1
|
Takahashi C, Asahi T, Takumi I, Matsushita I. The potential of transcranial direct-current stimulation as a therapeutic option for the control of cortical tremor in Benign adult familial myoclonic epilepsy. Brain Stimul 2025; 18:1056-1058. [PMID: 40381937 DOI: 10.1016/j.brs.2025.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025] Open
Affiliation(s)
- Chiaki Takahashi
- Department of Rehabilitation Medicine, Kanazawa Medical University, 1-1 Daigaku, Kahoku-gun, Uchinada-machi, Ishikawa, 920-0293, Japan.
| | - Takashi Asahi
- Department of Neurosurgery, Kanazawa Neurosurgical Hospital, 262-2 Goumachi, Nonoichi-shi, Ishikawa, 921-8841, Japan.
| | - Ichiro Takumi
- Department of Neurosurgery, St. Marianna University School of Medicine, 2-16-1 Gamou, Miyamae-ku, Kawasaki-shi, Kanagawa, 216-8111, Japan.
| | - Isao Matsushita
- Department of Rehabilitation Medicine, Kanazawa Medical University, 1-1 Daigaku, Kahoku-gun, Uchinada-machi, Ishikawa, 920-0293, Japan.
| |
Collapse
|
2
|
Latorre A, van der Veen S, Pena A, Truong D, Erro R, Frucht S, Ganos C, Hallett M, Perez-Duenas B, Rossi M, Roze E, Vidailhet M, de Koning-Tijssen MA, Caviness JN. IAPRD new consensus classification of myoclonus. Parkinsonism Relat Disord 2025; 132:107216. [PMID: 39665962 DOI: 10.1016/j.parkreldis.2024.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Recent new advances in myoclonus characterization and etiology justify an update of the 40-year-old respected classification of myoclonus proposed by Marsden, Hallett, and Fahn. New advances include genetic studies and clinical neurophysiology characterization. METHODS The IAPRD appointed an expert panel to develop a new myoclonus classification. The Delphi Method of consensus determination was employed using a panel of fifteen international experts in myoclonus. In an in-person meeting, an Axis approach, previously used for dystonia and tremor was ratified by the panel: Axis I included clinical and neurophysiology features, Axis II included etiology categories. As a unique part of our Axis approach, Clinical Neurophysiology was included as Axis Ib. The first Delphi survey round queried agreement on major headings in Axes Ia and Ib, myoclonus clinical syndromes, and Axis II. In the second round, the full expert panel was surveyed on constituents and specific characteristics of each feature that had consensus in the first round. RESULTS In the first round, the percentage of agreement for the fifty-three out of the 56 items was greater than 60.0 %, indicating strong consensus among expert panel members. In the second round, for Axis Ia, Axis Ib, and Axis II, strong agreement was also achieved. For both rounds, Physiological Myoclonus had the lowest agreement. Comments from the whole panel were incorporated into the consensus results. CONCLUSION This Myoclonus Classification, which reached consensus using the Delphi Method, will facilitate a collaborative effort among myoclonus investigators to find better diagnostics and treatment for myoclonus patients.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, United Kingdom
| | - S van der Veen
- Department of Neurology, Movement Disorders Groningen, University Medical Center Groningen HPC AB51, PO Box 30.001, 9700 RB, Groningen, Amsterdam, Netherlands
| | - Ashley Pena
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Daniel Truong
- Department of Neurosciences, UC Riverside, CA, The Parkinson and Movement Disorder Institute, 9940 Talbert Ave, Fountain Valley, CA, 92708, USA
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Steven Frucht
- NYU Langone Department of Neurology, 222 East 41st Street, 14th Floor, New York, NY, 10017, USA
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Mark Hallett
- Distinguished NIH Investigator Emeritus, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Belen Perez-Duenas
- Department of Pediatric Neurology, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Emmanuel Roze
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, 75651, Paris cedex 13, Paris, France
| | - Marie Vidailhet
- Département des Maladies du Système Nerveux Hôpital de la Salpêtrière, Boulevard de l'Hopital, 75013, Paris, France; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital Salpetriere, DMU Neuroscience 6, Paris, France
| | - Marina Aj de Koning-Tijssen
- Head of the Expertise Center Movement Disorders Groningen, Department of Neurology, UMCG, University Groningen, Amsterdam, Netherlands
| | - John N Caviness
- Department of Neurology, Mayo Clinic, 13400 East Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
3
|
Mahajan A, Espay AJ. Myoclonus classification revisited: Introducing the biaxial model. Parkinsonism Relat Disord 2025; 132:107296. [PMID: 39875274 DOI: 10.1016/j.parkreldis.2025.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Affiliation(s)
- Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center For Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center For Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Latorre A, Ganos C, Hamada M, Phielipp N, Rocchi L, Merchant S, Tijssen MA, van der Veen S, Chen R. Diagnostic Utility of Clinical Neurophysiology in Jerky Movement Disorders: A Review from the MDS Clinical Neurophysiology Study Group. Mov Disord Clin Pract 2025; 12:272-284. [PMID: 39691090 PMCID: PMC11952955 DOI: 10.1002/mdc3.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Myoclonus and other jerky movement disorders are hyperkinetic disorders, the diagnosis of which heavily relies on clinical neurophysiological testing. However, formal diagnostic criteria are lacking, and recently the utility and reliability of these tests have been questioned. OBJECTIVE The aim of this review was to assess the utilization of clinical neurophysiology testing to identify possible gaps and boundaries that might guide the development of new methods for a more precise diagnosis and in-depth understanding of myoclonus. METHODS We reviewed electrophysiological features of cortical myoclonus, subcortical myoclonus (ie, myoclonus associated with dystonia, brainstem myoclonus), excessive startle reflex, spinal myoclonus (ie, spinal segmental and propriospinal myoclonus), peripheral myoclonus and mimics of myoclonus of peripheral origin (hemifacial spasm, minipolymyoclonus, myokymia), functional jerky movements, chorea, and tics. RESULTS Electrophysiological features that support the recognition of myoclonus subtypes, such as muscle burst duration, muscle pattern of activation, measures of cortical excitability, or movement-related cortical potentials, have been identified. These significantly contribute to the diagnosis of jerky movement disorders, but their reliability is uncertain. Despite the significant advancements, several unresolved questions persist. Factors contributing to this include the absence of systematic neurophysiological assessment and standardized methods, alongside the limited number of patients investigated using these techniques. CONCLUSION Although clinical neurophysiology remains the "gold standard" for defining and diagnosing myoclonus, our review highlighted the need to enhance the quality and reliability of neurophysiological testing in jerky movement disorders. Further studies including larger cohorts of patients recruited from different centers, employing standardized and optimized electrophysiological techniques, are warranted.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Christos Ganos
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of NeurologyUniversity of Toronto, Toronto Western HospitalTorontoOntarioCanada
| | - Masashi Hamada
- Department of NeurologyThe University of TokyoTokyoJapan
| | - Nicolas Phielipp
- Department of Neurology, Parkinson's and Movement Disorders ProgramUniversity of California IrvineIrvineCaliforniaUSA
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - Shabbir Merchant
- Department of Neurology, Beth Israel Deaconess Medical Centre, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marina A. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG)GroningenThe Netherlands
- Expertise Centre Movement Disorders GroningenUniversity Medical Centre Groningen (UMCG)GroningenThe Netherlands
| | - Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG)GroningenThe Netherlands
- Expertise Centre Movement Disorders GroningenUniversity Medical Centre Groningen (UMCG)GroningenThe Netherlands
| | - Robert Chen
- Krembil Research Institute, University Health NetworkUniversity of TorontoTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Canafoglia L, Meletti S, Bisulli F, Alvisi L, Assenza G, d’Orsi G, Dubbioso R, Ferlazzo E, Ferri L, Franceschetti S, Gambardella A, Granvillano A, Licchetta L, Nucera B, Panzica F, Perulli M, Provini F, Rubboli G, Strigaro G, Suppa A, Tartara E, Cantalupo G. A Reappraisal on cortical myoclonus and brief Remarks on myoclonus of different Origins. Clin Neurophysiol Pract 2024; 9:266-278. [PMID: 39559741 PMCID: PMC11570231 DOI: 10.1016/j.cnp.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 11/20/2024] Open
Abstract
Myoclonus has multiple clinical manifestations and heterogeneous generators and etiologies, encompassing a spectrum of disorders and even physiological events. This paper, developed from a teaching course conducted by the Neurophysiology Commission of the Italian League against Epilepsy, aims to delineate the main types of myoclonus, identify potential underlying neurological disorders, outline diagnostic procedures, elucidate pathophysiological mechanisms, and discuss appropriate treatments. Neurophysiological techniques play a crucial role in accurately classifying myoclonic phenomena, by means of simple methods such as EEG plus polymyography (EEG + Polymyography), evoked potentials, examination of long-loop reflexes, and often more complex protocols to study intra-cortical inhibition-facilitation. In clinical practice, EEG + Polymyography often represents the first step to identify myoclonus, acquire signals for off-line studies and plan the diagnostic work-up.
Collapse
Affiliation(s)
- Laura Canafoglia
- Department of Diagnostic and Technology, full member of the European Reference Network EpiCARE, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences University of Modena and Reggio Emilia, Director of Neurophysiology Unit & Epilepsy Centre, AOU Modena
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Lara Alvisi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Via Álvaro del Portillo, 21, 00128, Rome, Italy
| | - Giuseppe d’Orsi
- Neurology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Napoli, Italy
| | - Edoardo Ferlazzo
- Regional Epilepsy Centre, Great Metropolitan “Bianchi-Melacrino-Morelli” Hospital, Reggio Calabria, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Silvana Franceschetti
- Neurophysiopathology, full member of the European Reference Network EpiCARE, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Institute of Neurology, University Magna Græcia, Catanzaro, Italy
| | - Alice Granvillano
- Neurophysiopathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Bruna Nucera
- Department of Neurology, Hospital of Merano (SABES-ASDAA), Franz Tappeiner Hospital, Via Rossini, 5-39012, Merano, Italy. 2 Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ferruccio Panzica
- Clinical Engineering Service, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Perulli
- Neuropsichiatria Infantile, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Full member of the ERN EpiCARE, Bologna, Italy
| | - Guido Rubboli
- Danish Epilepsy Center, Dianalund, University of Copenhagen, Denmark
| | - Gionata Strigaro
- Epilepsy Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, and Azienda Ospedaliero-Universitaria “Maggiore Della Carità”, Novara, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy
- IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli (IS), Italy
| | - Elena Tartara
- Epilepsy Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Gaetano Cantalupo
- Department of Engineering for Innovation Medicine, University of Verona, Italy
- Child Neuropsychiatry Unit, Verona University Hospital (AOUI Verona) - full member of the European Reference Network EpiCARE, Italy
- Center for Research on Epilepsy in Pediatric age (CREP), AOUI Verona, Verona, Italy
| |
Collapse
|
6
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
7
|
Yang M, Zhang Y, Zhang T, Zhou H, Ren J, Zhou D, Yang T. Altered dynamic functional connectivity of motor cerebellum with sensorimotor network and default mode network in juvenile myoclonic epilepsy. Front Neurol 2024; 15:1373125. [PMID: 38903166 PMCID: PMC11187336 DOI: 10.3389/fneur.2024.1373125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Objective To investigate whether changes occur in the dynamic functional connectivity (dFC) of motor cerebellum with cerebral cortex in juvenile myoclonic epilepsy (JME). Methods We adopted resting-state electroencephalography-functional magnetic resonance imaging (EEG-fMRI) and a sliding-window approach to explore the dFC of motor cerebellum with cortex in 36 JME patients compared with 30 and age-matched health controls (HCs). The motor cerebellum was divided into five lobules (I-V, VI, VIIb, VIIIa, and VIIIb). Additionally, correlation analyses were conducted between the variability of dFC and clinical variables in the Juvenile Myoclonic Epilepsy (JME) group, such as disease duration, age at disease onset, and frequency score of myoclonic seizures. Results Compared to HCs, the JME group presented increased dFC between the motor cerebellum with SMN and DMN. Specifically, connectivity between lobule VIIb and left precentral gyrus and right inferior parietal lobule (IPL); between lobule VIIIa and right inferior frontal gyrus (IFG) and left IPL; and between lobule VIIIb and left middle frontal gyrus (MFG), bilateral superior parietal gyrus (SPG), and left precuneus. In addition, within the JME group, the strength of dFC between lobule VIIIb and left precuneus was negatively (r = -0.424, p = 0.025, Bonferroni correction) related with the frequency score of myoclonic seizures. Conclusion In patients with JME, there is a functional dysregulation between the motor cerebellum with DMN and SMN, and the variability of dynamic functional connectivity may be closely associated with the occurrence of motor symptoms in JME.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianyu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huanyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhua Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Latorre A, Rocchi L, Paparella G, Manzo N, Bhatia KP, Rothwell JC. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024; 147:1412-1422. [PMID: 37956080 PMCID: PMC10994547 DOI: 10.1093/brain/awad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Giulia Paparella
- Department of Neurology, IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Nicoletta Manzo
- Department of Neurology, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
9
|
Pollini L, Greco C, Novelli M, Mei D, Pisani F, De Koning‐Tijssen MA, Guerrini R, Leuzzi V, Galosi S. Neurophysiological Analysis of Cortical Myoclonic Tremor and Excessive Startle in ARHGEF9 Deficiency. Mov Disord Clin Pract 2024; 11:434-437. [PMID: 38293791 PMCID: PMC10982589 DOI: 10.1002/mdc3.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Luca Pollini
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Carlo Greco
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Maria Novelli
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Davide Mei
- Neuroscience DepartmentChildren's Hospital Meyer IRCCSFlorenceItaly
| | - Francesco Pisani
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Marina A.J. De Koning‐Tijssen
- Expertise Centre Movement Disorders GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of NeurologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Renzo Guerrini
- Neuroscience DepartmentChildren's Hospital Meyer IRCCSFlorenceItaly
| | - Vincenzo Leuzzi
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Serena Galosi
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| |
Collapse
|
10
|
Lo Piccolo L, Yeewa R, Pohsa S, Yamsri T, Calovi D, Phetcharaburanin J, Suksawat M, Kulthawatsiri T, Shotelersuk V, Jantrapirom S. FAME4-associating YEATS2 knockdown impairs dopaminergic synaptic integrity and leads to seizure-like behaviours in Drosophila melanogaster. Prog Neurobiol 2024; 233:102558. [PMID: 38128822 DOI: 10.1016/j.pneurobio.2023.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) is a neurological disorder caused by a TTTTA/TTTCA intronic repeat expansion. FAME4 is one of the six types of FAME that results from the repeat expansion in the first intron of the gene YEATS2. Although the RNA toxicity is believed to be the primary mechanism underlying FAME, the role of genes where repeat expansions reside is still unclear, particularly in the case of YEATS2 in neurons. This study used Drosophila to explore the effects of reducing YEATS2 expression. Two pan-neuronally driven dsDNA were used for knockdown of Drosophila YEATS2 (dYEATS2), and the resulting molecular and behavioural outcomes were evaluated. Drosophila with reduced dYEATS2 expression exhibited decreased tolerance to acute stress, disturbed locomotion, abnormal social behaviour, and decreased motivated activity. Additionally, reducing dYEATS2 expression negatively affected tyrosine hydroxylase (TH) gene expression, resulting in decreased dopamine biosynthesis. Remarkably, seizure-like behaviours induced by knocking down dYEATS2 were rescued by the administration of L-DOPA. This study reveals a novel role of YEATS2 in neurons in regulating acute stress responses, locomotion, and complex behaviours, and suggests that haploinsufficiency of YEATS2 may play a role in FAME4.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Daniel Calovi
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
| | - Jutarop Phetcharaburanin
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- International Phenome Laboratory, Khon Kaen University, Khon Kaen, Thailand; Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
11
|
Latorre A, Belvisi D, Rothwell JC, Bhatia KP, Rocchi L. Rethinking the neurophysiological concept of cortical myoclonus. Clin Neurophysiol 2023; 156:125-139. [PMID: 37948946 DOI: 10.1016/j.clinph.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom.
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Franceschetti S, Visani E, Panzica F, Coppola A, Striano P, Canafoglia L. Cortico-muscular coherence and brain networks in familial adult myoclonic epilepsy and progressive myoclonic epilepsy. Clin Neurophysiol 2023; 151:74-82. [PMID: 37216715 DOI: 10.1016/j.clinph.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Familial Adult Myoclonic Epilepsy (FAME) presents with action-activated myoclonus, often associated with epilepsy, sharing various features with Progressive Myoclonic Epilepsy (PMEs), but with slower course and limited motor disability. We aimed our study to identify measures suitable to explain the different severity of FAME2 compared to EPM1, the most common PME, and to detect the signature of the distinctive brain networks. METHODS We analyzed the EEG-EMG coherence (CMC) during segmental motor activity and indexes of connectivity in the two patient groups, and in healthy subjects (HS). We also investigated the regional and global properties of the network. RESULTS In FAME2, differently from EPM1, we found a well-localized distribution of beta-CMC and increased betweenness-centrality (BC) on the sensorimotor region contralateral to the activated hand. In both patient groups, compared to HS, there was a decline in the network connectivity indexes in the beta and gamma band, which was more obvious in FAME2. CONCLUSIONS In FAME2, better localized CMC and increased BC in comparison with EPM1 patients could counteract the severity and the spreading of the myoclonus. Decreased indexes of cortical integration were more severe in FAME2. SIGNIFICANCE Our measures correlated with different motor disabilities and identified distinctive brain network impairments.
Collapse
Affiliation(s)
- Silvana Franceschetti
- Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Elisa Visani
- Bioengineering Unit, Dept. of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Ferruccio Panzica
- Clinical Engineering, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II, University of Naples, Napoli, Italy
| | - Pasquale Striano
- IRCCS Istituto "Giannina Gaslini", Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Dept of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
13
|
Cuccurullo C, Striano P, Coppola A. Familial Adult Myoclonus Epilepsy: A Non-Coding Repeat Expansion Disorder of Cerebellar-Thalamic-Cortical Loop. Cells 2023; 12:1617. [PMID: 37371086 DOI: 10.3390/cells12121617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Familial adult myoclonus Epilepsy (FAME) is a non-coding repeat expansion disorder that has been reported under different acronyms and initially linked to four main loci: FAME1 (8q23.3-q24.1), FAME 2 (2p11.1-q12.1), FAME3 (5p15.31-p15.1), and FAME4 (3q26.32-3q28). To date, it is known that the genetic mechanism underlying FAME consists of the expansion of similar non-coding pentanucleotide repeats, TTTCA and TTTTA, in different genes. FAME is characterized by cortical tremor and myoclonus usually manifesting within the second decade of life, and infrequent seizures by the third or fourth decade. Cortical tremor is the core feature of FAME and is considered part of a spectrum of cortical myoclonus. Neurophysiological investigations as jerk-locked back averaging (JLBA) and corticomuscular coherence analysis, giant somatosensory evoked potentials (SEPs), and the presence of long-latency reflex I (or C reflex) at rest support cortical tremor as the result of the sensorimotor cortex hyperexcitability. Furthermore, the application of transcranial magnetic stimulation (TMS) protocols in FAME patients has recently shown that inhibitory circuits are also altered within the primary somatosensory cortex and the concomitant involvement of subcortical networks. Moreover, neuroimaging studies and postmortem autoptic studies indicate cerebellar alterations and abnormal functional connectivity between the cerebellum and cerebrum in FAME. Accordingly, the pathophysiological mechanism underlying FAME has been hypothesized to reside in decreased sensorimotor cortical inhibition through dysfunction of the cerebellar-thalamic-cortical loop, secondary to primary cerebellar pathology. In this context, the non-coding pentameric expansions have been proposed to cause cerebellar damage through an RNA-mediated toxicity mechanism. The elucidation of the underlying pathological mechanisms of FAME paves the way to novel therapeutic possibilities, such as RNA-targeting treatments, possibly applicable to other neurodegenerative non-coding disorders.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16126 Genova, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| |
Collapse
|
14
|
Fotedar N, Fernandez-BacaVaca G, Rose M, Miller JP, Lüders HO. Spectrum of motor responses elicited by electrical stimulation of primary motor cortex: A polygraphic study in patients with epilepsy. Epilepsy Behav 2023; 142:109185. [PMID: 36966591 DOI: 10.1016/j.yebeh.2023.109185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE To study the neurophysiology of motor responses elicited by electrical stimulation of the primary motor cortex. METHODS We studied motor responses in four patients undergoing invasive epilepsy monitoring and functional cortical mapping via electrical cortical stimulation using surface EMG electrodes. In addition, polygraphic analysis of intracranial EEG and EMG during bilateral tonic-clonic seizures, induced by cortical stimulation, was performed in two patients. RESULTS (a) Electrical cortical stimulation: The motor responses were classified as clonic, jittery, and tonic. The clonic responses were characterized by synchronous EMG bursts of agonist and antagonistic muscles, alternating with silent periods. At stimulation frequencies of <20 Hz, EMG bursts were of ≤50 ms duration (Type I clonic). At stimulation frequencies of 20-50 Hz, EMG bursts were of >50 ms duration and had a complex morphology (Type II clonic). Increasing the current intensity at a constant frequency converted clonic responses into jittery and tonic contractions. (b) Bilateral tonic-clonic seizures: The intracranial EEG showed continuous fast spiking activity during the tonic phase along with interference pattern on surface EMG. The clonic phase was characterized by a polyspike-and-slow wave pattern. The polyspikes were time-locked with the synchronous EMG bursts of agonists and antagonists and the slow waves were time-locked with silent periods. INTERPRETATION These results suggest that epileptic activity involving the primary motor cortex can produce a continuum of motor responses ranging from type I clonic, type II clonic, and tonic responses to bilateral tonic-clonic seizures. This continuum is related to the frequency and intensity of the epileptiform discharges with tonic seizures representing the highest end of the spectrum.
Collapse
Affiliation(s)
- Neel Fotedar
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Guadalupe Fernandez-BacaVaca
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Michael Rose
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jonathan P Miller
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hans O Lüders
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Dubbioso R, Suppa A, Tijssen MAJ, Ikeda A. Familial adult myoclonus epilepsy: Neurophysiological investigations. Epilepsia 2023. [PMID: 36806000 DOI: 10.1111/epi.17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) also described as benign adult familial myoclonus epilepsy (BAFME) is a high-penetrant autosomal dominant condition featuring cortical myoclonus of varying frequency and occasional/rare convulsive seizures. In this update we provide a detailed overview of the main neurophysiological findings so far reported in patients with FAME/BAFME. After reviewing the diagnostic contribution of each neurophysiological technique, we discuss the possible mechanisms underlying cortical hyperexcitability and suggest the involvement of more complex circuits engaging cortical and subcortical structures, such as the cerebellum. We, thus, propose that FAME/BAFME clinical features should arise from an "abnormal neuronal network activity," where the cerebellum represents a possible common denominator. In the last part of the article, we suggest that future neurophysiological studies using more advanced transcranial magnetic stimulation (TMS) protocols could be used to evaluate the functional connectivity between the cerebellum and cortical structures. Finally, non-invasive brain stimulation techniques such as repetitive TMS or transcranial direct current stimulation could be assessed as potential therapeutic tools to ameliorate cortical excitability.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, Napoli, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands.,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology Kyoto University Graduate School of Medicine Shogoin, Kyoto, Japan
| |
Collapse
|
16
|
Depienne C, van den Maagdenberg AMJM, Kühnel T, Ishiura H, Corbett MA, Tsuji S. Insights into familial adult myoclonus epilepsy pathogenesis: How the same repeat expansion in six unrelated genes may lead to cortical excitability. Epilepsia 2023. [PMID: 36622139 DOI: 10.1111/epi.17504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Familial adult myoclonus epilepsy (FAME) results from the same pathogenic TTTTA/TTTCA pentanucleotide repeat expansion in six distinct genes encoding proteins with different subcellular localizations and very different functions, which poses the issue of what causes the neurobiological disturbances that lead to the clinical phenotype. Postmortem and electrophysiological studies have pointed to cortical hyperexcitability as well as dysfunction and neurodegeneration of both the cortex and cerebellum of FAME subjects. FAME expansions, contrary to the same expansion in DAB1 causing spinocerebellar ataxia type 37, seem to have no or limited impact on their recipient gene expression, which suggests a pathophysiological mechanism independent of the gene and its function. Current hypotheses include toxicity of the RNA molecules carrying UUUCA repeats, or toxicity of polypeptides encoded by the repeats, a mechanism known as repeat-associated non-AUG translation. The analysis of postmortem brains of FAME1 expansion (in SAMD12) carriers has revealed the presence of RNA foci that could be formed by the aggregation of RNA molecules with abnormal UUUCA repeats, but evidence is still lacking for other FAME subtypes. Even when the expansion is located in a gene ubiquitously expressed, expression of repeats remains undetectable in peripheral tissues (blood, skin). Therefore, the development of appropriate cellular models (induced pluripotent stem cell-derived neurons) or the study of affected tissues in patients is required to elucidate how FAME repeat expansions located in unrelated genes lead to disease.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hiroyuki Ishiura
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mark A Corbett
- Robinson Research Institute, University of Adelaide, Adelaide Medical School, Adelaide, South Australia, Australia
| | - Shoji Tsuji
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
17
|
Marapin RS, van der Horn HJ, van der Stouwe AMM, Dalenberg JR, de Jong BM, Tijssen MAJ. Altered brain connectivity in hyperkinetic movement disorders: A review of resting-state fMRI. Neuroimage Clin 2022; 37:103302. [PMID: 36669351 PMCID: PMC9868884 DOI: 10.1016/j.nicl.2022.103302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hyperkinetic movement disorders (HMD) manifest as abnormal and uncontrollable movements. Despite reported involvement of several neural circuits, exact connectivity profiles remain elusive. OBJECTIVES Providing a comprehensive literature review of resting-state brain connectivity alterations using resting-state fMRI (rs-fMRI). We additionally discuss alterations from the perspective of brain networks, as well as correlations between connectivity and clinical measures. METHODS A systematic review was performed according to PRISMA guidelines and searching PubMed until October 2022. Rs-fMRI studies addressing ataxia, chorea, dystonia, myoclonus, tics, tremor, and functional movement disorders (FMD) were included. The standardized mean difference was used to summarize findings per region in the Automated Anatomical Labeling atlas for each phenotype. Furthermore, the activation likelihood estimation meta-analytic method was used to analyze convergence of significant between-group differences per phenotype. Finally, we conducted hierarchical cluster analysis to provide additional insights into commonalities and differences across HMD phenotypes. RESULTS Most articles concerned tremor (51), followed by dystonia (46), tics (19), chorea (12), myoclonus (11), FMD (11), and ataxia (8). Altered resting-state connectivity was found in several brain regions: in ataxia mainly cerebellar areas; for chorea, the caudate nucleus; for dystonia, sensorimotor and basal ganglia regions; for myoclonus, the thalamus and cingulate cortex; in tics, the basal ganglia, cerebellum, insula, and frontal cortex; for tremor, the cerebello-thalamo-cortical circuit; finally, in FMD, frontal, parietal, and cerebellar regions. Both decreased and increased connectivity were found for all HMD. Significant spatial convergence was found for dystonia, FMD, myoclonus, and tremor. Correlations between clinical measures and resting-state connectivity were frequently described. CONCLUSION Key brain regions contributing to functional connectivity changes across HMD often overlap. Possible increases and decreases of functional connections of a specific region emphasize that HMD should be viewed as a network disorder. Despite the complex interplay of physiological and methodological factors, this review serves to gain insight in brain connectivity profiles across HMD phenotypes.
Collapse
Affiliation(s)
- Ramesh S Marapin
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Harm J van der Horn
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - A M Madelein van der Stouwe
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Jelle R Dalenberg
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Bauke M de Jong
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Marina A J Tijssen
- University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands.
| |
Collapse
|
18
|
Wang G, Song Y, Su J, Fan Z, Xu L, Fang P, Liu C, Long H, Hu C, Zhou L, Huang S, Zhou P, Wang K, Pang N, Shen H, Li S, Hu D, Xiao B, Zeng LL, Long L. Altered cerebellar-motor loop in benign adult familial myoclonic epilepsy type 1: The structural basis of cortical tremor. Epilepsia 2022; 63:3192-3203. [PMID: 36196770 DOI: 10.1111/epi.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cortical tremor/myoclonus is the hallmark feature of benign adult familial myoclonic epilepsy (BAFME), the mechanism of which remains elusive. A hypothesis is that a defective control in the preexisting cerebellar-motor loop drives cortical tremor. Meanwhile, the basal ganglia system might also participate in BAFME. This study aimed to discover the structural basis of cortical tremor/myoclonus in BAFME. METHODS Nineteen patients with BAFME type 1 (BAFME1) and 30 matched healthy controls underwent T1-weighted and diffusion tensor imaging scans. FreeSurfer and spatially unbiased infratentorial template (SUIT) toolboxes were utilized to assess the motor cortex and the cerebellum. Probabilistic tractography was generated for two fibers to test the hypothesis: the dentato-thalamo-(M1) (primary motor cortex) and globus pallidus internus (GPi)-thalamic projections. Average fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of each tract were extracted. RESULTS Cerebellar atrophy and dentate nucleus alteration were observed in the patients. In addition, patients with BAFME1 exhibited reduced AD and FA in the left and right dentato-thalamo-M1 nondecussating fibers, respectively false discovery rate (FDR) correction q < .05. Cerebellar projections showed negative correlations with somatosensory-evoked potential P25-N33 amplitude and were independent of disease duration and medication. BAFME1 patients also had increased FA and decreased MD in the left GPi-thalamic projection. Higher FA and lower RD in the right GPi-thalamic projection were also observed (FDR q < .05). SIGNIFICANCE The present findings support the hypothesis that the cerebello-thalamo-M1 loop might be the structural basis of cortical tremor in BAFME1. The basal ganglia system also participates in BAFME1 and probably serves a regulatory role.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yanmin Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Zhipeng Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Fang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.,Department of Military Medical Psychology, Air Force Medical University, Xian, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Nan Pang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
19
|
van der Veen S, Caviness JN, Dreissen YE, Ganos C, Ibrahim A, Koelman JH, Stefani A, Tijssen MA. Myoclonus and other jerky movement disorders. Clin Neurophysiol Pract 2022; 7:285-316. [PMID: 36324989 PMCID: PMC9619152 DOI: 10.1016/j.cnp.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, Movement Neurophysiology Laboratory, Scottsdale, AZ, USA
| | - Yasmine E.M. Dreissen
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christos Ganos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes H.T.M. Koelman
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A.J. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Corresponding author at: Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
20
|
Aberrant visual-related networks in familial cortical myoclonic tremor with epilepsy. Parkinsonism Relat Disord 2022; 101:105-110. [PMID: 35870251 DOI: 10.1016/j.parkreldis.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In familial cortical myoclonic tremor with epilepsy, photic stimulation can trigger visual symptoms and induce a photoparoxysmal response, or photosensitivity, on electroencephalography. However, the mechanism is poorly understood. In this study, we aimed to explore the neuroimaging changes related to visual symptoms and photosensitivity in genetically confirmed familial cortical myoclonic tremor with epilepsy type 1. METHODS Resting-state functional magnetic resonance imaging and electroencephalography data were collected from 31 patients carrying the heterozygous pathogenic intronic pentanucleotide (TTTCA)n insertion in the sterile alpha motif domain-containing 12 gene and from 52 age- and sex-matched healthy controls. RESULTS (1) Both regional homogeneity and degree centrality values in the bilateral calcarine sulcus were significantly increased in patients compared with healthy controls. (2) When the calcarine sulcus area with increased regional homogeneity was taken as a seed, increased functional connectivity values were observed in the right precentral gyrus, while decreased functional connectivity values were observed in the right superior frontal gyrus and right inferior parietal lobule. (3) Independent component analysis showed increased connectivity in the left calcarine sulcus inside the medial visual network. (4) Correlation analysis revealed a significant positive correlation between regional homogeneity values and frequency of seizure, and photoparoxysmal response grades were positively correlated with the severity of cortical tremor and duration of epilepsy. CONCLUSION These findings provide strong evidence for the interpretation of visual symptoms and photosensitivity in familial cortical myoclonic tremor with epilepsy. We speculate that functional changes in the primary visual cortex may be an imaging biomarker for the disease.
Collapse
|
21
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Wang G, Wu W, Xu Y, Yang Z, Xiao B, Long L. Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives. Front Mol Neurosci 2022; 15:891621. [PMID: 35706428 PMCID: PMC9189397 DOI: 10.3389/fnmol.2022.891621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a neurological network disease with genetics playing a much greater role than was previously appreciated. Unfortunately, the relationship between genetic basis and imaging phenotype is by no means simple. Imaging genetics integrates multidimensional datasets within a unified framework, providing a unique opportunity to pursue a global vision for epilepsy. This review delineates the current knowledge of underlying genetic mechanisms for brain networks in different epilepsy syndromes, particularly from a neural developmental perspective. Further, endophenotypes and their potential value are discussed. Finally, we highlight current challenges and provide perspectives for the future development of imaging genetics in epilepsy.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yuchen Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuanyi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- *Correspondence: Lili Long
| |
Collapse
|
23
|
Galosi S, Edani BH, Martinelli S, Hansikova H, Eklund EA, Caputi C, Masuelli L, Corsten-Janssen N, Srour M, Oegema R, Bosch DGM, Ellis CA, Amlie-Wolf L, Accogli A, Atallah I, Averdunk L, Barañano KW, Bei R, Bagnasco I, Brusco A, Demarest S, Alaix AS, Di Bonaventura C, Distelmaier F, Elmslie F, Gan-Or Z, Good JM, Gripp K, Kamsteeg EJ, Macnamara E, Marcelis C, Mercier N, Peeden J, Pizzi S, Pannone L, Shinawi M, Toro C, Verbeek NE, Venkateswaran S, Wheeler PG, Zdrazilova L, Zhang R, Zorzi G, Guerrini R, Sessa WC, Lefeber DJ, Tartaglia M, Hamdan FF, Grabińska KA, Leuzzi V. De novo DHDDS variants cause a neurodevelopmental and neurodegenerative disorder with myoclonus. Brain 2022; 145:208-223. [PMID: 34382076 PMCID: PMC8967098 DOI: 10.1093/brain/awab299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/03/2021] [Accepted: 07/16/2021] [Indexed: 11/12/2022] Open
Abstract
Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Ban H Edani
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund 22184, Sweden
| | - Caterina Caputi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University, Rome 00161, Italy
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9700, The Netherlands
| | - Myriam Srour
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Daniëlle G M Bosch
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Louise Amlie-Wolf
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrea Accogli
- Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Luisa Averdunk
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Rome 00133, Italy
| | - Irene Bagnasco
- Division of Neuropsychiatry, Epilepsy Center for Children, Martini Hospital, Turin 10128, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino & Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin 10126, Italy
| | - Scott Demarest
- Children's Hospital Colorado, Aurora, CO 80045, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Anne-Sophie Alaix
- Hopital Universitaire Necker Enfants Malades APHP, Paris 75015, France
| | | | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf 40225, Germany
| | - Frances Elmslie
- South West Thames Regional Genetics Service, St. George's Healthcare NHS Trust, London SW17 0QT, UK
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H4A 3J1, Canada.,Montréal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada.,Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Karen Gripp
- Division of Medical Genetics, Nemours/A I duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Ellen Macnamara
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen 6525, The Netherlands
| | - Noëlle Mercier
- Service d'Epileptologie et Médecine du handicap, Hôpital Neurologique, Institution de Lavigny, Lavigny 1175, Switzerland
| | - Joseph Peeden
- East Tennessee Children's Hospital, University of Tennessee Department of Medicine, Knoxville, TN 37916, USA
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Luca Pannone
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Marwan Shinawi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD 20892-2152, USA
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Sunita Venkateswaran
- Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa ON K1H 8L1, Canada
| | | | - Lucie Zdrazilova
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 12808, Czech Republic
| | - Rong Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Giovanna Zorzi
- Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Milan 20133, Italy
| | - Renzo Guerrini
- AOU Meyer, Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence 50139, Italy
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Nijmegen 6525 AJ, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC H3T1C5, Canada
| | - Kariona A Grabińska
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome 00185, Italy
| |
Collapse
|
24
|
Marsili L, Duque KR, Bode RL, Kauffman MA, Espay AJ. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front Neurol 2022; 13:821189. [PMID: 35401394 PMCID: PMC8983820 DOI: 10.3389/fneur.2022.821189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Long-read sequencing (LRS) technologies have been recently introduced to overcome intrinsic limitations of widely-used next-generation sequencing (NGS) technologies, namely the sequencing limited to short-read fragments (150–300 base pairs). Since its introduction, LRS has permitted many successes in unraveling hidden mutational mechanisms. One area in clinical neurology in need of rethinking as it applies to genetic mechanisms is essential tremor (ET). This disorder, among the most common in neurology, is a syndrome often exhibiting an autosomal dominant pattern of inheritance whose large phenotypic spectrum suggest a multitude of genetic etiologies. Exome sequencing has revealed the genetic etiology only in rare ET families (FUS, SORT1, SCN4A, NOS3, KCNS2, HAPLN4/BRAL2, and USP46). We hypothesize that a reason for this shortcoming may be non-classical genetic mechanism(s) underpinning ET, among them trinucleotide, tetranucleotide, or pentanucleotide repeat disorders. In support of this hypothesis, trinucleotide (e.g., GGC repeats in NOTCH2NLC) and pentanucleotide repeat disorders (e.g., ATTTC repeats in STARD7) have been revealed as pathogenic in patients with a past history of what has come to be referred to as “ET plus,” bilateral hand tremor associated with epilepsy and/or leukoencephalopathy. A systematic review of LRS in neurodegenerative disorders showed that 10 of the 22 (45%) genetic etiologies ascertained by LRS include tremor in their phenotypic spectrum, suggesting that future clinical applications of LRS for tremor disorders may uncover genetic subtypes of familial ET that have eluded NGS, particularly those with associated leukoencephalopathy or family history of epilepsy. LRS provides a pathway for potentially uncovering novel genes and genetic mechanisms, helping narrow the large proportion of “idiopathic” ET.
Collapse
Affiliation(s)
- Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Kevin R. Duque
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Rachel L. Bode
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J. Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Alberto J. Espay
| |
Collapse
|
25
|
Wang B, Wang H, Cen Z, Yuan J, Yang D, Chen X, Xie F, Wang L, Wu S, Ouyang Z, Zang YF, Luo W. White matter alterations in familial cortical myoclonic tremor with epilepsy type 1. Epilepsia 2022; 63:1093-1103. [PMID: 35247271 DOI: 10.1111/epi.17213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although previous imaging studies have reported cerebellar gray matter loss in patients with familial cortical myoclonic tremor with epilepsy (FCMTE), the corresponding white matter alterations remain unknown. We investigated white matter structural changes in FCMTE1 and compared them with clinical and electrophysiological features. METHODS We enrolled 36 patients carrying heterozygous pathogenic intronic pentanucleotide insertions in the SAMD12 gene and 52 age- and sex-matched healthy controls. Diffusion tensor imaging-derived metrics, including fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated along with white matter voxel-based morphometry (VBM) analysis. We also examined correlations between MR metrics and clinical and electrophysiological features. RESULTS We detected widespread white matter reductions in MD, RD, and AD values in FCMTE patients, including in the commissural, projection, and association fibers. VBM analysis revealed that increases in white matter volume predominantly occurred in the right cerebellum and sagittal stratum. MD, RD, AD, and VBM analysis clearly indicated changes in the sagittal stratum. We found a positive correlation between VBM values in the right cerebellum and SEP P25-N33 amplitude. Decreased MD and AD values in the right sagittal stratum were detected in patients with versus without photophobia. SIGNIFICANCE FCMTE is a network disorder involving a wide range of cortical and subcortical structures, including the cerebellum, thalamus, thalamo-cortical connections, and cortico-cortical connections. The right sagittal stratum is closely related with visual symptoms, especially photophobia. Our findings indicate that cerebellum and cortical hyperexcitability are closely linked, and emphasize the important role of the cerebellum in the pathophysiological mechanisms of cortical tremor.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haotian Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiachen Yuan
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dehao Yang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiyuan Ouyang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Rare tremors and tremors occurring in other neurological disorders. J Neurol Sci 2022; 435:120200. [DOI: 10.1016/j.jns.2022.120200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
|
27
|
Dubbioso R, Striano P, Tomasevic L, Bilo L, Esposito M, Manganelli F, Coppola A. OUP accepted manuscript. Brain Commun 2022; 4:fcac037. [PMID: 35233526 PMCID: PMC8882005 DOI: 10.1093/braincomms/fcac037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Familial adult myoclonic epilepsy type 2 is a hereditary condition characterized by cortical tremor, myoclonus and epilepsy. It belongs to the spectrum of cortical myoclonus and the sensorimotor cortex hyperexcitability represents an important pathogenic mechanism underlying this condition. Besides pericentral cortical structures, the impairment of subcortical networks seems also to play a pathogenetic role, mainly via the thalamo-cortical pathway. However, the mechanisms underlying cortical–subcortical circuits dysfunction, as well as their impact on clinical manifestations, are still unknown. Therefore, the main aims of our study were to systematically study with an extensive electrophysiological battery, the cortical sensorimotor, as well as thalamo-cortical networks in genetically confirmed familial adult myoclonic epilepsy patients and to establish reliable neurophysiological biomarkers for the diagnosis. In 26 familial myoclonic epilepsy subjects, harbouring the intronic ATTTC repeat expansion in the StAR-related lipid transfer domain-containing 7 gene, 17 juvenile myoclonic epilepsy patients and 22 healthy controls, we evaluated the facilitatory and inhibitory circuits within the primary motor cortex using single and paired-pulse transcranial magnetic stimulation paradigms. We also probed the excitability of the somatosensory, as well as the thalamo-somatosensory cortex connection by using ad hoc somatosensory evoked potential protocols. The sensitivity and specificity of transcranial magnetic stimulation and somatosensory evoked potential metrics were derived from receiver operating curve analysis. Familial adult myoclonic epilepsy patients displayed increased facilitation and decreased inhibition within the sensorimotor cortex compared with juvenile myoclonic epilepsy patients (all P < 0.05) and healthy controls (all P < 0.05). Somatosensory evoked potential protocols also displayed a significant reduction of early high-frequency oscillations and less inhibition at paired-pulse protocol, suggesting a concomitant failure of thalamo-somatosensory cortex circuits. Disease onset and duration and myoclonus severity did not correlate either with sensorimotor hyperexcitability or thalamo-cortical measures (all P > 0.05). Patients with a longer disease duration had more severe myoclonus (r = 0.467, P = 0.02) associated with a lower frequency (r = −0.607, P = 0.001) and higher power of tremor (r = 0.479, P = 0.02). Finally, familial adult myoclonic epilepsy was reliably diagnosed using transcranial magnetic stimulation, demonstrating its superiority as a diagnostic factor compared to somatosensory evoked potential measures. In conclusion, deficits of sensorimotor cortical and thalamo-cortical circuits are involved in the pathophysiology of familial adult myoclonic epilepsy even if these alterations are not associated with clinical severity. Transcranial magnetic stimulation-based measurements display an overall higher accuracy than somatosensory evoked potential parameters to reliably distinguish familial adult myoclonic epilepsy from juvenile myoclonic epilepsy and healthy controls.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
- Correspondence may also be addressed to: Dubbioso Raffaele MD PhD Department of Neurosciences Reproductive Sciences and Odontostomatology University Federico II of Napoli Via Sergio Pansini, 5. 80131 Napoli, Italy E-mail:
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Correspondence to: Striano Pasquale, MD, PhD Department of Neurosciences Rehabilitation, Ophthalmology, Genetics Maternal and Child Health (DiNOGMI) University of Genoa, Via Gaslini 5 padiglione 16, I piano, 16148 Genova, Italy E-mail: ;
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance (DRCMR), Copenhagen University, Kobenhavn, Denmark
| | - Leonilda Bilo
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | | | - Fiore Manganelli
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| | - Antonietta Coppola
- Department of Neuroscience, Odontostomatology and Reproductive Sciences, Federico II University, Naples, Italy
| |
Collapse
|
28
|
Pollini L, Tijssen MAJ. A diagnosis of progressive myoclonic ataxia guided by blood biomarkers: Expert commentary. Parkinsonism Relat Disord 2021; 94:127-128. [PMID: 34896024 DOI: 10.1016/j.parkreldis.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Affiliation(s)
- L Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Neurology, University Medical Centre Groningen, Groningen, the Netherlands
| | - M A J Tijssen
- Expertise Centre Movement Disorders Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Neurology, University Medical Centre Groningen, Groningen, the Netherlands.
| |
Collapse
|
29
|
Matsubara T, Ahlfors SP, Mima T, Hagiwara K, Shigeto H, Tobimatsu S, Goto Y, Stufflebeam S. Bilateral Representation of Sensorimotor Responses in Benign Adult Familial Myoclonus Epilepsy: An MEG Study. Front Neurol 2021; 12:759866. [PMID: 34764933 PMCID: PMC8577121 DOI: 10.3389/fneur.2021.759866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/21/2021] [Indexed: 12/03/2022] Open
Abstract
Patients with cortical reflex myoclonus manifest typical neurophysiologic characteristics due to primary sensorimotor cortex (S1/M1) hyperexcitability, namely, contralateral giant somatosensory-evoked potentials/fields and a C-reflex (CR) in the stimulated arm. Some patients show a CR in both arms in response to unilateral stimulation, with about 10-ms delay in the non-stimulated compared with the stimulated arm. This bilateral C-reflex (BCR) may reflect strong involvement of bilateral S1/M1. However, the significance and exact pathophysiology of BCR within 50 ms are yet to be established because it is difficult to identify a true ipsilateral response in the presence of the giant component in the contralateral hemisphere. We hypothesized that in patients with BCR, bilateral S1/M1 activity will be detected using MEG source localization and interhemispheric connectivity will be stronger than in healthy controls (HCs) between S1/M1 cortices. We recruited five patients with cortical reflex myoclonus with BCR and 15 HCs. All patients had benign adult familial myoclonus epilepsy. The median nerve was electrically stimulated unilaterally. Ipsilateral activity was investigated in functional regions of interest that were determined by the N20m response to contralateral stimulation. Functional connectivity was investigated using weighted phase-lag index (wPLI) in the time-frequency window of 30–50 ms and 30–100 Hz. Among seven of the 10 arms of the patients who showed BCR, the average onset-to-onset delay between the stimulated and the non-stimulated arm was 8.4 ms. Ipsilateral S1/M1 activity was prominent in patients. The average time difference between bilateral cortical activities was 9.4 ms. The average wPLI was significantly higher in the patients compared with HCs in specific cortico-cortical connections. These connections included precentral-precentral, postcentral-precentral, inferior parietal (IP)-precentral, and IP-postcentral cortices interhemispherically (contralateral region-ipsilateral region), and precentral-IP and postcentral-IP intrahemispherically (contralateral region-contralateral region). The ipsilateral response in patients with BCR may be a pathologically enhanced motor response homologous to the giant component, which was too weak to be reliably detected in HCs. Bilateral representation of sensorimotor responses is associated with disinhibition of the transcallosal inhibitory pathway within homologous motor cortices, which is mediated by the IP. IP may play a role in suppressing the inappropriate movements seen in cortical myoclonus.
Collapse
Affiliation(s)
- Teppei Matsubara
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,International University of Health and Welfare, Otawara, Japan
| | - Seppo P Ahlfors
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Hiroshi Shigeto
- Division of Medical Technology, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Tobimatsu
- Department of Orthoptics, Faculty of Medicine, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Yoshinobu Goto
- Department of Physiology, School of Medicine, International University of Health and Welfare, Okawa, Japan
| | - Steven Stufflebeam
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
31
|
Chandarana M, Saraf U, Divya KP, Krishnan S, Kishore A. Myoclonus- A Review. Ann Indian Acad Neurol 2021; 24:327-338. [PMID: 34446993 PMCID: PMC8370153 DOI: 10.4103/aian.aian_1180_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
Myoclonus is a hyperkinetic movement disorder characterized by a sudden, brief, involuntary jerk. Positive myoclonus is caused by abrupt muscle contractions, while negative myoclonus by sudden cessation of ongoing muscular contractions. Myoclonus can be classified in various ways according to body distribution, relation to activity, neurophysiology, and etiology. The neurophysiological classification of myoclonus by means of electrophysiological tests is helpful in guiding the best therapeutic strategy. Given the diverse etiologies of myoclonus, a thorough history and detailed physical examination are key to the evaluation of myoclonus. These along with basic laboratory testing and neurophysiological studies help in narrowing down the clinical possibilities. Though symptomatic treatment is required in the majority of cases, treatment of the underlying etiology should be the primary aim whenever possible. Symptomatic treatment is often not satisfactory, and a combination of different drugs is often required to control the myoclonus. This review addresses the etiology, classification, clinical approach, and management of myoclonus.
Collapse
Affiliation(s)
- Mitesh Chandarana
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Udit Saraf
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - K P Divya
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
32
|
Mulroy E, Baschieri F, Magrinelli F, Latorre A, Cortelli P, Bhatia KP. Movement Disorders and Liver Disease. Mov Disord Clin Pract 2021; 8:828-842. [PMID: 34401403 PMCID: PMC8354085 DOI: 10.1002/mdc3.13238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The association of movement disorders with structural or functional hepatic disease occurs in three principal scenarios: (1) combined involvement of both organ systems from a single disease entity, (2) nervous system dysfunction resulting from exposure to toxic compounds in the setting of defective hepatic clearance, or (3) hepatic and/or neurological injury secondary to exposure to exogenous drugs or toxins. An important early step in the workup of any patient with combined movement disorders and liver disease is the exclusion of Wilson's disease. Diagnostic delay remains common for this treatable disorder, and this has major implications for patient outcomes. Thereafter, a structured approach integrating variables such as age of onset, tempo of progression, nature and severity of liver involvement, movement disorder phenomenology, exposure to drugs/toxins and laboratory/neuroimaging findings is key to ensuring timely diagnosis and disease‐specific therapy. Herein, we provide an overview of disorders which may manifest with a combination of movement disorders and liver disease, structured under the three headings as detailed above. In each section, the most common disorders are discussed, along with important clinical pearls, suggested diagnostic workup, differential diagnoses and where appropriate, treatment considerations.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom
| | - Francesca Baschieri
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna Italy.,Dipartimento di Scienze Biomediche e Neuromotorie Università di Bologna Bologna Italy
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom.,Department of Neurosciences Biomedicine and Movement Sciences, University of Verona Verona Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna Bologna Italy.,Dipartimento di Scienze Biomediche e Neuromotorie Università di Bologna Bologna Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom
| |
Collapse
|
33
|
Tojima M, Hitomi T, Matsuhashi M, Neshige S, Usami K, Oi K, Kobayashi K, Takeyama H, Shimotake A, Takahashi R, Ikeda A. A Biomarker for Benign Adult Familial Myoclonus Epilepsy: High-Frequency Activities in Giant Somatosensory Evoked Potentials. Mov Disord 2021; 36:2335-2345. [PMID: 34050549 DOI: 10.1002/mds.28666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Benign adult familial myoclonus epilepsy (BAFME) is one of the diseases that cause cortical myoclonus (CM) with giant somatosensory evoked potentials (SEPs). There are no useful diagnostic biomarkers differentiating BAFME from other CM diseases. OBJECTIVE To establish reliable biomarkers including high-frequency oscillations (HFOs) with giant SEPs for the diagnosis of BAFME. METHODS This retrospective case study included 49 consecutive CM patients (16 BAFME and 33 other CM patients) who exhibited giant P25 or N35 SEPs. SEPs were processed by a band-pass filter of 400-1000 Hz to analyze HFOs. Clinical and SEP findings were compared between (1) BAFME and other CM groups and (2) patients with presence and absence of P25-HFOs (HFOs superimposed on giant P25). The diagnostic power of each factor for BAFME was calculated. RESULTS All 16 BAFME patients showed SEP P25-HFOs with significantly higher occurrence (P < 0.0001) compared with that of other CM groups. The presence of P25-HFOs significantly correlated with a BAFME diagnosis (P < 0.0001) and high SEP P25 and N35 amplitudes (P = 0.01 and P < 0.0001, respectively). BAFME was reliably diagnosed using P25-HFOs with high sensitivity (100%), specificity (87.9%), positive predictive value (80%), and negative predictive value (100%), demonstrating its superiority as a diagnostic factor compared to other factors. CONCLUSIONS P25-HFOs with giant SEPs is a potential biomarker for BAFME diagnosis. P25-HFOs may reflect cortical hyperexcitability partly due to paroxysmal depolarizing shifts in epileptic neuronal activities and higher degrees of rhythmic tremulousness than those in ordinary CM. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Maya Tojima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Matsuhashi
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichiro Neshige
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuki Oi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirofumi Takeyama
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Ganguly J, Chai JR, Jog M. Minipolymyoclonus: A Critical Appraisal. J Mov Disord 2021; 14:114-118. [PMID: 34062647 PMCID: PMC8175814 DOI: 10.14802/jmd.20166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jacky Ganguly
- London Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, Canada
| | - Jia Ren Chai
- Memorial University of Newfoundland, St. John̕s, Canada
| | - Mandar Jog
- London Movement Disorder Centre, London Health Sciences Centre, The University of Western Ontario, London, Canada
| |
Collapse
|
35
|
Directionality of corticomuscular coupling in essential tremor and cortical myoclonic tremor. Clin Neurophysiol 2021; 132:1878-1886. [PMID: 34147924 DOI: 10.1016/j.clinph.2021.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A role of the motor cortex in tremor generation in essential tremor (ET) is assumed, yet the directionality of corticomuscular coupling is unknown. Our aim is to clarify the role of the motor cortex. To this end we also study 'familial cortical myoclonic tremor with epilepsy' (FCMTE) and slow repetitive voluntary movements with a known cortical drive. METHODS Directionality of corticomuscular coupling (EEG-EMG) was studied with renormalized partial directed coherence (rPDC) during tremor in 25 ET patients, 25 healthy controls (mimicked) and in seven FCMTE patients; and during a self-paced 2 Hz task in eight ET patients and seven healthy controls. RESULTS Efferent coupling around tremor frequency was seen in 33% of ET patients, 45.5% of healthy controls, all FCMTE patients, and, around 2 Hz, in all ET patients and all healthy controls. Ascending coupling, seen in the majority of all participants, was weaker in ET than in healthy controls around 5-6 Hz. CONCLUSIONS Possible explanations are that tremor in ET results from faulty subcortical output bypassing the motor cortex; rate-dependent transmission similar to generation of rhythmic movements; and/or faulty feedforward mechanism resulting from decreased afferent (sensory) coupling. SIGNIFICANCE A linear cortical drive is lacking in the majority of ET patients.
Collapse
|
36
|
Cerebellar and cortical hypometabolism in progressive stimulus-sensitive limb myoclonus in celiac disease. Neurol Sci 2021; 42:3453-3455. [PMID: 33890161 DOI: 10.1007/s10072-021-05264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
|
37
|
Magrinelli F, Balint B, Bhatia KP. Challenges in Clinicogenetic Correlations: One Gene - Many Phenotypes. Mov Disord Clin Pract 2021; 8:299-310. [PMID: 33816657 PMCID: PMC8015894 DOI: 10.1002/mdc3.13165] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Progress in genetics – particularly the advent of next‐generation sequencing (NGS) – has enabled an unparalleled gene discovery and revealed unmatched complexity of genotype–phenotype correlations in movement disorders. Among other things, it has emerged that mutations in one and the same gene can cause multiple, often markedly different phenotypes. Consequently, movement disorder specialists have increasingly experienced challenges in clinicogenetic correlations. Objectives To deconstruct biological phenomena and mechanistic bases of phenotypic heterogeneity in monogenic movement disorders and neurodegenerative diseases. To discuss the evolving role of movement disorder specialists in reshaping disease phenotypes in the NGS era. Methods This scoping review details phenomena contributing to phenotypic heterogeneity and their underlying mechanisms. Results Three phenomena contribute to phenotypic heterogeneity, namely incomplete penetrance, variable expressivity and pleiotropy. Their underlying mechanisms, which are often shared across phenomena and non‐mutually exclusive, are not fully elucidated. They involve genetic factors (ie, different mutation types, dynamic mutations, somatic mosaicism, intragenic intra‐ and inter‐allelic interactions, modifiers and epistatic genes, mitochondrial heteroplasmy), epigenetic factors (ie, genomic imprinting, X‐chromosome inactivation, modulation of genetic and chromosomal defects), and environmental factors. Conclusion Movement disorders is unique in its reliance on clinical judgment to accurately define disease phenotypes. This has been reaffirmed by the NGS revolution, which provides ever‐growing sequencing data and fuels challenges in variant pathogenicity assertions for such clinically heterogeneous disorders. Deep phenotyping, with characterization and continual updating of “core” phenotypes, and comprehension of determinants of genotype–phenotype complex relationships are crucial for clinicogenetic correlations and have implications for the diagnosis, treatment and counseling.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom.,Department of Neurology University Hospital Heidelberg Heidelberg Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
38
|
Pan S, Li X, Li L, Lin H, Wang D, Zhang X, Zhao X, Ye J, Huang Z, Lin Y, Duan Y, Ma R, Gao L, Wang C, Wang Y. Comprehensive genetic, clinical and electrophysiological studies of familial cortical myoclonic tremor with epilepsy 1 highlight the role of gene configurations. Seizure 2021; 87:69-74. [PMID: 33721773 DOI: 10.1016/j.seizure.2021.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Two configurations of TTTTA/TTTCA expansion in SAMD12 have been identified in familial cortical myoclonic tremor with epilepsy type 1 (FCMTE1). This study investigated the clinical and neurophysiological features of FCMTE1 and their association with TTTTA/TTTCA expansion patterns. METHODS In total, 76 patients from 20 Chinese pedigrees were enrolled. Genetic (TTTTA/TTTCA configuration), clinical (e.g., onset, medication, prognosis, and anticipation) and neurophysiological examination (e.g., electroencephalogram and magnetoencephalography) data were evaluated, and associations between these parameters were analyzed. RESULTS All patients carried the TTTTA/TTTCA expansion mutation, 19 displayed the (TTTTA)exp(TTTCA)exp (type I) configuration and 1 displayed the (TTTTA)exp (TTTCA)exp(TTTTA)exp (type II) configuration. All patients manifested as progressive tremor, but symptoms of patients carrying type II expansion were more severe. The onset of tremor but not generalized tonic and clonic seizures displayed clinical anticipation between generations of 7 pedigrees, but the pedigree carrying the type II mutation did not show anticipation. Nanopore sequencing showed that the repeats expanded during maternal/offspring transmission (pedigree #7) but shrank during paternal/offspring transmission (pedigree #9). Magnetoencephalographic dipoles were localized in the right frontal lobe near the central sulcus in 4 patients carrying the type I mutation and on the left side in one patient carrying the type II mutation. SIGNIFICANCE We confirmed the causative roles played by TTTTA/TTTCA repeat expansion in the SAMD12 gene in FCTME1. Both the length and the configuration of the repeats contribute to the clinical and neurophysiological characteristics of the disease.
Collapse
Affiliation(s)
- Sipei Pan
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
| | - Xuying Li
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Liping Li
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Hua Lin
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Dequan Wang
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Xiating Zhang
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Xin Zhao
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Jing Ye
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
| | - Yiran Duan
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
| | - Rui Ma
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China
| | - Lehong Gao
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| | - Yuping Wang
- Department of Neurology, Xuanwu Hosptial, Captial Medical University, Beijing, 100053, China; Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
39
|
Striano P, Coppola A, Dubbioso R, Minetti C. Cortical tremor: a tantalizing conundrum between cortex and cerebellum. Brain 2021; 143:e87. [PMID: 33011757 DOI: 10.1093/brain/awaa260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Antonietta Coppola
- Epilepsy Center, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Carlo Minetti
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| |
Collapse
|
40
|
Latorre A, Rothwell JC. Myoclonus and COVID-19: A Challenge for the Present, a Lesson for the Future. Mov Disord Clin Pract 2020; 7:888-890. [PMID: 33163558 PMCID: PMC7604694 DOI: 10.1002/mdc3.13103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesUniversity College London (UCL) Queen Square Institute of NeurologyLondonUnited Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College London (UCL) Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
41
|
Latorre A, Rocchi L, Magrinelli F, Mulroy E, Berardelli A, Rothwell JC, Bhatia KP. Reply: Pentameric repeat expansions: cortical myoclonus or cortical tremor? and Cortical tremor: a tantalizing conundrum between cortex and cerebellum. Brain 2020; 143:e88. [PMID: 33011762 DOI: 10.1093/brain/awaa261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|