shifts. We conclude that, for the patients, correction of pointing errors during prism adaptation involved proportionally more changes to arm proprioception than for controls. Since lesions to intraparietal cortex led to enhanced realignment of arm proprioceptive representations, our results indirectly suggest that the intraparietal cortex could be key for visual realignment.
Collapse
|
44
|
Abstract
This chapter starts by reviewing the various interpretations of Bálint syndrome over time. We then develop a novel integrative view in which we propose that the various symptoms, historically reported and labeled by various authors, result from a core mislocalization deficit. This idea is in accordance with our previous proposal that the core deficit of Bálint syndrome is attentional (Pisella et al., 2009, 2013, 2017) since covert attention improves spatial resolution in visual periphery (Yeshurun and Carrasco, 1998); a deficit of covert attention would thus increase spatial uncertainty and thereby impair both visual object identification and visuomotor accuracy. In peripheral vision, we perceive the intrinsic characteristics of the perceptual elements surrounding us, but not their precise localization (Rosenholtz et al., 2012a,b), such that without covert attention we cannot organize them to their respective and recognizable objects; this explains why perceptual symptoms (simultanagnosia, neglect) could result from visual mislocalization. The visuomotor symptoms (optic ataxia) can be accounted for by both visual and proprioceptive mislocalizations in an oculocentric reference frame, leading to field and hand effects, respectively. This new pathophysiological account is presented along with a model of posterior parietal cortex organization in which the superior part is devoted to covert attention, while the right inferior part is involved in visual remapping. When the right inferior parietal cortex is damaged, additional representational mislocalizations across saccades worsen the clinical picture of peripheral mislocalizations due to an impairment of covert attention.
Collapse
|
45
|
Aguilar Ros A, Mitchell AG, Ng YW, McIntosh RD. Attention attracts action in healthy participants: An insight into optic ataxia? Cortex 2021; 137:149-159. [PMID: 33611228 DOI: 10.1016/j.cortex.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
Patients with optic ataxia following lesions to superior parts of the posterior parietal cortex make large errors when reaching to targets in the peripheral visual field. These errors are characterised by a contraction, or attraction, towards the point of fixation. These patients also have a reduced ability to allocate visual attention away from the point of fixation, but it is unclear whether the core symptom of misreaching is related to these attentional problems. In neurologically-intact adults, we tested the effect of an attention-demanding dual-task performed at fixation upon visually-guided reaching to peripheral targets. The dual task was associated with delayed movement initiation, and a shortened deceleration phase of movement suggesting a reduced ability to benefit from online control. It also induced a small but consistent shift of reaching endpoints towards the side of fixation. Our experimental restriction of visual attention thus impaired both the programming and control of reaching, and induced a spatial pattern of errors that was qualitatively reminiscent of optic ataxia, albeit much less severe. These findings are consistent with a close functional link between attention and action in the healthy brain, and suggest that attentional disturbances could be a core component of optic ataxia following parietal lesions.
Collapse
Affiliation(s)
- Anna Aguilar Ros
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, UK
| | | | - Yu Wa Ng
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, UK
| | - Robert D McIntosh
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, UK.
| |
Collapse
|
46
|
Errante A, Ziccarelli S, Mingolla G, Fogassi L. Grasping and Manipulation: Neural Bases and Anatomical Circuitry in Humans. Neuroscience 2021; 458:203-212. [PMID: 33516776 DOI: 10.1016/j.neuroscience.2021.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/09/2023]
Abstract
Neurophysiological and neuroimaging evidence suggests a significant contribution of several brain areas, including subdivisions of the parietal and the premotor cortex, during the processing of different components of hand and arm movements. Many investigations improved our knowledge about the neural processes underlying the execution of reaching and grasping actions, while few studies have directly investigated object manipulation. Most studies on the latter topic concern the use of tools to achieve specific goals. Yet, there are very few studies on pure manipulation performed in order to explore and recognize objects, as well as on manipulation performed with a high level of manual dexterity. Another dimension that is quite neglected by the available studies on grasping and manipulation is, on the one hand, the contribution of the subcortical nodes, first of all the basal ganglia and cerebellum, to these functions, and, on the other hand, recurrent connections of these structures with cortical areas. In the first part, we have reviewed the parieto-premotor and subcortical circuits underlying reaching and grasping in humans, with a focus on functional neuroimaging data. Then, we have described the main structures recruited during object manipulation. We have also reported the contribution of recent structural connectivity techniques whereby the cortico-cortical and cortico-subcortical connections of grasping-related and manipulation-related areas in the human brain can be determined. Based on our review, we have concluded that studies on cortical and subcortical circuits involved in grasping and manipulation might be promising to provide new insights about motor learning and brain plasticity in patients with motor disorders.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Gloria Mingolla
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
47
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
48
|
Vialatte A, Yeshurun Y, Khan AZ, Rosenholtz R, Pisella L. Superior Parietal Lobule: A Role in Relative Localization of Multiple Different Elements. Cereb Cortex 2021; 31:658-671. [PMID: 32959044 DOI: 10.1093/cercor/bhaa250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simultanagnosia is an impairment in processing multiple visual elements simultaneously consecutive to bilateral posterior parietal damage, and neuroimaging data have specifically implicated the superior parietal lobule (SPL) in multiple element processing. We previously reported that a patient with focal and bilateral lesions of the SPL performed slower than controls in visual search but only for stimuli consisting of separable lines. Here, we further explored this patient's visual processing of plain object (colored disk) versus object consisting of separable lines (letter), presented in isolation (single object) versus in triplets. Identification of objects was normal in isolation but dropped to chance level when surrounded by distracters, irrespective of eccentricity and spacing. We speculate that this poor performance reflects a deficit in processing objects' relative locations within the triplet (for colored disks), aggravated by a deficit in processing the relative location of each separable line (for letters). Confirming this, performance improved when the patient just had to detect the presence of a specific colored disk within the triplets (visual search instruction), while the inability to identify the middle letter was alleviated when the distracters were identical letters that could be grouped, thereby reducing the number of ways individual lines could be bound.
Collapse
Affiliation(s)
- A Vialatte
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Mouvement & Handicap, Neuro-Immersion Platforms, Lyon, France
| | - Y Yeshurun
- Psychology Department, University of Haifa, Haifa, Israel
| | - A Z Khan
- School of Optometry, University of Montreal, Montreal, Canada
| | - R Rosenholtz
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Pisella
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Mouvement & Handicap, Neuro-Immersion Platforms, Lyon, France
| |
Collapse
|
49
|
Rizzo JR, Beheshti M, Magasi S, Branch Coslett H, Amorapanth P. Rapid Yet Thorough Bedside Assessment of Eye-Hand Coordination. Arch Phys Med Rehabil 2020; 102:563-567. [PMID: 33308830 DOI: 10.1016/j.apmr.2020.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 10/22/2022]
|
50
|
Sakurai Y, Kakumoto T, Takenaka Y, Matsumoto H. Asymmetric Bálint's syndrome with multimodal agnosia, bilateral agraphesthesia, and ineffective kinesthetic reading due to subcortical hemorrhage in the left parieto-occipito-temporal area. Neurocase 2020; 26:328-339. [PMID: 33103577 DOI: 10.1080/13554794.2020.1831546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report a patient with asymmetric Bálint's syndrome (predominantly right-sided oculomotor apraxia and simultanagnosia and optic ataxia for the right hemispace), and multimodal agnosia (apperceptive visual agnosia and bilateral associative tactile agnosia) with accompanying right hemianopia, bilateral agraphesthesia, hemispatial neglect, global alexia with unavailable kinesthetic reading, and lexical agraphia for kanji (Japanese morphograms), after hemorrhage in the left parieto-occipito-temporal area. The coexistence of tactile agnosia, bilateral agraphesthesia, and ineffective kinesthetic reading suggests that tactile-kinesthetic information can be interrupted because of damage to the fiber connection from the parietal lobe to the occipito-temporal area, leading to these tactually related cognitive impairments.
Collapse
Affiliation(s)
- Yasuhisa Sakurai
- Department of Neurology, Mitsui Memorial Hospital , Tokyo, Japan
| | - Toshiyuki Kakumoto
- Department of Neurology, Mitsui Memorial Hospital , Tokyo, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo , Tokyo, Japan
| | - Yuto Takenaka
- Department of Nephrology, Mitsui Memorial Hospital , Tokyo, Japan
| | | |
Collapse
|