1
|
Lin X, Fu B, Xiong Y, Xue W, Lu X, Wang S, Guo D, Kunec D, Mao X, Trimpert J, Wu H. Yip1 interacting factor homolog B mediates the unconventional secretion of ORF8 during SARS-CoV-2 infection. iScience 2025; 28:111551. [PMID: 39811650 PMCID: PMC11732186 DOI: 10.1016/j.isci.2024.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2. In a previous study, we have examined the role of unconventionally released ORF8 during cytokine storm associated with SARS-CoV-2 infection. Here, after mass spectrometry analysis and gene knockout/knockdown in cell/hamster models, we further discovered that Yip1 interacting factor homolog B (YIF1B) directly translocates unglycosylated ORF8 into vesicles that mediate cargo transport; specifically, the α4 helix of YIF1B interacts with the β8 sheet. Blocking ORF8 unconventional secretion via YIF1B knockdown attenuates inflammation and yields reduced mortality. Our study suggests that YIF1B directs ORF8 translocation into an unconventional secretion pathway, which has significant implications for the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
| | - Beibei Fu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dusan Kunec
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jakob Trimpert
- Institute of Virology, Free University of Berlin, Berlin 14163, Germany
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
3
|
Sanri A, Mutlu MB, Sezer O. YIF1B-related Kaya-Barakat-Masson Syndrome: Report of a new patient and literature review. Eur J Med Genet 2023; 66:104751. [PMID: 36948290 DOI: 10.1016/j.ejmg.2023.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Kaya-Barakat-Masson syndrome (KABAMAS) is a recently identified severe neurodevelopmental disorder characterized by severe global developmental delay, epilepsy, movement disorder, epilepsy, and microcephaly. KABAMAS is caused by bi-allelic variants in the YIF1B gene which encodes a trafficking protein involved in the anterograde traffic from the endoplasmic reticulum to the cell membrane including neural cells in association with other trafficking proteins and also Golgi apparatus morphology. That's why clinical overlapping between KABAMAS and golgipathies isn't surprising. It is a rare condition with only 24 patients reported to date. Here we described a 5.5-year-old boy presenting with severe global developmental delay, epileptic encephalopathy, microcephaly, dystonia, spasticity, blindness, feeding difficulties, respiratory failure, and dysmorphic features. Whole exome sequencing identified homozygous splice site variation (NM_001039672.3: c.297+1G > A) in the YIF1B gene. This splice site variant is rare in the general population (gnomAD Variant allele fraction (VAF): 0.0007%, 2 heterozygotes, 0 homozygotes) and has not previously been associated with the disease. Multiple in silico tools predict a deleterious effect of this splice site change. Considering the points mentioned above, we have considered the detected variant as pathogenic according to guidelines in light of current knowledge. By reporting a new case with the homozygous YIF1B splice site variant we provide further evidence to clinical and molecular data of this recently recognized severe neurodevelopmental disorder. We further emphasize that trafficking errors should be considered as an underlying mechanism in undiagnosed severe neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aslihan Sanri
- Department of Pediatric Genetics, Samsun Education and Research Hospital, Samsun, Turkey.
| | | | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| |
Collapse
|
4
|
Liu X, Yang J, Li Z, Liu R, Wu X, Zhang Z, Lai L, Li Z, Song Y. YIPF5 (p.W218R) mutation induced primary microcephaly in rabbits. Neurobiol Dis 2023; 182:106135. [PMID: 37142085 DOI: 10.1016/j.nbd.2023.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Primary microcephaly (PMCPH) is a rare autosomal recessive neurodevelopmental disorder with a global prevalence of PMCPH ranging from 0.0013% to 0.15%. Recently, a homozygous missense mutation in YIPF5 (p.W218R) was identified as a causative mutation of severe microcephaly. In this study, we constructed a rabbit PMCPH model harboring YIPF5 (p.W218R) mutation using SpRY-ABEmax mediated base substitution, which precisely recapitulated the typical symptoms of human PMCPH. Compared with wild-type controls, the mutant rabbits exhibited stunted growth, reduced head circumference, altered motor ability, and decreased survival rates. Further investigation based on model rabbit elucidated that altered YIPF5 function in cortical neurons could lead to endoplasmic reticulum stress and neurodevelopmental disorders, interference of the generation of apical progenitors (APs), the first generation of progenitors in the developing cortex. Furthermore, these YIPF5-mutant rabbits support a correlation between unfolded protein responses (UPR) induced by endoplasmic reticulum stress (ERS), and the development of PMCPH, thus providing a new perspective on the role of YIPF5 in human brain development and a theoretical basis for the differential diagnosis and clinical treatment of PMCPH. To our knowledge, this is the first gene-edited rabbit model of PMCPH. The model better mimics the clinical features of human microcephaly than the traditional mouse models. Hence, it provides great potential for understanding the pathogenesis and developing novel diagnostic and therapeutic approaches for PMCPH.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jie Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhaoyi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xinyu Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhongtian Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China.
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Refeat MM, Naggar WE, Saied MME, Kilany A. Whole exome screening of neurodevelopmental regression disorders in a cohort of Egyptian patients. Neurogenetics 2023; 24:17-28. [PMID: 36435927 PMCID: PMC9823068 DOI: 10.1007/s10048-022-00703-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/05/2022] [Indexed: 11/28/2022]
Abstract
Developmental regression describes a child who begins to lose his previously acquired milestones skills after he has reached a certain developmental stage and though affects his childhood development. It is associated with neurodegenerative diseases including leukodystrophy and neuronal ceroid lipofuscinosis diseases (NCLs), one of the most frequent childhood-onset neurodegenerative disorders. The current study focused on screening causative genes of developmental regression diseases comprising neurodegenerative disorders in Egyptian patients using next-generation sequencing (NGS)-based analyses as well as developing checklist to support clinicians who are not familiar with these diseases. A total of 763 Egyptian children (1 to 11 years), mainly diagnosed with developmental regression, seizures, or visual impairment, were studied using whole exome sequencing (WES). Among 763 Egyptian children, 726 cases were early clinically and molecularly diagnosed, including 482 cases that had pediatric stroke, congenital infection, and hepatic encephalopathy; meanwhile, 192 had clearly dysmorphic features, 31 showed central nervous system (CNS) malformation, 17 were diagnosed by leukodystrophy, 2 had ataxia telangiectasia, and 2 were diagnosed with tuberous sclerosis. The remained 37 out of 763 candidates were suspected with NCLs symptoms; however, 28 were confirmed to be NCLs patients, 1 was Kaya-Barakat-Masson syndrome, 1 was diagnosed as infantile neuroaxonal dystrophy, and 7 cases required further molecular diagnosis. This study provided an NGS-based approach of the genetic causes of developmental regression and neurodegenerative diseases as it comprised different variants and de novo mutations with complex phenotypes of these diseases which in turn help in early diagnoses and counseling for affected families.
Collapse
Affiliation(s)
- Miral M. Refeat
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Walaa El Naggar
- Faculty of Medicine, Department of Pediatrics, Cairo University, Giza, Egypt
| | - Mostafa M. El Saied
- Department of Research On Children With Special Needs, Medical Research Institute, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- Department of Research On Children With Special Needs, Medical Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Golgi Dysfunctions in Ciliopathies. Cells 2022; 11:cells11182773. [PMID: 36139347 PMCID: PMC9496873 DOI: 10.3390/cells11182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The Golgi apparatus (GA) is essential for intracellular sorting, trafficking and the targeting of proteins to specific cellular compartments. Anatomically, the GA spreads all over the cell but is also particularly enriched close to the base of the primary cilium. This peculiar organelle protrudes at the surface of almost all cells and fulfills many cellular functions, in particular during development, when a dysfunction of the primary cilium can lead to disorders called ciliopathies. While ciliopathies caused by loss of ciliated proteins have been extensively documented, several studies suggest that alterations of GA and GA-associated proteins can also affect ciliogenesis. Here, we aim to discuss how the loss-of-function of genes coding these proteins induces ciliary defects and results in ciliopathies.
Collapse
|
7
|
Angelotti T. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function? Front Mol Biosci 2022; 9:912848. [PMID: 36060263 PMCID: PMC9437294 DOI: 10.3389/fmolb.2022.912848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Polytopic cargo proteins are synthesized and exported along the secretory pathway from the endoplasmic reticulum (ER), through the Golgi apparatus, with eventual insertion into the plasma membrane (PM). While searching for proteins that could enhance cell surface expression of olfactory receptors, a new family of proteins termed “receptor expression-enhancing proteins” or REEPs were identified. These membrane-shaping hairpin proteins serve as adapters, interacting with intracellular transport machinery, to regulate cargo protein trafficking. However, REEPs belong to a larger family of proteins, the Yip (Ypt-interacting protein) family, conserved in yeast and higher eukaryotes. To date, eighteen mammalian Yip family members, divided into four subfamilies (Yipf, REEP, Yif, and PRAF), have been identified. Yeast research has revealed many intriguing aspects of yeast Yip function, functions that have not completely been explored with mammalian Yip family members. This review and analysis will clarify the different Yip family nomenclature that have encumbered prior comparisons between yeast, plants, and eukaryotic family members, to provide a more complete understanding of their interacting proteins, membrane topology, organelle localization, and role as regulators of cargo trafficking and localization. In addition, the biological role of membrane shaping and sensing hairpin and amphipathic helical domains of various Yip proteins and their potential cellular functions will be described. Lastly, this review will discuss the concept of Yip proteins as members of a larger superfamily of membrane-shaping adapter proteins (MSAPs), proteins that both shape membranes via membrane-sensing and hairpin insertion, and well as act as adapters for protein-protein interactions. MSAPs are defined by their localization to specific membranes, ability to alter membrane structure, interactions with other proteins via specific domains, and specific interactions/effects on cargo proteins.
Collapse
|
8
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
9
|
Xu F, Tang Q, Wang Y, Wang G, Qian K, Ju L, Xiao Y. Development and Validation of a Six-Gene Prognostic Signature for Bladder Cancer. Front Genet 2021; 12:758612. [PMID: 34938313 PMCID: PMC8685517 DOI: 10.3389/fgene.2021.758612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Human bladder cancer (BCa) is the most common urogenital system malignancy. Patients with BCa have limited treatment efficacy in clinical practice. Novel biomarkers could provide more crucial information conferring to cancer diagnosis, treatment, and prognosis. Here, we aimed to explore and identify novel biomarkers associated with cancer-specific survival of patients with BCa to build a prognostic signature. Based on univariate Cox regression, Lasso regression, and multivariate Cox regression analysis, we conducted an integrated analysis in the training set (GSE32894) and established a six-gene signature to predict the cancer-specific survival for human BCa. The six genes were Cyclin Dependent Kinase 4 (CDK4), E2F Transcription Factor 7 (E2F7), Collagen Type XI Alpha 1 Chain (COL11A1), Bradykinin Receptor B2 (BDKRB2), Yip1 Interacting Factor Homolog B (YIF1B), and Zinc Finger Protein 415 (ZNF415). Then, we validated the prognostic value of the model by using two other datasets (GSE13507 and TCGA). Also, we conducted univariate and multivariate Cox regression analyses, and results indicated that the six-gene signature was an independent prognostic factor of cancer-specific survival of patients with BCa. Functional analysis was performed based on the differentially expressed genes of low- and high-risk patients, and we found that they were enriched in lipid metabolic and cell division-related biological processes. Meanwhile, the gene set enrichment analysis (GSEA) revealed that high-risk samples were enriched in cell cycle and cancer-related pathways [G2/M checkpoint, E2F targets, mitotic spindle, mTOR signaling, spermatogenesis, epithelial–mesenchymal transition (EMT), DNA repair, PI3K/AKT/mTOR signaling, unfolded protein response (UPR), and MYC targets V2]. Lastly, we detected the relative expression of each signature in BCa cell lines by quantitative real-time PCR (qRT-PCR). As far as we know, currently, the present study is the first research that developed and validated a cancer-specific survival prognostic index based on three independent cohorts. The results revealed that this six-gene signature has a predictive ability for cancer-specific prognosis. Moreover, we also verified the relative expression of these six signatures between the bladder cell line and four BCa cell lines by qRT-PCR. Nevertheless, experiments to further explore the function of six genes are lacking.
Collapse
Affiliation(s)
- Fei Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Tang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Lingao Ju
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China.,Human Genetic Resource Preservation Center of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Medico Salsench E, Maroofian R, Deng R, Lanko K, Nikoncuk A, Pérez B, Sánchez-Lijarcio O, Ibáñez-Mico S, Wojcik A, Vargas M, Abbas Al-Sannaa N, Girgis MY, Silveira TRD, Bauer P, Schroeder A, Fong CT, Begtrup A, Babaei M, Toosi MB, Ashrafzadeh F, Imannezhad S, Doosti M, Ahangari N, Najarzadeh Torbati P, Ghayoor Karimiani E, Murphy D, Cali E, Kaya IH, AlMuhaizea M, Colak D, Cardona-Londoño KJ, Arold ST, Houlden H, Bertoli-Avella A, Kaya N, Barakat TS. Expanding the mutational landscape and clinical phenotype of the YIF1B related brain disorder. Brain 2021; 144:e85. [PMID: 34373908 PMCID: PMC8634087 DOI: 10.1093/brain/awab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/27/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares. Centro de Biología Molecular, Universidad Autonoma de Madrid, CIBER Enfermedades Raras, IdiPAZ, Madrid, Spain
| | - Obdulia Sánchez-Lijarcio
- Centro de Diagnóstico de Enfermedades Moleculares. Centro de Biología Molecular, Universidad Autonoma de Madrid, CIBER Enfermedades Raras, IdiPAZ, Madrid, Spain
| | | | - Antonina Wojcik
- Gillette Children's Specialty Healthcare, St. Paul, MN 55101, USA
| | - Marcelo Vargas
- Gillette Children's Specialty Healthcare, St. Paul, MN 55101, USA
| | | | - Marian Y Girgis
- Pediatric Department, Children's Hospital, Cairo University, Cairo, Egypt
| | | | | | - Audrey Schroeder
- Division of Medical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chin-To Fong
- Departments of Pediatrics and of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Imannezhad
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Najmeh Ahangari
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | | | - Ehsan Ghayoor Karimiani
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
- Molecular and Clinical Sciences Institute, St. George’s, University of London, London SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ibrahim H Kaya
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad AlMuhaizea
- College of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, KFSHRC, Riyadh, Kingdom of Saudi Arabia
| | - Kelly J Cardona-Londoño
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | | | - Namik Kaya
- Department of Translational Genomics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Kingdom of Saudi Arabia
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Vogel P, Read RW, Hansen GM, Powell DR. Histopathology is required to identify and characterize myopathies in high-throughput phenotype screening of genetically engineered mice. Vet Pathol 2021; 58:1158-1171. [PMID: 34269122 DOI: 10.1177/03009858211030541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of mouse models that replicate the genetic and pathological features of human disease is important in preclinical research because these types of models enable the completion of meaningful pharmacokinetic, safety, and efficacy studies. Numerous relevant mouse models of human disease have been discovered in high-throughput screening programs, but there are important specific phenotypes revealed by histopathology that are not reliably detected by any other physiological or behavioral screening tests. As part of comprehensive phenotypic analyses of over 4000 knockout (KO) mice, histopathology identified 12 lines of KO mice with lesions indicative of an autosomal recessive myopathy. This report includes a brief summary of histological and other findings in these 12 lines. Notably, the inverted screen test detected muscle weakness in only 4 of these 12 lines (Scyl1, Plpp7, Chkb, and Asnsd1), all 4 of which have been previously recognized and published. In contrast, 6 of 8 KO lines showing negative or inconclusive findings on the inverted screen test (Plppr2, Pnpla7, Tenm1, Srpk3, Sidt2, Yif1b, Mrs2, and Pnpla2) had not been previously identified as having myopathies. These findings support the need to include histopathology in phenotype screening protocols in order to identify novel genetic myopathies that are not clinically evident or not detected by the inverted screen test.
Collapse
Affiliation(s)
- Peter Vogel
- 5417St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert W Read
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | | | - David R Powell
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
12
|
Li X, Si N, Song Z, Ren Y, Xiao W. Clinical and genetic findings in patients with congenital cataract and heart diseases. Orphanet J Rare Dis 2021; 16:242. [PMID: 34059112 PMCID: PMC8165991 DOI: 10.1186/s13023-021-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Congenital cataract (CC) and congenital heart disease (CHD) are significant birth defects. In clinical practice, the concurrence of CC and CHD is frequently observed in patients. Additionally, some monogenic diseases, copy number variation (CNV) syndromes, and diseases associated with intrauterine infection involve both cataract and heart defects. However, little is known about the association between CC and CHD. Here, we characterised the demographic, clinical, and genetic features of patients with CC and heart defects. Methods Medical records for 334 hospitalised patients diagnosed with CC were reviewed. Demographic and clinical features of patients with CC with and without CHD were compared. Clinical and genomic information for patients with ‘cataract’ and ‘cardiac defects’ were reviewed from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). Microarray-based comparative genomic hybridisation and whole-exome sequencing were performed in 10 trio families with CC and CHD to detect de novo genomic alterations, including copy number variants and single nucleotide changes. Results In a retrospective analysis of 334 patients with CC over the past 10 years at our hospital, we observed a high proportion of patients (41.13%) with CHD (including innocent CHD, which reported as left-to-right shunt in echocardiography test). The CC with CHD group had higher incidences of preterm birth and Down’s syndrome than the CC without CHD group. Atrial septal defect was the most frequent heart defect. A total of 44 cases with cataracts and heart diseases were retrieved from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). In total, 52 genomic alterations were reported, 44% of which were de novo germline variants. In the 10 trio families with CC and CHD, we found de novo CNVs responsible for two well-known chromosomal disorders and identified a novel pathogenic mutation in GJA8 responsible for CC. Conclusions We observed significant associations between CHD and CC in our 10-year patient cohort. Based on the cohort and data from DECIPHER, developmental syndromes in some patients were due to genetic defects, thus explaining the concurrence of CC and CHD. Additionally, we detected de novo mutations as an independent cause of cataracts. Our findings suggest that developmental syndromes in patients with CC deserve more attention in clinical practice by ophthalmologists. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01873-7.
Collapse
Affiliation(s)
- Xinru Li
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Zixun Song
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yaqiong Ren
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
13
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
14
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|