1
|
Carroll E, Scaber J, Huber KVM, Brennan PE, Thompson AG, Turner MR, Talbot K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin Drug Discov 2025; 20:447-464. [PMID: 40029669 PMCID: PMC11974926 DOI: 10.1080/17460441.2025.2474661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Identifying treatments that can alter the natural history of amyotrophic lateral sclerosis (ALS) is challenging. For years, drug discovery in ALS has relied upon traditional approaches with limited success. Drug repurposing, where clinically approved drugs are reevaluated for other indications, offers an alternative strategy that overcomes some of the challenges associated with de novo drug discovery. AREAS COVERED In this review, the authors discuss the challenge of drug discovery in ALS and examine the potential of drug repurposing for the identification of new effective treatments. The authors consider a range of approaches, from screening in experimental models to computational approaches, and outline some general principles for preclinical and clinical research to help bridge the translational gap. Literature was reviewed from original publications, press releases and clinical trials. EXPERT OPINION Despite remaining challenges, drug repurposing offers the opportunity to improve therapeutic options for ALS patients. Nevertheless, stringent preclinical research will be necessary to identify the most promising compounds together with innovative experimental medicine studies to bridge the translational gap. The authors further highlight the importance of combining expertise across academia, industry and wider stakeholders, which will be key in the successful delivery of repurposed therapies to the clinic.
Collapse
Affiliation(s)
- Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Wang Z, Yang C, Wang X, Liao H, Liu X, Liu H, Zhang M, Zhang L, Wang H. Knockdown of RUVBL2 improves hnRNPA2/B1-stress granules dynamics to inhibit perioperative neurocognitive disorders in aged mild cognitive impairment rats. Aging Cell 2025; 24:e14418. [PMID: 39610020 PMCID: PMC11896576 DOI: 10.1111/acel.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND. We assessed the effect of hippocampal RUVBL2 knockdown on hnRNPA2/B1-SGs in aged MCI rats through behavioral studies, biochemical experiments and MRI. We also examined hnRNPA2/B1-SGs dynamics using immunofluorescence staining and fluorescence recovery after photobleaching (FRAP) in rat primary hippocampal neurons. Our results revealed that hnRNPA2/B1 in the hippocampus of aged MCI rats translocates to the cytoplasm to form SGs following anesthesia. RUVBL2 knockdown promotes the disappearance of hnRNPA2/B1-SGs, allowing hnRNPA2/B1 to return to the nucleus and enhancing functional activity in the brain regions of aged MCI rats. In primary hippocampal neurons, RUVBL2 deletion facilitated hnRNPA2/B1-SGs transition from hydrogel to liquid, promoting disassembly. We compared three commonly used general anesthetics-3% sevoflurane, 40 mg·kg-1·h-1 propofol, and 9% desflurane. Sevoflurane upregulated RUVBL2, which decreased the intraneuronal pH and disrupted energy metabolism. These changes resulted in greater stabilization of hnRNPA2/B1- SGs. In conclusion, our findings indicated that the knockdown of RUVBL2 expression contributes to the transition of hnRNPA2/B1-SGs from the hydrogel phase to the liquid phase. Targeted interference with RUVBL2 may represent a novel approach to delay the progression to dementia due to PND in aged MCI patients.
Collapse
Affiliation(s)
- Zixuan Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | | | - Xinyi Wang
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Nankai UniversityTianjinChina
- Nankai University Affinity The Third Central HospitalTianjinChina
| | - Huihui Liao
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Xing Liu
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Miao Zhang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Lin Zhang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical UniversityTianjinChina
- Department of AnesthesiologyThe Third Central Hospital of TianjinTianjinChina
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesTianjinChina
- Artificial Cell Engineering Technology Research CenterTianjinChina
- Nankai UniversityTianjinChina
- Nankai University Affinity The Third Central HospitalTianjinChina
| |
Collapse
|
3
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2025; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
4
|
Lu S, Chen Y, Song J, Ren L, Du J, Shen D, Peng J, Yin Y, Li X, Wang Y, Gao Y, Han S, Jia Y, Zhao Y, Wang Y. Cortisol regulates neonatal lung development via Smoothened. Respir Res 2025; 26:27. [PMID: 39827090 PMCID: PMC11743026 DOI: 10.1186/s12931-025-03104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Neonatal respiratory distress syndrome (NRDS), one of the main causes of neonatal death, is clinically characterized by progressive dyspnea and cyanosis 1 to 2 h after birth. Corticosteroids are commonly used to prevent NRDS in clinical. However, the protective mechanism of the corticosteroids remains largely unclear. METHODS In this study, the simulation of the molecular docking by Autodock, in vitro binding experiments, and Sonic Hedgehog (SHH) pathway examination in cells were performed to study the directly binding of cortisol to Smoothened (SMO). To explore the effect of cortisol action on the SHH pathway on neonatal lung development, we generated a genetic mouse, in which leucine 116 (L112 in human) of SMO was mutated to alanine 116 (L116A, Smoa/a) by the CRISPR-Cas9, based on sequence differences between human and mice. Then, we performed morphological analysis, single-cell RNA sequencing (scRNA-seq) on lung tissue and fluorescence in situ hybridization (FISH). RESULTS In this study, we reported that cortisol, the endogenous glucocorticoid, inhibited the sonic hedgehog (Shh)/SMO-mediated proliferation of lung fibroblasts to maintain the normal lung development. Specifically, cortisol competed with cholesterol for binding to the cysteine-rich domain (CRD) in SMO to inhibit the activation of Shh/SMO signaling, a critical signaling known for cell proliferation. Cortisol did not inhibit the activation of SMO when L112 in its CRD was mutated to A112. Moreover, Smoa/a (L116A) mice exhibited the immature lungs in which over-proliferation of interstitial fibroblasts and reduction in the surfactant protein were evident. CONCLUSION Together, these results suggested that cortisol regulated cholesterol stimulation of SMO by competitively binding to the CRD to regulate neonatal lung maturation in mice.
Collapse
Affiliation(s)
- Shanshan Lu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yifei Chen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiawen Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Liangliang Ren
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jun Du
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Donglai Shen
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiayin Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Yao Yin
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xia Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuqing Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yan Gao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Siman Han
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Medical Science Building, Tsinghua University, Beijing, 100084, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| | - Yizheng Wang
- National Clinical Research Center for Aging and Medicine, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
5
|
Liu Q, Sun Y, He B, Chen H, Wang L, Wang G, Zhang K, Zhao X, Zhang X, Shen D, Zhang X, Cui L. Gain-of-function ANXA11 mutation cause late-onset ALS with aberrant protein aggregation, neuroinflammation and autophagy impairment. Acta Neuropathol Commun 2025; 13:2. [PMID: 39755715 DOI: 10.1186/s40478-024-01919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement. To elucidate the pathogenesis, we developed a knock-in mouse model carrying the p.P36R mutation. In both heterozygous and homozygous mutant mice, ANXA11 protein levels were comparable to those in wild-type. Both groups exhibited late-onset motor dysfunction at approximately 10 months of age, with similar survival rates to wild-type (> 24 months) and no signs of dementia. Pathological analysis revealed early abnormal aggregates in spinal cord motor neurons, cortical neurons, and muscle cells of homozygous mice. From 2 months of age, we observed mislocalized ANXA11 aggregates, SQSTM1/p62-positive inclusions, and cytoplasmic TDP-43 mislocalization, which intensified with disease progression. Importantly, mutant ANXA11 co-aggregated with TDP-43 and SQSTM1/p62-positive inclusions. Electron microscopy of the gastrocnemius muscle uncovered myofibrillar abnormalities, including sarcomeric disorganization, Z-disc dissolution, and subsarcolemmal electron-dense structures within autophagic vacuoles. Autophagic flux, initially intact at 2 months, was impaired by 9 months, as evidenced by decreased Beclin-1 and LC3BII/I levels and increased SQSTM1/p62 expression, coinciding with mTORC1 hyperactivation. Significant motor neuron loss and neuroinflammation were detected by 9 months, with marked muscle dystrophy apparent by 12 months compared to wild-type controls. These findings implicate the gain-of-function ANXA11 mutation drives late-onset motor neuron disease by early presymptomatic proteinopathy, progressive neuronal degeneration, neuroinflammation, and autophagic dysfunction.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| | - Ye Sun
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Baodong He
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Haodong Chen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Lijing Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Gaojie Wang
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Kang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ximeng Zhao
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Xinzhe Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China
| | - Xue Zhang
- State Key Laboratory of Medical Molecular Biology, Mckusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, PUMC and CAMS, Beijing, China.
- State Key Laboratory of Complex, Severe, and Rare Diseases, PUMCH, Beijing, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
| |
Collapse
|
6
|
Gu A, Zhang Y, He J, Zhao M, Ding L, Liu W, Xiao J, Huang J, Liu M, Liu X. Chronic Oxidative Stress and Stress Granule Formation in UBQLN2 ALS Neurons: Insights into Neuronal Degeneration and Potential Therapeutic Targets. Int J Mol Sci 2024; 25:13448. [PMID: 39769213 PMCID: PMC11678478 DOI: 10.3390/ijms252413448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The pathogenesis of neurodegenerative diseases results from the interplay between genetic and environmental factors. Aging and chronic oxidative stress are critical contributors to neurodegeneration. UBQLN2, a ubiquitin-related protein, aids in protein degradation and protects against oxidative stress. In ALS neurons harboring UBQLN2 mutations, oxidative stress accelerates pathological changes, yet the precise mechanisms remain unclear. Using induced motor neurons (iMNs) derived from UBQLN2 P497H iPSCs, we observed ALS-like phenotypes, including TDP-43 mislocalization, increased cell death, and reduced viability. Sodium arsenite (SA)-induced oxidative stress triggered stress granule formation, while autophagy dysfunction exacerbated neuronal degeneration. CHX and bosutinib treatments reduced ubiquitinated protein accumulation and alleviated degeneration, highlighting potential therapeutic pathways. These findings emphasize the role of chronic oxidative stress and stress granule formation in UBQLN2 ALS, offering insights into novel therapeutic targets.
Collapse
Affiliation(s)
- Ao Gu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Yiti Zhang
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Jianfeng He
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410017, China
| | - Mingri Zhao
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Lingjie Ding
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Wanxi Liu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Jianing Xiao
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Jiali Huang
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410017, China
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410017, China
| | - Xionghao Liu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Central South University, Changsha 410017, China; (A.G.); (Y.Z.); (J.H.); (M.Z.)
- Hunan Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410017, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha 410017, China
| |
Collapse
|
7
|
Okada K, Ito D, Morimoto S, Kato C, Oguma Y, Warita H, Suzuki N, Aoki M, Kuramoto J, Kobayashi R, Shinozaki M, Ikawa M, Nakahara J, Takahashi S, Nishimoto Y, Shibata S, Okano H. Multiple lines of evidence for disruption of nuclear lamina and nucleoporins in FUS amyotrophic lateral sclerosis. Brain 2024; 147:3933-3948. [PMID: 39312484 DOI: 10.1093/brain/awae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 06/09/2024] [Indexed: 09/25/2024] Open
Abstract
Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Memory Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuki Oguma
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, Saitama, 350-1298, Japan
| | - Yoshinori Nishimoto
- Department of Neurology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Keio University iPS Cell Research Center for Intractable Neurological Diseases (KiND), Keio University Global Research Institute, Tokyo 108-0073, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, 210-0821, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
- Laboratory for Marmoset Models of Neural Diseases, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| |
Collapse
|
8
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Scherer NM, Maurel C, Graus M, McAlary L, Richter G, Radford RW, Hogan A, Don E, Lee A, Yerbury J, Francois M, Chung R, Morsch M. RNA-binding properties orchestrate TDP-43 homeostasis through condensate formation in vivo. Nucleic Acids Res 2024; 52:5301-5319. [PMID: 38381071 PMCID: PMC11109982 DOI: 10.1093/nar/gkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.
Collapse
Affiliation(s)
- Natalie M Scherer
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Cindy Maurel
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Matthew S Graus
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Grant Richter
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Rowan A W Radford
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Alison Hogan
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Emily K Don
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Justin Yerbury
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Mathias Francois
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, Centenary Institute, The University of Sydney, School of Medical Sciences, Sydney, NSW 2006, Australia
- Genome Imaging Centre, Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger S Chung
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Marco Morsch
- Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, MND Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
10
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Hilditch AT, Romanyuk A, Hodgson LR, Mantell J, Neal CR, Verkade P, Obexer R, Serpell LC, McManus JJ, Woolfson DN. Maturation and Conformational Switching of a De Novo Designed Phase-Separating Polypeptide. J Am Chem Soc 2024; 146:10240-10245. [PMID: 38578222 PMCID: PMC11027135 DOI: 10.1021/jacs.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Cellular compartments formed by biomolecular condensation are widespread features of cell biology. These organelle-like assemblies compartmentalize macromolecules dynamically within the crowded intracellular environment. However, the intermolecular interactions that produce condensed droplets may also create arrested states and potentially pathological assemblies such as fibers, aggregates, and gels through droplet maturation. Protein liquid-liquid phase separation is a metastable process, so maturation may be an intrinsic property of phase-separating proteins, where nucleation of different phases or states arises in supersaturated condensates. Here, we describe the formation of both phase-separated droplets and proteinaceous fibers driven by a de novo designed polypeptide. We characterize the formation of supramolecular fibers in vitro and in bacterial cells. We show that client proteins can be targeted to the fibers in cells using a droplet-forming construct. Finally, we explore the interplay between phase separation and fiber formation of the de novo polypeptide, showing that the droplets mature with a post-translational switch to largely β conformations, analogous to models of pathological phase separation.
Collapse
Affiliation(s)
- Alexander T. Hilditch
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Andrey Romanyuk
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Lorna R. Hodgson
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Judith Mantell
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Christopher R. Neal
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Richard Obexer
- Department
of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K.
| | - Louise C. Serpell
- School
of Life Sciences, University of Sussex, Falmer, Brighton, JMS 3B17, U.K.
| | - Jennifer J. McManus
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- HH Wills
Physics Laboratory, School of Physics, University
of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Max
Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, U.K.
- Bristol
BioDesign Institute, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
12
|
Wang X, Fan X, Zhang J, Wang F, Chen J, Wen Y, Wang L, Li T, Li H, Gu H, Zhang Y, Yuan S. hnRNPA2B1 represses the disassembly of arsenite-induced stress granules and is essential for male fertility. Cell Rep 2024; 43:113769. [PMID: 38363675 DOI: 10.1016/j.celrep.2024.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xu Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fengli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingshou Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingjuan Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaibiao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| | - Youzhi Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Laboratory of the Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China.
| |
Collapse
|
13
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
15
|
Dong H, Zhang H, Jalin J, He Z, Wang R, Huang L, Liu Z, Zhang S, Dai B, Li D. Nucleocapsid proteins from human coronaviruses possess phase separation capabilities and promote FUS pathological aggregation. Protein Sci 2023; 32:e4826. [PMID: 37906538 PMCID: PMC10659942 DOI: 10.1002/pro.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.
Collapse
Affiliation(s)
- Hui Dong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Present address:
Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Hong Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Julie Jalin
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ziqi He
- College of StomatologyShanghai Jiao Tong UniversityShanghaiChina
| | - Runhan Wang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Leqi Huang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zibo Liu
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shenqing Zhang
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| | - Bin Dai
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dan Li
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina
- Zhangjiang Institute for Advanced StudyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
16
|
Guo L, Mao Q, He J, Liu X, Piao X, Luo L, Hao X, Yu H, Song Q, Xiao B, Fan D, Gao Z, Jia Y. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies. Cell Res 2023; 33:497-515. [PMID: 37142673 PMCID: PMC10313822 DOI: 10.1038/s41422-023-00798-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 05/06/2023] Open
Abstract
Although anion channel activities have been demonstrated in sarcoplasmic reticulum/endoplasmic reticulum (SR/ER), their molecular identities and functions remain unclear. Here, we link rare variants of Chloride Channel CLIC Like 1 (CLCC1) to amyotrophic lateral sclerosis (ALS)-like pathologies. We demonstrate that CLCC1 is a pore-forming component of an ER anion channel and that ALS-associated mutations impair channel conductance. CLCC1 forms homomultimers and its channel activity is inhibited by luminal Ca2+ but facilitated by phosphatidylinositol 4,5-bisphosphate (PIP2). We identified conserved residues D25 and D181 in CLCC1 N-terminus responsible for Ca2+ binding and luminal Ca2+-mediated inhibition on channel open probability and K298 in CLCC1 intraluminal loop as the critical PIP2-sensing residue. CLCC1 maintains steady-state [Cl-]ER and [K+]ER and ER morphology and regulates ER Ca2+ homeostasis, including internal Ca2+ release and steady-state [Ca2+]ER. ALS-associated mutant forms of CLCC1 increase steady-state [Cl-]ER and impair ER Ca2+ homeostasis, and animals with the ALS-associated mutations are sensitized to stress challenge-induced protein misfolding. Phenotypic comparisons of multiple Clcc1 loss-of-function alleles, including ALS-associated mutations, reveal a CLCC1 dosage dependence in the severity of disease phenotypes in vivo. Similar to CLCC1 rare variations dominant in ALS, 10% of K298A heterozygous mice developed ALS-like symptoms, pointing to a mechanism of channelopathy dominant-negatively induced by a loss-of-function mutation. Conditional knockout of Clcc1 cell-autonomously causes motor neuron loss and ER stress, misfolded protein accumulation, and characteristic ALS pathologies in the spinal cord. Thus, our findings support that disruption of ER ion homeostasis maintained by CLCC1 contributes to ALS-like pathologies.
Collapse
Affiliation(s)
- Liang Guo
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Xiaoling Liu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xuejiao Piao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Li Luo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China
| | - Xiaoxu Hao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Hanzhi Yu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Song
- School of Medicine, Tsinghua University, Beijing, China
| | - Bailong Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China.
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia and Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- School of Medicine, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China.
| |
Collapse
|
17
|
Ionescu A, Altman T, Perlson E. Looking for answers far away from the soma-the (un)known axonal functions of TDP-43, and their contribution to early NMJ disruption in ALS. Mol Neurodegener 2023; 18:35. [PMID: 37259156 DOI: 10.1186/s13024-023-00623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/01/2023] [Indexed: 06/02/2023] Open
Abstract
Axon degeneration and Neuromuscular Junction (NMJ) disruption are key pathologies in the fatal neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). Despite accumulating evidence that axons and NMJs are impacted at a very early stage of the disease, current knowledge about the mechanisms leading to their degeneration remains elusive. Cytoplasmic mislocalization and accumulation of the protein TDP-43 are considered key pathological hallmarks of ALS, as they occur in ~ 97% of ALS patients, both sporadic and familial. Recent studies have identified pathological accumulation of TDP-43 in intramuscular nerves of muscle biopsies collected from pre-diagnosed, early symptomatic ALS patients. These findings suggest a gain of function for TDP-43 in axons, which might facilitate early NMJ disruption. In this review, we dissect the process leading to axonal TDP-43 accumulation and phosphorylation, discuss the known and hypothesized roles TDP-43 plays in healthy axons, and review possible mechanisms that connect TDP-43 pathology to the axon and NMJ degeneration in ALS.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Room 605, Ramat Aviv, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Trageser KJ, Yang EJ, Smith C, Iban-Arias R, Oguchi T, Sebastian-Valverde M, Iqbal UH, Wu H, Estill M, Al Rahim M, Raval U, Herman FJ, Zhang YJ, Petrucelli L, Pasinetti GM. Inflammasome-Mediated Neuronal-Microglial Crosstalk: a Therapeutic Substrate for the Familial C9orf72 Variant of Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Mol Neurobiol 2023; 60:4004-4016. [PMID: 37010807 DOI: 10.1007/s12035-023-03315-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/12/2023] [Indexed: 04/04/2023]
Abstract
Intronic G4C2 hexanucleotide repeat expansions (HRE) of C9orf72 are the most common cause of familial variants of frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). G4C2 HREs in C9orf72 undergo non-canonical repeat-associated translation, producing dipeptide repeat (DPR) proteins, with various deleterious impacts on cellular homeostasis. While five different DPRs are produced, poly(glycine-arginine) (GR) is amongst the most toxic and is the only DPR to accumulate in the associated clinically relevant anatomical locations of the brain. Previous work has demonstrated the profound effects of a poly (GR) model of C9orf72 FTD/ALS, including motor impairment, memory deficits, neurodegeneration, and neuroinflammation. Neuroinflammation is hypothesized to be a driving factor in the disease course; microglia activation is present prior to symptom onset and persists throughout the disease. Here, using an established mouse model of C9orf72 FTD/ALS, we investigate the contributions of the nod-like receptor pyrin-containing 3 (NLRP3) inflammasome in the pathogenesis of FTD/ALS. We find that inflammasome-mediated neuroinflammation is increased with microglial activation, cleavage of caspase-1, production of IL-1β, and upregulation of Cxcl10 in the brain of C9orf72 FTD/ALS mice. Excitingly, we find that genetic ablation of Nlrp3 significantly improved survival, protected behavioral deficits, and prevented neurodegeneration suggesting a novel mechanism involving HRE-mediated induction of innate immunity. The findings provide experimental evidence of the integral role of HRE in inflammasome-mediated innate immunity in the C9orf72 variant of FTD/ALS pathogenesis and suggest the NLRP3 inflammasome as a therapeutic target.
Collapse
Affiliation(s)
- Kyle J Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tatsunori Oguchi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Umar Haris Iqbal
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Wu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Francis J Herman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yong Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
19
|
Szewczyk B, Günther R, Japtok J, Frech MJ, Naumann M, Lee HO, Hermann A. FUS ALS neurons activate major stress pathways and reduce translation as an early protective mechanism against neurodegeneration. Cell Rep 2023; 42:112025. [PMID: 36696267 DOI: 10.1016/j.celrep.2023.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder causing progressive loss of motor neurons. Mutations in Fused in sarcoma (FUS) leading to its cytoplasmic mislocalization cause a subset of ALS. Under stress, mutant FUS localizes to stress granules (SGs)-cytoplasmic condensates composed of RNA and various proteins. Aberrant dynamics of SGs is linked to the pathology of ALS. Here, using motor neurons (MNs) derived from human induced pluripotent stem cells, we show that, in mutant FUS, MN dynamics of SGs is disturbed. Additionally, heat-shock response (HSR) and integrated stress response (ISR) involved in the regulation of SGs are upregulated in mutant MNs. HSR activation correlates with the amount of cytoplasmic FUS mislocalization. While inhibition of SG formation, translation, or ISR does not influence survival of FUS ALS neurons, proteotoxicity that cannot be compensated with the activation of stress pathways is the main driver of neurodegeneration in early FUS ALS.
Collapse
Affiliation(s)
- Barbara Szewczyk
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - René Günther
- Department of Neurology, Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Dresden, Dresden, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz J Frech
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hyun O Lee
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.
| |
Collapse
|
20
|
Haouari S, Andres CR, Lanznaster D, Marouillat S, Brulard C, Dangoumau A, Ung D, Veyrat-Durebex C, Laumonnier F, Blasco H, Couratier P, Corcia P, Vourc’h P. Study of Ubiquitin Pathway Genes in a French Population with Amyotrophic Lateral Sclerosis: Focus on HECW1 Encoding the E3 Ligase NEDL1. Int J Mol Sci 2023; 24:ijms24021268. [PMID: 36674783 PMCID: PMC9867363 DOI: 10.3390/ijms24021268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
The ubiquitin pathway, one of the main actors regulating cell signaling processes and cellular protein homeostasis, is directly involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). We first analyzed, by a next-generation sequencing (NGS) strategy, a series of genes of the ubiquitin pathway in two cohorts of familial and sporadic ALS patients comprising 176 ALS patients. We identified several pathogenic variants in different genes of this ubiquitin pathway already described in ALS, such as FUS, CCNF and UBQLN2. Other variants of interest were discovered in new genes studied in this disease, in particular in the HECW1 gene. We have shown that the HECT E3 ligase called NEDL1, encoded by the HECW1 gene, is expressed in neurons, mainly in their somas. Its overexpression is associated with increased cell death in vitro and, very interestingly, with the cytoplasmic mislocalization of TDP-43, a major protein involved in ALS. These results give new support for the role of the ubiquitin pathway in ALS, and suggest further studies of the HECW1 gene and its protein NEDL1 in the pathophysiology of ALS.
Collapse
Affiliation(s)
- Shanez Haouari
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Christian Robert Andres
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Debora Lanznaster
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Sylviane Marouillat
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Céline Brulard
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Audrey Dangoumau
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Devina Ung
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Frédéric Laumonnier
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
| | - Hélène Blasco
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Philippe Couratier
- Centre SLA, CHU Limoges, 2 Avenue Martin Luther King, 87000 Limoges, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
- Centre SLA, CHU Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Patrick Vourc’h
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032 Tours, France
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- Correspondence: ; Tel.: +33-234378910
| |
Collapse
|
21
|
Dubinski A, Gagné M, Peyrard S, Gordon D, Talbot K, Vande Velde C. Stress granule assembly in vivo is deficient in the CNS of mutant TDP-43 ALS mice. Hum Mol Genet 2023; 32:319-332. [PMID: 35994036 PMCID: PMC9840205 DOI: 10.1093/hmg/ddac206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 01/19/2023] Open
Abstract
Responding effectively to external stress is crucial for neurons. Defective stress granule dynamics has been hypothesized as one of the pathways that renders motor neurons in amyotrophic lateral sclerosis (ALS) more prone to early death. Specifically, it is thought that stress granules seed the cytoplasmic TDP-43 inclusions that are observed in the neurons of most ALS patients, as well as ~50% of all frontotemporal dementia (FTD) patients. In this study, we tested this hypothesis in an intact mammalian nervous system. We established an in vivo heat stress paradigm in mice that effectively triggers the eIF2α pathway and the formation of stress granules in the CNS. In non-transgenic mice, we report an age-dependent decline in the formation of heat-induced stress granules, with 18-month-old animals showing a significant impairment. Furthermore, although neuronal stress granules were robustly observed in non-transgenic mice and SOD1G93A mice, they were largely absent in age-matched TDP-43M337V animals. The observed defect in stress granule formation in TDP-43M337V mice correlated with deficits in expression of key protein components typically required for phase separation. Lastly, while TDP-43 was not localized to stress granules, we observed complete nuclear depletion of TDP-43 in a subset of neurons, with the highest proportion being in the TDP-43M337V mice. Overall, our results indicate that mutant TDP-43 expression is associated with defective stress granule assembly and increased TDP-43 nuclear depletion in the mammalian nervous system, which could be relevant to ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Alicia Dubinski
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christine Vande Velde
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3T 1J4, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
22
|
Li Z, Liu X, Liu M. Stress Granule Homeostasis, Aberrant Phase Transition, and Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2022; 13:2356-2370. [PMID: 35905138 DOI: 10.1021/acschemneuro.2c00262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. In recent years, a large number of ALS-related mutations have been discovered to have a strong link to stress granules (SGs). SGs are cytoplasmic ribonucleoprotein condensates mediated by liquid-liquid phase separation (LLPS) of biomacromolecules. They help cells cope with stress. The normal physiological functions of SGs are dependent on three key aspects of SG "homeostasis": SG assembly, disassembly, and SG components. Any of these three aspects can be disrupted, resulting in abnormalities in the cellular stress response and leading to cytotoxicity. Several ALS-related pathogenic mutants have abnormal LLPS abilities that disrupt SG homeostasis, and some of them can even cause aberrant phase transitions. As a result, ALS-related mutants may disrupt various aspects of SG homeostasis by directly disturbing the intermolecular interactions or affecting core SG components, thus disrupting the phase equilibrium of the cytoplasm during stress. Considering that the importance of the "global view" of SG homeostasis in ALS pathogenesis has not received enough attention, we first systematically summarize the physiological regulatory mechanism of SG homeostasis based on LLPS and then examine ALS pathogenesis from the perspective of disrupted SG homeostasis and aberrant phase transition of biomacromolecules.
Collapse
Affiliation(s)
- Zhanxu Li
- Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Mujun Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
23
|
Li Y, Lu S, Gu J, Xia W, Zhang S, Zhang S, Wang Y, Zhang C, Sun Y, Lei J, Liu C, Su Z, Yang J, Peng X, Li D. SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein Cell 2022; 13:602-614. [PMID: 35384603 PMCID: PMC8983322 DOI: 10.1007/s13238-022-00905-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.
Collapse
Affiliation(s)
- Yichen Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenqing Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yan Wang
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Zhang
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Lei
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoming Su
- State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics. J Neurol 2022; 269:4863-4871. [PMID: 35503374 PMCID: PMC9363285 DOI: 10.1007/s00415-022-11126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent evidence points toward a role of the small ubiquitin-like modifier (SUMO) system, including SUMO4, in protecting from stress insults and neurodegeneration, such as the progressive motor neuron disease amyotrophic lateral sclerosis (ALS), e.g., by regulating stress granule (SG) dynamics. Here, we investigated whether SUMO4 variants play a role in ALS pathogenesis. METHODS Whole-exome or targeted SUMO4 sequencing was done in 222 unrelated European ALS patients. The consequences of the identified initiator codon variant were analyzed at the mRNA, protein and cellular level. SUMO4 expression was quantified in human tissues. All patients were subjected to clinical, electrophysiological, and neuroradiological characterization. RESULTS A rare heterozygous SUMO4 variant, i.e., SUMO4:c.2T>C p.Met1?, was detected in four of 222 (1.8%) ALS patients, significantly more frequently than in two control cohorts (0.3% each). SUMO4 mRNA and protein expression was diminished in whole blood or fibroblasts of a SUMO4 variant carrier versus controls. Pertinent stress factors, i.e., head trauma or cancer (treated by radiochemotherapy), were significantly more frequent in SUMO4 variant carrier versus non-carrier ALS patients. The mean number of SGs per cell was significantly higher in fibroblasts of a SUMO4 variant carrier compared to controls at baseline, upon oxidative stress, and after recovery, and SUMOylation of ALS-associated valosin-containing protein by SUMO4 was decreased. SUMO4 mRNA expression was highest in brain of all human tissues analyzed. CONCLUSIONS Our results are consistent with SUMO4 haploinsufficiency as a contributor to ALS pathogenesis impacting SG dynamics and possibly acting in conjunction with environmental oxidative stress-related factors.
Collapse
|
25
|
Role of the Ubiquitin System in Stress Granule Metabolism. Int J Mol Sci 2022; 23:ijms23073624. [PMID: 35408984 PMCID: PMC8999021 DOI: 10.3390/ijms23073624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells react to various stress conditions with the rapid formation of membrane-less organelles called stress granules (SGs). SGs form by multivalent interactions between RNAs and RNA-binding proteins and are believed to protect stalled translation initiation complexes from stress-induced degradation. SGs contain hundreds of different mRNAs and proteins, and their assembly and disassembly are tightly controlled by post-translational modifications. The ubiquitin system, which mediates the covalent modification of target proteins with the small protein ubiquitin (‘ubiquitylation’), has been implicated in different aspects of SG metabolism, but specific functions in SG turnover have only recently emerged. Here, we summarize the evidence for the presence of ubiquitylated proteins at SGs, review the functions of different components of the ubiquitin system in SG formation and clearance, and discuss the link between perturbed SG clearance and the pathogenesis of neurodegenerative disorders. We conclude that the ubiquitin system plays an important, medically relevant role in SG biology.
Collapse
|
26
|
Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci 2022; 23:231-251. [PMID: 35260846 DOI: 10.1038/s41583-022-00564-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
The efficient study of human disease requires the proper tools, one of the most crucial of which is an accurate animal model that faithfully recapitulates the human condition. The study of amyotrophic lateral sclerosis (ALS) is no exception. Although the majority of ALS cases are considered sporadic, most animal models of this disease rely on genetic mutations identified in familial cases. Over the past decade, the number of genes associated with ALS has risen dramatically and, with each new genetic variant, there is a drive to develop associated animal models. Rodent models are of particular importance as they allow for the study of ALS in the context of a living mammal with a comparable CNS. Such models not only help to verify the pathogenicity of novel mutations but also provide critical insight into disease mechanisms and are crucial for the testing of new therapeutics. In this Review, we aim to summarize the full spectrum of ALS rodent models developed to date.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA.
| |
Collapse
|
27
|
Carey JL, Guo L. Liquid-Liquid Phase Separation of TDP-43 and FUS in Physiology and Pathology of Neurodegenerative Diseases. Front Mol Biosci 2022; 9:826719. [PMID: 35187086 PMCID: PMC8847598 DOI: 10.3389/fmolb.2022.826719] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid-liquid phase separation of RNA-binding proteins mediates the formation of numerous membraneless organelles with essential cellular function. However, aberrant phase transition of these proteins leads to the formation of insoluble protein aggregates, which are pathological hallmarks of neurodegenerative diseases including ALS and FTD. TDP-43 and FUS are two such RNA-binding proteins that mislocalize and aggregate in patients of ALS and FTD. They have similar domain structures that provide multivalent interactions driving their phase separation in vitro and in the cellular environment. In this article, we review the factors that mediate and regulate phase separation of TDP-43 and FUS. We also review evidences that connect the phase separation property of TDP-43 and FUS to their functional roles in cells. Aberrant phase transition of TDP-43 and FUS leads to protein aggregation and disrupts their regular cell function. Therefore, restoration of functional protein phase of TDP-43 and FUS could be beneficial for neuronal cells. We discuss possible mechanisms for TDP-43 and FUS aberrant phase transition and aggregation while reviewing the methods that are currently being explored as potential therapeutic strategies to mitigate aberrant phase transition and aggregation of TDP-43 and FUS.
Collapse
Affiliation(s)
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Wang H, Kodavati M, Britz GW, Hegde ML. DNA Damage and Repair Deficiency in ALS/FTD-Associated Neurodegeneration: From Molecular Mechanisms to Therapeutic Implication. Front Mol Neurosci 2021; 14:784361. [PMID: 34975400 PMCID: PMC8716463 DOI: 10.3389/fnmol.2021.784361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023] Open
Abstract
Emerging studies reveal that neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are commonly linked to DNA damage accumulation and repair deficiency. Neurons are particularly vulnerable to DNA damage due to their high metabolic activity, relying primarily on oxidative phosphorylation, which leads to increased reactive oxygen species (ROS) generation and subsequent DNA damage. Efficient and timely repair of such damage is critical for guarding the integrity of genomic DNA and for cell survival. Several genes predominantly associated with RNA/DNA metabolism have been implicated in both ALS and FTD, suggesting that the two diseases share a common underlying pathology with varied clinical manifestations. Recent studies reveal that many of the gene products, including RNA/DNA binding proteins (RBPs) TDP-43 and FUS are involved in diverse DNA repair pathways. A key question in the etiology of the ALS/FTD spectrum of neurodegeneration is the mechanisms and pathways involved in genome instability caused by dysfunctions/mutations of those RBP genes and their consequences in the central nervous system. The understanding of such converging molecular mechanisms provides insights into the underlying etiology of the rapidly progressing neurodegeneration in ALS/FTD, while also revealing novel DNA repair target avenues for therapeutic development. In this review, we summarize the common mechanisms of neurodegeneration in ALS and FTD, with a particular emphasis on the DNA repair defects induced by ALS/FTD causative genes. We also highlight the consequences of DNA repair defects in ALS/FTD and the therapeutic potential of DNA damage repair-targeted amelioration of neurodegeneration.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Gavin W. Britz
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neuroscience Research at Neurological Surgery, Weill Medical College, New York, NY, United States
| |
Collapse
|
29
|
Hartung T, Rhein M, Kalmbach N, Thau-Habermann N, Naujock M, Müschen L, Frieling H, Sterneckert J, Hermann A, Wegner F, Petri S. Methylation and Expression of Mutant FUS in Motor Neurons Differentiated From Induced Pluripotent Stem Cells From ALS Patients. Front Cell Dev Biol 2021; 9:774751. [PMID: 34869374 PMCID: PMC8640347 DOI: 10.3389/fcell.2021.774751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease leading to degeneration of motor neurons (MNs). Epigenetic modification of gene expression is increasingly recognized as potential disease mechanism. In the present study we generated motor neurons from induced pluripotent stem cells from ALS patients carrying a mutation in the fused in sarcoma gene (FUS) and analyzed expression and promoter methylation of the FUS gene and expression of DNA methyltransferases (DNMTs) compared to healthy control cell lines. While mutant FUS neural progenitor cells (NPCs) did not show a difference in FUS and DNMT expression compared to healthy controls, differentiated mutant FUS motor neurons showed significantly lower FUS expression, higher DNMT expression and higher methylation of the proximal FUS gene promoter. Immunofluorescence revealed perceived proximity of cytoplasmic FUS aggregates in ALS MNs together with 5-methylcytosin (5-mC). Targeting disturbed methylation in ALS may therefore restore transcriptional alterations and represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- T Hartung
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - M Rhein
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - N Kalmbach
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - N Thau-Habermann
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - M Naujock
- Department of Neurology, Hannover Medical School, Hannover, Germany.,Evotec International GmbH, Göttingen, Germany
| | - L Müschen
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - H Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - J Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - A Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - F Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - S Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Beijer D, Kim HJ, Guo L, O'Donovan K, Mademan I, Deconinck T, Van Schil K, Fare CM, Drake LE, Ford AF, Kochański A, Kabzińska D, Dubuisson N, Van den Bergh P, Voermans NC, Lemmers RJ, van der Maarel SM, Bonner D, Sampson JB, Wheeler MT, Mehrabyan A, Palmer S, De Jonghe P, Shorter J, Taylor JP, Baets J. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight 2021; 6:e148363. [PMID: 34291734 PMCID: PMC8410042 DOI: 10.1172/jci.insight.148363] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Inès Mademan
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium
| | - Tine Deconinck
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Kristof Van Schil
- Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren E Drake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alice F Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Nicolas Dubuisson
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Peter Van den Bergh
- Neuromuscular Reference Centre, University Hospitals St-Luc, University of Louvain, Brussels, Belgium
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Jacinda B Sampson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California, USA
| | - Anahit Mehrabyan
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven Palmer
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter De Jonghe
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, and.,Laboratory for Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Wilrijk, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Wilrijk, Belgium
| |
Collapse
|
31
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
32
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
33
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
34
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
35
|
Jeon P, Lee JA. Dr. Jekyll and Mr. Hyde? Physiology and Pathology of Neuronal Stress Granules. Front Cell Dev Biol 2021; 9:609698. [PMID: 33718353 PMCID: PMC7947226 DOI: 10.3389/fcell.2021.609698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
Stress granules (SGs) are membraneless cytosolic granules containing dense aggregations of RNA-binding proteins and RNAs. They appear in the cytosol under stress conditions and inhibit the initiation of mRNA translation. SGs are dynamically assembled under stressful conditions and rapidly disassembled after stress removal. They are heterogeneous in their RNA and protein content and are cell type- and stress-specific. In post-mitotic neurons, which do not divide, the dynamics of neuronal SGs are tightly regulated, implying that their dysregulation leads to neurodegeneration. Mutations in RNA-binding proteins are associated with SGs. SG components accumulate in cytosolic inclusions in many neurodegenerative diseases, such as frontotemporal dementia and amyotrophic lateral sclerosis. Although SGs primarily mediate a pro-survival adaptive response to cellular stress, abnormal persistent SGs might develop into aggregates and link to the pathogenesis of diseases. In this review, we present recent advances in the study of neuronal SGs in physiology and pathology, and discuss potential therapeutic approaches to remove abnormal, persistent SGs associated with neurodegeneration.
Collapse
Affiliation(s)
- Pureum Jeon
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Jin A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| |
Collapse
|
36
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
37
|
Ho WY, Agrawal I, Tyan SH, Sanford E, Chang WT, Lim K, Ong J, Tan BSY, Moe AAK, Yu R, Wong P, Tucker-Kellogg G, Koo E, Chuang KH, Ling SC. Dysfunction in nonsense-mediated decay, protein homeostasis, mitochondrial function, and brain connectivity in ALS-FUS mice with cognitive deficits. Acta Neuropathol Commun 2021; 9:9. [PMID: 33407930 PMCID: PMC7789430 DOI: 10.1186/s40478-020-01111-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of the same disease spectrum of adult-onset neurodegenerative diseases that affect the motor and cognitive functions, respectively. Multiple common genetic loci such as fused in sarcoma (FUS) have been identified to play a role in ALS and FTD etiology. Current studies indicate that FUS mutations incur gain-of-toxic functions to drive ALS pathogenesis. However, how the disease-linked mutations of FUS affect cognition remains elusive. Using a mouse model expressing an ALS-linked human FUS mutation (R514G-FUS) that mimics endogenous expression patterns, we found that FUS proteins showed an age-dependent accumulation of FUS proteins despite the downregulation of mouse FUS mRNA by the R514G-FUS protein during aging. Furthermore, these mice developed cognitive deficits accompanied by a reduction in spine density and long-term potentiation (LTP) within the hippocampus. At the physiological expression level, mutant FUS is distributed in the nucleus and cytosol without apparent FUS aggregates or nuclear envelope defects. Unbiased transcriptomic analysis revealed a deregulation of genes that cluster in pathways involved in nonsense-mediated decay, protein homeostasis, and mitochondrial functions. Furthermore, the use of in vivo functional imaging demonstrated widespread reduction in cortical volumes but enhanced functional connectivity between hippocampus, basal ganglia and neocortex in R514G-FUS mice. Hence, our findings suggest that disease-linked mutation in FUS may lead to changes in proteostasis and mitochondrial dysfunction that in turn affect brain structure and connectivity resulting in cognitive deficits.
Collapse
Affiliation(s)
- Wan Yun Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Ira Agrawal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Sheue-Houy Tyan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emma Sanford
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Wei-Tang Chang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Present Address: University of North Carolina, Chapel Hill, NC USA
| | - Kenneth Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jolynn Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Bernice Siu Yan Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
| | - Aung Aung Kywe Moe
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Regina Yu
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Peiyan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Greg Tucker-Kellogg
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Edward Koo
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Department of Neurosciences, University of California at San Diego, La Jolla, USA
| | - Kai-Hsiang Chuang
- Agency for Science, Technology and Research, Singapore Bioimaging Consortium, Singapore, Singapore
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117549 Singapore
- Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Ford LK, Fioriti L. Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Front Cell Dev Biol 2020; 8:607947. [PMID: 33330512 PMCID: PMC7710910 DOI: 10.3389/fcell.2020.607947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Neuronal granules are biomolecular condensates that concentrate high quantities of RNAs and RNA-related proteins within neurons. These dense packets of information are trafficked from the soma to distal sites rich in polysomes, where local protein synthesis can occur. Movement of neuronal granules to distal sites, and local protein synthesis, play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing; these granules lack a membrane and instead phase separate due to protein and RNA interactions. Low complexity motifs and RNA binding domains are highly prevalent in these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule proteins, and investigate the structure-function relationship of coiled-coil proteins in RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly dynamic, allowing for increased functional response to environmental influences. Finally, biomolecular condensates have been suggested to drive the formation of toxic, neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play in coiled-coil to amyloid conversions of neurodegenerative proteins.
Collapse
Affiliation(s)
- Lenzie K Ford
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Laboratory of Molecular Mechanisms of Polyglutamine Disorders, Department of Neuroscience, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS), Milan, Italy
| |
Collapse
|
39
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|