1
|
Naeije G, Georgiev C, Cabaraux P, Bourguignon M. Cerebellar grey matter volume predicts cerebellar tDCS efficacy in individuals with Friedreich ataxia. Clin Neurophysiol 2025:2110744. [PMID: 40399205 DOI: 10.1016/j.clinph.2025.2110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE To determine the impact of cerebellar anatomy on ctDCS efficacy in individuals with Friedreich ataxia (FA). METHODS We included 24 FA patients (mean age 31 ± 14 years) and 24 age- and sex-matched healthy controls. Patients underwent a 5-day ctDCS intervention, with cerebellar motor and non-motor symptoms assessed using the Scale for the Assessment and Rating of Ataxia (SARA) and the Cerebellar Cognitive Affective Syndrome Scale (CCAS-S), before and after stimulation. MRI was used to measure cerebellar gray matter volume, superior cerebellar peduncle (SCP) diameter, and skin-to-cerebellum distance. Stepwise linear regression analyses examined predictors of motor and cognitive improvements following ctDCS. RESULTS FA patients exhibited significantly reduced cerebellar gray matter volume compared to controls (p = 0.024) after intracranial volume correction, skin-to-cerebellum distance did not differ between groups (p = 0.11). Stepwise linear regression analysis disclosed that the anterior cerebellar gray matter volume was a significant predictor of SARA improvement (β = -0.18, p < 0.001) and the posterior cerebellar gray matter volume of CCAS-S improvement (β = -0.13, p 0.023). Neither SCP diameter nor skin-to-cerebellum distance significantly impacted ctDCS efficacy. CONCLUSION Cerebellar gray matter volume is associated to ctDCS-induced symptoms improvements in FA. SIGNIFICANCE These findings suggest that cerebellar gray matter volume influences ctDCS responsiveness.
Collapse
Affiliation(s)
- Gilles Naeije
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium; Université Libre de Bruxelles (ULB), UNI - ULB Neuroscience Institute, Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium.
| | - Christian Georgiev
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Cabaraux
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium; Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Reumers SF, Maas RP, Schutter DJ, Teerenstra S, Kessels RP, de Leeuw F, van de Warrenburg BP. Cerebellar Transcranial Direct Current Stimulation in the Cerebellar Cognitive Affective Syndrome: A Randomized, Double-Blind, Sham-Controlled Trial. Mov Disord 2025; 40:121-131. [PMID: 39487643 PMCID: PMC11752977 DOI: 10.1002/mds.30043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The cerebellar cognitive affective syndrome (CCAS) encompasses cognitive and affective symptoms in patients with cerebellar disorders, for which no proven treatment is available. OBJECTIVES Our primary objective was to study the effect of cerebellar anodal transcranial direct current stimulation (tDCS) on cognitive performance in CCAS patients. Secondary effects on ataxia severity, mood, and quality of life were explored. METHODS We performed a randomized, double-blind, sham-controlled trial. Thirty-five patients with CCAS were included and received 10 sessions of 20 minutes sham (n = 17) or real (n = 18) tDCS, with a current of 2 mA. Cognitive performance was assessed using executive function subtests of the computerized Test of Attentional Performance (TAP), with the composite as primary endpoint. Secondary outcomes were ataxia severity, mood, and quality of life. Outcomes were evaluated 1, 3, 6, and 12 months post-intervention. RESULTS Cerebellar tDCS was well tolerated and no serious adverse events related to the intervention occurred. No significant tDCS effect was found on cognitive performance. Improvement on the TAP was observed in the sham group 1 month post-treatment (estimate = -0.248, 95% CI, -0.49 to -0.01), but not clinically relevant. A positive tDCS effect was observed for ataxia severity 1 month post-treatment (estimate = -0.985, 95% CI, -1.94 to -0.03). CONCLUSIONS Ten sessions of 20 minutes cerebellar anodal tDCS did not prove efficacious for CCAS-related cognitive impairment, but a significant positive effect of tDCS was found for ataxia severity, aligning with previous findings indicative of tDCS as a therapeutic neuromodulation tool in cerebellar disorders. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stacha F.I. Reumers
- Department of NeurologyRadboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegenThe Netherlands
| | - Roderick P.P.W.M. Maas
- Department of NeurologyRadboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegenThe Netherlands
| | - Dennis J.L.G. Schutter
- Department of Experimental PsychologyHelmholtz Institute, Utrecht UniversityUtrechtThe Netherlands
| | - Steven Teerenstra
- IQ Health Science Department, Biostatistics SectionRadboud University Medical CenterNijmegenThe Netherlands
| | - Roy P.C. Kessels
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer CenterRadboud University Medical CenterNijmegenThe Netherlands
- Vincent van Gogh Institute for PsychiatryVenrayThe Netherlands
| | - Frank‐Erik de Leeuw
- Department of NeurologyRadboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegenThe Netherlands
| | - Bart P.C. van de Warrenburg
- Department of NeurologyRadboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegenThe Netherlands
| |
Collapse
|
3
|
Xu Y, Huang H, Wu M, Zhuang Z, Liu H, Hou M, Chen C. Transcranial Direct Current Stimulation for Cognitive Impairment Rehabilitation: A Bibliometric Analysis. Arch Med Res 2025; 56:103086. [PMID: 39326160 DOI: 10.1016/j.arcmed.2024.103086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS As global demographics shift toward an older population, cognitive impairment is becoming increasingly critical. Transcranial Direct Current Stimulation (tDCS), an innovative brain stimulation technique, has the potential to significantly improve cognitive function. Our main aim is to comprehensively analyze the existing literature, identify key aspects of tDCS research in the rehabilitation of cognitive impairment, and predict future trends in this field. METHODS We used the Web of Science (WOS) database to search for English articles and reviews relevant to this topic. For visual analysis of the literature, we employed the WOS analysis tool, CiteSpace, along with VOSviewer software to ensure comprehensive analysis. RESULTS We included 2940 articles published between 1998 and 2023. Over 25 years, annual publications and citations in this field increased steadily, peaking at 379 articles in 2021. Michael A. Nitsche was a major contributor. Most articles came from developed countries, primarily North America and Europe, and journals generally had modest impact factors. Research in this field primarily aims to treat cognitive impairment resulting from pathological aging or neuropsychiatric disorders, with a particular focus on specific brain regions. Recently, researchers have integrated various treatment modalities with tDCS techniques to actively investigate effective strategies to mitigate cognitive impairments associated with pathological aging. CONCLUSION This study presents the first bibliometric analysis of the literature on tDCS in the rehabilitation of cognitive impairment, highlighting key areas of research and emerging trends. These findings provide critical insights for future tDCS interventions targeting cognitive impairment associated with pathological aging.
Collapse
Affiliation(s)
- Ying Xu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Haoyu Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Mengyuan Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zesen Zhuang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Hong Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Meijin Hou
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Brito R, Fabrício JV, Araujo A, Sacchi M, Baltar A, Lima FA, Ribeiro AC, Sousa B, Santos C, Tanaka C, Monte-Silva K. Differential Effects of Cerebellar Transcranial Direct Current Stimulation with Gait Training on Functional Mobility, Balance, and Ataxia Symptoms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2457-2467. [PMID: 39367955 DOI: 10.1007/s12311-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) has emerged as a promising, non-invasive, and safe neuromodulatory intervention capable of reducing ataxia symptoms and restoring cerebellum-motor connectivity. However, previous studies have only applied ctDCS in isolation, without association with specific training. This study aimed to assess the effect of ctDCS combined with gait training on functional mobility, balance, and symptoms and severity of ataxia. A randomized, triple-blind, sham-controlled, bi-center clinical trial was conducted with forty-four adults with cerebellar ataxia. Volunteers were randomized to receive five daily sessions of either real ctDCS (n = 11; 2 mA for 25 min) or sham ctDCS (n = 11) during gait training. Functional mobility, balance, and symptoms and severity of ataxia were assessed using the Time Up and Go test, the MiniBESTest, and the Scale for the Assessment and Rating of Ataxia (SARA), respectively, before and after the interventions. Both groups showed improvement in functional mobility, but there was no significant difference between the ctDCS and sham groups. However, the ctDCS group demonstrated significant improvements in cerebellar ataxia severity as reflected by SARA scores, particularly in tests of stance, sitting, speech disturbance, nose-finger test, and heel-shin slide test. Notably, no improvements were observed in balance. This study indicates that while ctDCS combined with gait training may improve specific symptoms of cerebellar ataxia, it does not significantly enhance overall functional mobility compared to sham treatment.
Collapse
Affiliation(s)
- Rodrigo Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
| | - João Victor Fabrício
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Aurine Araujo
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | | | - Adriana Baltar
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
| | - Fernanda Albuquerque Lima
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Ana Cecília Ribeiro
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Bárbara Sousa
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Camilla Santos
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil
| | - Clarice Tanaka
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil
- Universidade de São Paulo, São Paulo, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco Jornalista Aníbal Fernandes Avenue, Recife, Pernambuco, 50740-560, Brazil.
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Recife, Brazil.
| |
Collapse
|
5
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
6
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of Non-Invasive Brain Stimulation for Degenerative Cerebellar Ataxia: A Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2024; 11:1323-1334. [PMID: 39221650 PMCID: PMC11542298 DOI: 10.1002/mdc3.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis aimed to assess the effectiveness of non-invasive brain stimulation (NIBS), including repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES), as a neurological intervention for degenerative cerebellar ataxia (DCA) based on preregistration (PROSPERO: CRD42023379192). OBJECTIVE We aimed to explore clinical outcomes and examine the parameters associated with NIBS efficacy in DCA patients. METHODS The PubMed, Cochrane Library, CHINAL, and PEDro databases were searched for relevant randomized controlled trials (RCTs). Data extraction, quality assessment, and heterogeneity analyses were conducted; the Grading, Recommendations, Assessment, Development, and Evaluation was used to assess the quality of evidence and a meta-analysis was performed. RESULTS Seventeen RCTs that included 661 patients on the scale for assessment and rating of ataxia (SARA) and 606 patients on the International Cooperative Ataxia Rating Scale (ICARS) were included. These RCTs showed a serious risk of bias (RoB) and low certainty of evidence for both outcomes. NIBS significantly reduced SARA (MD = -2.49, [95% confidence interval: -3.34, -1.64]) and ICARS (-5.27 [-7.06, -3.47]); the subgroup analysis showed significant effects: rTMS and tES reduced both outcomes. However, there were no significant differences in the effects of rTMS and tES. Additional subgroup analysis indicated the impact of rTMS frequency and the total number of tES sessions on ataxia. CONCLUSION Non-invasive brain stimulation may reduce ataxia in DCA patients, but the estimated effect size may change in future studies because the RoB was serious and the certainty of evidence was low, and the heterogeneity was high. To establish evidence for selecting NIBS methods and parameters, continued high-quality RCTs are required.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of RehabilitationShijonawate Gakuen UniversityDaitōJapan
| | - Hiroyuki Ohtsuka
- Department of Physical TherapyShowa University School of Nursing and Rehabilitation SciencesTokyoJapan
| | - Kyota Bando
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yuki Kondo
- National Center HospitalNational Center of Neurology and PsychiatryTokyoJapan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological DisordersInstitute of Brain and Blood Vessels Mihara Memorial HospitalIsesakiJapan
| |
Collapse
|
7
|
Brito R, Fabrício JV, Araujo A, Barreto G, Baltar A, Monte-Silva K. Single-Session Cerebellar Transcranial Direct Current Stimulation Improves Postural Stability and Reduces Ataxia Symptoms in Spinocerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1993-2002. [PMID: 38693314 DOI: 10.1007/s12311-024-01696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Spinocerebellar ataxia (SCA) results in balance and coordination impairment, and current treatments have limited efficacy. Recent evidence suggests that combining postural training with cerebellar transcranial direct current stimulation (ctDCS) can improve these symptoms. However, the combined effects of ctDCS and postural training on individuals with spinocerebellar ataxia remain underexplored. Ten volunteers with (SCA type 3) participated in a triple-blind, randomized, crossover study to receive a single session of ctDCS (2 mA for 20 min) and a sham ctDCS session separated by at least one week. The Biodex Balance System was used to assess balance at each session, measuring overall stability index, anteroposterior stability index, and medial-lateral stability index. As secondary outcomes, cerebellar ataxia symptoms were evaluated using the 8-item Scale for Assessment and Rating of Ataxia. The assessments were conducted before and after each session. The results indicated that ctDCS enhanced the overall stability index when compared to sham ctDCS (Z = -2.10, p = 0.03), although it did not significantly affect the anteroposterior or medial-lateral stability indices. Compared to the baseline, a single session of ctDCS reduced appendicular symptoms related to cerebellar ataxia, as evidenced by improvements in the nose-finger test (Z = -2.07, p = 0.04), fast alternating hand movements (Z = -2.15, p = 0.03), and heel-to-shin slide (Z = -1.91, p = 0.05). In conclusion, our study suggests that a single session of ctDCS, in combination with postural training, can enhance balance and alleviate ataxia symptoms in individuals with cerebellar ataxia. This study was approved by the local research ethics committee (No. 2.877.813) and registered on clinicaltrials.org (NCT04039048 - https://www.clinicaltrials.gov/study/NCT04039048 ) on 2019-07-28.
Collapse
Affiliation(s)
- Rodrigo Brito
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Palmares, Pernambuco, Brazil
| | - João Victor Fabrício
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil
| | - Aurine Araujo
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil
| | - Gabriel Barreto
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Palmares, Pernambuco, Brazil
| | - Adriana Baltar
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Palmares, Pernambuco, Brazil
| | - Kátia Monte-Silva
- Applied Neuroscience Laboratory, Department of Physical Therapy, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Avenue, Recife, 50740-560, PE, Brasil.
- NAPeN Network (Núcleo de Assistência e Pesquisa em Neuromodulação), Palmares, Pernambuco, Brazil.
| |
Collapse
|
8
|
Jafleh EA, Alnaqbi FA, Almaeeni HA, Faqeeh S, Alzaabi MA, Al Zaman K. The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus 2024; 16:e68921. [PMID: 39381470 PMCID: PMC11461032 DOI: 10.7759/cureus.68921] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/10/2024] Open
Abstract
Wearable health devices are becoming vital in chronic disease management because they offer real-time monitoring and personalized care. This review explores their effectiveness and challenges across medical fields, including cardiology, respiratory health, neurology, endocrinology, orthopedics, oncology, and mental health. A thorough literature search identified studies focusing on wearable devices' impact on patient outcomes. In cardiology, wearables have proven effective for monitoring hypertension, detecting arrhythmias, and aiding cardiac rehabilitation. In respiratory health, these devices enhance asthma management and continuous monitoring of critical parameters. Neurological applications include seizure detection and Parkinson's disease management, with wearables showing promising results in improving patient outcomes. In endocrinology, wearable technology advances thyroid dysfunction monitoring, fertility tracking, and diabetes management. Orthopedic applications include improved postsurgical recovery and rehabilitation, while wearables help in early complication detection in oncology. Mental health benefits include anxiety detection, post-traumatic stress disorder management, and stress reduction through wearable biofeedback. In conclusion, wearable health devices offer transformative potential for managing chronic illnesses by enhancing real-time monitoring and patient engagement. Despite significant improvements in adherence and outcomes, challenges with data accuracy and privacy persist. However, with ongoing innovation and collaboration, we can all be part of the solution to maximize the benefits of wearable technologies in healthcare.
Collapse
Affiliation(s)
- Eman A Jafleh
- College of Dentistry, University of Sharjah, Sharjah, ARE
| | | | | | - Shooq Faqeeh
- College of Medicine, University of Sharjah, Sharjah, ARE
| | - Moza A Alzaabi
- Internal Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| | - Khaled Al Zaman
- General Medicine, Cleveland Clinic Abu Dhabi, Abu Dhabi, ARE
| |
Collapse
|
9
|
Wang XC, Cai NQ, Cheng XP, Zhang L, Wang WZ, Ni J, Chen XY. Short-Term Efficacy of Cerebello-spinal tDCS and Body Weight-Supported Treadmill Training in the Hypertrophic Olivary Degeneration: a Rare Case Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1722-1726. [PMID: 38117450 DOI: 10.1007/s12311-023-01650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The present case study reported a patient diagnosed with hypertrophic olivary degeneration, a rare condition characterized by a trans-neuronal degeneration and signal enhancement in T2-weighted images on magnetic resonance imaging, usually caused by cerebral hemorrhage, cerebral infarction, and trauma. Furthermore, the relevant literature review was performed. The existing pharmacological treatment has limited clinical benefits on the patient. Since spontaneous remission hardly occurs in the disease, there are no other effective treatments. In this case, the patient was a 55-year-old Chinese male who presented progressive gait difficulty for several months due to both-sided ataxia. Neurological examination revealed upper extremity and lower limb bilateral spasticity, ataxia, slurred speech, and dysmetria. Therefore, our study treated the patient through the inventive application of cerebello-spinal transcranial direct current stimulation and body weight-supported treadmill training. After a 4-week treatment, the patient could walk independently, without aid, speeding up by 7%, as well as the ataxia symptoms, and balance has improved significantly. It was demonstrated in this case report that the combination of cerebello-spinal tDCS and body weight-supported treadmill training can be an effective treatment for patients with Hypertrophic olivary degeneration.
Collapse
Affiliation(s)
- Xi-Chen Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Nai-Qing Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiao-Ping Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lin Zhang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen-Zong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
10
|
Cheng XP, Yu WH, Liu X, Lin W, Wang ZD, Wang XC, Ni J, Cai NQ, Chen XY. Transcranial Alternating Current Stimulation in a Patient with Ataxia-Ocular Apraxia 2: a Case Report. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1713-1717. [PMID: 37993636 DOI: 10.1007/s12311-023-01637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Ataxia-ocular apraxia 2 (AOA2) is a rare neurodegenerative autosomal recessive disorder with no effective treatment. In this study, we present the case of a patient diagnosed with AOA2, who experienced walking instability and uncoordinated movement. The patient underwent transcranial alternating current stimulation (tACS) treatment for 4 weeks with follow-up after 1 month. The effectiveness of the treatment was evaluated using the International Cooperative Ataxia Rating Scale (ICARS), the Scale for the Assessment and Rating of Ataxia (SARA), the 9-Hole Peg Test (9HPT), and functional near-infrared spectroscopy (fNIRS). Following treatment, the patient's ataxia symptoms showed significant improvement and continued to be alleviated during the follow-up period, suggesting a lasting effect of tACS treatment. Our findings from this case study provide compelling evidence for the potential of tACS as a treatment option for AOA2.
Collapse
Affiliation(s)
- Xiao-Ping Cheng
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Hui Yu
- The School of Health, Fujian Medical University, Fuzhou, 350122, China
| | - Xia Liu
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Zhao-Di Wang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Xi-Chen Wang
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jun Ni
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Nai-Qing Cai
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Rehabilitation Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
11
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
12
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
13
|
Liu Y, Ma Y, Zhang J, Yan X, Ouyang Y. Effects of Non-invasive Brain Stimulation on Hereditary Ataxia: a Systematic Review and Meta-analysis. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1614-1625. [PMID: 38019418 DOI: 10.1007/s12311-023-01638-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Numerous studies have demonstrated the potential of non-invasive brain stimulation (NIBS) techniques as a viable treatment option for cerebellar ataxia. However, there is a notable dearth of research investigating the efficacy of NIBS specifically for hereditary ataxia (HA), a distinct subgroup within the broader category of cerebellar ataxia. This study aims to conduct a comprehensive systematic review and meta-analysis in order to assess the efficacy of various NIBS methods for the treatment of HA. A thorough review of the literature was conducted, encompassing both English and Chinese articles, across eight electrical databases. The focus was on original articles investigating the therapeutic effectiveness of non-invasive brain stimulation for hereditary ataxia, with a publication date prior to March 2023. Subsequently, a meta-analysis was performed specifically on randomized controlled trials (RCTs) that fulfilled the eligibility criteria, taking into account the various modalities of non-invasive brain stimulation. A meta-analysis was conducted, comprising five RCTs, which utilized the Scale for the Assessment and Rating of Ataxia (SARA) as the outcome measure to evaluate the effects of transcranial magnetic stimulation (TMS). The findings revealed a statistically significant mean decrease of 1.77 in the total SARA score following repetitive TMS (rTMS) (p=0.006). Subgroup analysis based on frequency demonstrated a mean decrease of 1.61 in the total SARA score after high-frequency rTMS (p=0.05), while no improvement effects were observed after low-frequency rTMS (p=0.48). Another meta-analysis was performed on three studies, utilizing ICARS scores, to assess the impact of rTMS. The results indicated that there were no statistically significant differences in pooled ICARS scores between the rTMS group and the sham group (MD=0.51, 95%CI: -5.38 to 6.39; p=0.87). These findings align with the pooled results of two studies that evaluated alterations in post-intervention BBS scores (MD=0.74, 95%CI: -5.48 to 6.95; p=0.82). Despite the limited number of studies available, this systematic review and meta-analysis have revealed promising potential benefits of rTMS for hereditary ataxia. However, it is strongly recommended that further high-quality investigations be conducted in this area. Furthermore, the significance of standardized protocols for NIBS in future studies was also emphasized.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang City, 110001, Liaoning Province, China
| | - Yiming Ma
- Department of Neurology, The First Hospital of China Medical University, Shenyang City, 110001, Liaoning Province, China
| | - Jing Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang City, 110001, Liaoning Province, China
- Department of Neurology, The Fifth People's Hospital of Datong, Datong City, Shanxi Province, China
| | - Xuejing Yan
- Department of Neurology, The First Hospital of China Medical University, Shenyang City, 110001, Liaoning Province, China
| | - Yi Ouyang
- Department of Neurology, The First Hospital of China Medical University, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
Liu Q, Liu Y, Zhang Y. Effects of Cerebellar Non-Invasive Stimulation on Neurorehabilitation in Stroke Patients: An Updated Systematic Review. Biomedicines 2024; 12:1348. [PMID: 38927555 PMCID: PMC11201496 DOI: 10.3390/biomedicines12061348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The cerebellum is emerging as a promising target for noninvasive brain stimulation (NIBS). A systematic review was conducted to evaluate the effects of cerebellar NIBS on both motor and other symptoms in stroke rehabilitation, its impact on functional ability, and potential side effects (PROSPERO number: CRD42022365697). A systematic electronic database search was performed by using PubMed Central (PMC), EMBASE, and Web of Science, with a cutoff date of November 2023. Data extracted included study details, NIBS methodology, outcome measures, and results. The risk of bias in eligible studies was also assessed. Twenty-two clinical studies involving 1016 participants were finally included, with a focus on outcomes related to post-stroke motor recovery (gait and balance, muscle spasticity, and upper limb dexterity) and other functions (dysphagia and aphasia). Positive effects were observed, especially on motor functions like gait and balance. Some efficiency was also observed in dysphagia rehabilitation. However, findings on language recovery were preliminary and inconsistent. A slight improvement in functional ability was noted, with no serious adverse effects reported. Further studies are needed to explore the effects of cerebellar NIBS on post-stroke non-motor deficits and to understand how cerebellar engagement can facilitate more precise treatment strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
15
|
Sanna A, Pau M, Pilia G, Porta M, Casu G, Secci V, Cartella E, Demattia A, Firinu S, Pau C, Milia A, Cocco E, Tacconi P. Comparison of Two Therapeutic Approaches of Cerebellar Transcranial Direct Current Stimulation in a Sardinian Family Affected by Spinocerebellar Ataxia 38: a Clinical and Computerized 3D Gait Analysis Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:973-980. [PMID: 37540312 DOI: 10.1007/s12311-023-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is a very rare autosomal dominant inherited disorder caused by a mutation in ELOV5 gene, specifically expressed in cerebellar Purkinje cells, encoding an enzyme involved in the synthesis of fatty acids. Seven symptomatic SCA 38 patients of a Sardinian family were administered 15 sessions of cerebellar anodal transcranial direct current stimulation (tDCS) in a cross-over study, employing deltoid cerebellar-only (C-tDCS) and cerebello-spinal (CS-tDCS) cathodal montage. Clinical evaluation was performed at baseline (T0), after 15 sessions of tDCS (T1) and after 1 month of follow-up (T2). Modified International Cooperative Ataxia Rating Scale (MICARS) and the Robertson dysarthria profile were used to rate ataxic and dysarthric symptoms, respectively. Alertness and split attention tests from Zimmermann test battery for attentional performance were employed to rate attentive functions. Moreover, 3D computerized gait analysis was employed to obtain a quantitative measure of efficacy of tDCS on motor symptoms. While clinical data showed that both CS and C-tDCS improved motor, dysarthric, and cognitive scores, the quantitative analysis of gait revealed significant improvement in spatio-temporal parameters only for C-tDCS treatment. Present findings, yet preliminary and limited by the small size of the tested sample, confirm the therapeutic potential of cerebellar tDCS in improving motor and cognitive symptoms in spinocerebellar ataxias and underline the need to obtain quantitative and objective measures to monitor the efficacy of a therapeutic treatment and to design tailored rehabilitative interventions. ClinicalTrials.gov identifier: NCT05951010.
Collapse
Affiliation(s)
- Angela Sanna
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy.
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | | | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Valentina Secci
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | | | | | - Stefano Firinu
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Chiara Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Antonio Milia
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Latorre A, Rocchi L, Paparella G, Manzo N, Bhatia KP, Rothwell JC. Changes in cerebellar output abnormally modulate cortical myoclonus sensorimotor hyperexcitability. Brain 2024; 147:1412-1422. [PMID: 37956080 PMCID: PMC10994547 DOI: 10.1093/brain/awad384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari 09042, Italy
| | - Giulia Paparella
- Department of Neurology, IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Nicoletta Manzo
- Department of Neurology, IRCCS San Camillo Hospital, Venice 30126, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
17
|
Libri I, Cantoni V, Benussi A, Rivolta J, Ferrari C, Fancellu R, Synofzik M, Alberici A, Padovani A, Borroni B. Comparing Cerebellar tDCS and Cerebellar tACS in Neurodegenerative Ataxias Using Wearable Sensors: A Randomized, Double-Blind, Sham-Controlled, Triple-Crossover Trial. CEREBELLUM (LONDON, ENGLAND) 2024; 23:570-578. [PMID: 37349632 PMCID: PMC10951038 DOI: 10.1007/s12311-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Cerebellar transcranial direct current stimulation (tDCS) represents a promising therapeutic approach for both motor and cognitive symptoms in neurodegenerative ataxias. Recently, transcranial alternating current stimulation (tACS) was also demonstrated to modulate cerebellar excitability by neuronal entrainment. To compare the effectiveness of cerebellar tDCS vs. cerebellar tACS in patients with neurodegenerative ataxia, we performed a double-blind, randomized, sham controlled, triple cross-over trial with cerebellar tDCS, cerebellar tACS or sham stimulation in twenty-six participants with neurodegenerative ataxia. Before entering the study, each participant underwent motor assessment with wearable sensors considering gait cadence (steps/minute), turn velocity (degrees/second) and turn duration (seconds), and a clinical evaluation with the scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). After each intervention, participants underwent the same clinical assessment along with cerebellar inhibition (CBI) measurement, a marker of cerebellar activity. The gait cadence, turn velocity, SARA, and ICARS significantly improved after both tDCS and tACS, compared to sham stimulation (all p<0.010). Comparable effects were observed for CBI (p<0.001). Overall, tDCS significantly outperformed tACS on clinical scales and CBI (p<0.01). A significant correlation between changes of wearable sensors parameters from baseline and changes of clinical scales and CBI scores was detected. Cerebellar tDCS and cerebellar tACS are effective in ameliorating symptoms of neurodegenerative ataxias, with the former being more beneficial than the latter. Wearable sensors may serve as rater-unbiased outcome measures in future clinical trials. ClinicalTrial.gov Identifier: NCT05621200.
Collapse
Affiliation(s)
- Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Jasmine Rivolta
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Roberto Fancellu
- UO Neurologia, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Antonella Alberici
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy.
| |
Collapse
|
18
|
Oldrati V, Butti N, Ferrari E, Strazzer S, Romaniello R, Borgatti R, Urgesi C, Finisguerra A. Neurorestorative effects of cerebellar transcranial direct current stimulation on social prediction of adolescents and young adults with congenital cerebellar malformations. Neuroimage Clin 2024; 41:103582. [PMID: 38428326 PMCID: PMC10944181 DOI: 10.1016/j.nicl.2024.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Converging evidence points to impairments of the predictive function exerted by the cerebellum as one of the causes of the social cognition deficits observed in patients with cerebellar disorders. OBJECTIVE We tested the neurorestorative effects of cerebellar transcranial direct current stimulation (ctDCS) on the use of contextual expectations to interpret actions occurring in ambiguous sensory sceneries in a sample of adolescents and young adults with congenital, non-progressive cerebellar malformation (CM). METHODS We administered an action prediction task in which, in an implicit-learning phase, the probability of co-occurrence between actions and contextual elements was manipulated to form either strongly or moderately informative expectations. Subsequently, in a testing phase, we probed the use of these contextual expectations for predicting ambiguous (i.e., temporally occluded) actions. In a sham-controlled, within-subject design, participants received anodic or sham ctDCS during the task. RESULTS Anodic ctDCS, compared to sham, improved patients' ability to use contextual expectations to predict the unfolding of actions embedded in moderately, but not strongly, informative contexts. CONCLUSIONS These findings corroborate the role of the cerebellum in using previously learned contextual associations to predict social events and document the efficacy of ctDCS to boost social prediction in patients with congenital cerebellar malformation. The study encourages the further exploration of ctDCS as a neurorestorative tool for the neurorehabilitation of social cognition abilities in neurological, neuropsychiatric, and neurodevelopmental disorders featured by macro- or micro-structural alterations of the cerebellum.
Collapse
Affiliation(s)
- Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy.
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy; PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128 Trieste, Italy
| | - Elisabetta Ferrari
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Sandra Strazzer
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth, 3, 33100 Udine, Italy; Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037 Pasian di Prato (UD), Italy
| | - Alessandra Finisguerra
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037 Pasian di Prato (UD), Italy
| |
Collapse
|
19
|
Ye ZX, Bi J, Qiu LL, Chen XY, Li MC, Chen XY, Qiu YS, Yuan RY, Yu XT, Huang CY, Cheng B, Lin W, Chen WJ, Hu JP, Fu Y, Wang N, Gan SR. Cognitive impairment associated with cerebellar volume loss in spinocerebellar ataxia type 3. J Neurol 2024; 271:918-928. [PMID: 37848650 DOI: 10.1007/s00415-023-12042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Many neuroscience and neurology studies have forced a reconsideration of the traditional motor-related scope of cerebellar function, which has now expanded to include various cognitive functions. Spinocerebellar ataxia type 3 (SCA3; the most common hereditary ataxia) is neuropathologically characterized by cerebellar atrophy and frequently presents with cognitive impairment. OBJECTIVE To characterize cognitive impairment in SCA3 and investigate the cerebellum-cognition associations. METHODS This prospective, cross-sectional cohort study recruited 126 SCA3 patients and 41 healthy control individuals (HCs). Participants underwent a brain 3D T1-weighted images as well as neuropsychological tests. Voxel-based morphometry (VBM) and region of interest (ROI) approaches were performed on the 3D T1-weighted images. CERES was used to automatically segment cerebellums. Patients were grouped into cognitively impaired (CI) and cognitively preserved (CP), and clinical and MRI parameters were compared. Multivariable regression models were fitted to examine associations between cerebellar microstructural alterations and cognitive domain impairments. RESULTS Compared to HCs, SCA3 patients showed cognitive domain impairments in information processing speed, verbal memory, executive function, and visuospatial perception. Between CI and CP subgroups, the CI subgroup was older and had lower education, as well as higher severity scores. VBM and ROI analyses revealed volume loss in cerebellar bilateral lobule VI, right lobule Crus I, and right lobule IV of the CI subgroup, and all these cerebellar lobules were associated with the above cognitive domain impairments. CONCLUSIONS Our findings demonstrate the multiple cognitive domain impairments in SCA3 patients and indicate the responsible cerebellar lobules for the impaired cognitive domain(s).
Collapse
Affiliation(s)
- Zhi-Xian Ye
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin Bi
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Liang-Liang Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xuan-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Cheng Li
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Tong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yu Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jian-Ping Hu
- Department of Radiology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
20
|
Benussi A, Manto M. Cerebellar Stimulation: Lighting the Way. CEREBELLUM (LONDON, ENGLAND) 2024; 23:54-55. [PMID: 36648618 DOI: 10.1007/s12311-023-01517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, P.le Spedali Civili 1, 25123, Brescia, Italy.
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy.
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgium
- Unité des Ataxies Cérébelleuses, CHU-Charleroi, Charleroi, Belgium
| |
Collapse
|
21
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
22
|
Gong C, Long Y, Peng XM, Hu H, Chen J, Xiao L, Zhong YB, Wang MY, Luo Y. Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials. J Neurol 2023; 270:4782-4799. [PMID: 37460852 DOI: 10.1007/s00415-023-11799-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND With the development of noninvasive brain stimulation (NIBS) techniques, many researchers have turned their attention to NIBS as a promising treatment for cerebellar ataxia. Therefore, we conducted a systematic review and meta-analysis to investigate the efficacy and safety of NIBS in treating patients with cerebellar ataxia. METHODS Databases, including PubMed, Embase, Web of Science, Medline, and Cochrane Library, were retrieved for relevant randomized controlled trials (RCTs). Two researchers conducted literature screening, data extraction, literature quality assessment, and heterogeneity analysis between RCTs. According to the magnitude of heterogeneity I2, an appropriate data analysis model was selected for meta-analysis. RESULTS A total of 14 RCTs including 406 patients with cerebellar ataxia met the inclusion criteria. The included RCTs had an overall low-risk bias and an intermediate level of evidence recommendation for key outcome indicators, such as the scale for the assessment and rating of ataxia (SARA) and international cooperative ataxia rating scale (ICARS). The results of meta-analysis showed that cerebellar NIBS, including transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), was effective in reducing the SARA scores (MD = - 3.45, 95%CI = [- 4.85, - 2.50], P < 0.05) and ICARS scores (MD = - 10.87, 95%CI = [- 14.46, - 7.28], P < 0.05) in patients with cerebellar ataxia compared to controls. Subgroup analysis showed that the efficacy of tDCS and rTMS was statistically different in patients with cerebellar ataxia as assessed by the SARA scores, but not by the ICARS scores. There was statistically significant difference in the efficacy of NIBS for the treatment of cerebellar ataxia caused by different etiologies. As for safety, 8 of 14 included studies documented the adverse effects of NIBS, and only two studies reported the mild adverse events of NIBS. CONCLUSIONS Cerebellar NIBS was safe and effective in improving the motor coordination of patients with cerebellar ataxia, and tDCS was better than rTMS in the treatment of cerebellar ataxia. In addition, the efficacy of NIBS was different in the treatment of different types of cerebellar ataxia.
Collapse
Affiliation(s)
- Cheng Gong
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Yi Long
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Xu-Miao Peng
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Hao Hu
- Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
| | - Jing Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China
| | - Li Xiao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou City, 341400, Jiangxi Province, China.
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, 341400, Jiangxi Province, China.
| |
Collapse
|
23
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
24
|
Naeije G, Rovai A, Destrebecq V, Trotta N, De Tiège X. Anodal Cerebellar Transcranial Direct Current Stimulation Reduces Motor and Cognitive Symptoms in Friedreich's Ataxia: A Randomized, Sham-Controlled Trial. Mov Disord 2023; 38:1443-1450. [PMID: 37310043 DOI: 10.1002/mds.29453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Friedreich Ataxia is the most common recessive ataxia with only one therapeutic drug approved solely in the United States. OBJECTIVE The aim of this work was to investigate whether anodal cerebellar transcranial direct current stimulation (ctDCS) reduces ataxic and cognitive symptoms in individuals with Friedreich's ataxia (FRDA) and to assess the effects of ctDCS on the activity of the secondary somatosensory (SII) cortex. METHODS We performed a single-blind, randomized, sham-controlled, crossover trial with anodal ctDCS (5 days/week for 1 week, 20 min/day, density current: 0.057 mA/cm2 ) in 24 patients with FRDA. Each patient underwent a clinical evaluation (Scale for the Assessment and Rating of Ataxia, composite cerebellar functional severity score, cerebellar cognitive affective syndrome scale) before and after anodal and sham ctDCS. Activity of the SII cortex contralateral to a tactile oddball stimulation of the right index finger was evaluated with brain functional magnetic resonance imaging at baseline and after anodal/sham ctDCS. RESULTS Anodal ctDCS led to a significant improvement in the Scale for the Assessment and Rating of Ataxia (-6.5%) and in the cerebellar cognitive affective syndrome scale (+11%) compared with sham ctDCS. It also led to a significant reduction in functional magnetic resonance imaging signal at the SII cortex contralateral to tactile stimulation (-26%) compared with sham ctDCS. CONCLUSIONS One week of treatment with anodal ctDCS reduces motor and cognitive symptoms in individuals with FRDA, likely by restoring the neocortical inhibition normally exerted by cerebellar structures. This study provides class I evidence that ctDCS stimulation is effective and safe in FRDA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilles Naeije
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Antonin Rovai
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| | - Virginie Destrebecq
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Nicola Trotta
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
25
|
Matsugi A, Ohtsuka H, Bando K, Kondo Y, Kikuchi Y. Effects of non-invasive brain stimulation for degenerative cerebellar ataxia: a protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e073526. [PMID: 37385745 PMCID: PMC10314638 DOI: 10.1136/bmjopen-2023-073526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION To date, the medical and rehabilitation needs of people with degenerative cerebellar ataxia (DCA) are not fully met because no curative treatment has yet been established. Movement disorders such as cerebellar ataxia and balance and gait disturbance are common symptoms of DCA. Recently, non-invasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation and transcranial electrical stimulation, have been reported as possible intervention methods to improve cerebellar ataxia. However, evidence of the effects of NIBS on cerebellar ataxia, gait ability, and activity of daily living is insufficient. This study will aim to systematically evaluate the clinical effects of NIBS on patients with DCA. METHODS AND ANALYSIS We will conduct a preregistered systematic review and meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We will include randomised controlled trials to assess the effects of NIBS on patients with DCA. The primary clinical outcome will be cerebellar ataxia, as measured by the Scale for Assessment and Rating of Ataxia and the International Cooperative Ataxia Rating Scale. The secondary outcomes will include gait speed, functional ambulatory capacity and functional independence measure, as well as any other reported outcomes that the reviewer considers important. The following databases will be searched: PubMed, Cochrane Central Register of Controlled Trials, CINAHL and PEDro. We will assess the strength of the evidence included in the studies and estimate the effects of NIBS. ETHICS AND DISSEMINATION Because of the nature of systematic reviews, no ethical issues are anticipated. This systematic review will provide evidence on the effects of NIBS in patients with DCA. The findings of this review are expected to contribute to clinical decision-making towards selecting NIBS techniques for treatment and generating new clinical questions to be addressed. PROSPERO REGISTRATION NUMBER CRD42023379192.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daito, Japan
| | - Hiroyuki Ohtsuka
- Department of Rehabilitation, School of Nursing and Rehabilitation Sciences, Showa University, Midoriku, Yokohama-shi, Kanagawa, Japan
| | - Kyota Bando
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuki Kondo
- Department of Physical Rehabilitation, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yutaka Kikuchi
- Department of Rehabilitation for Intractable Neurological Disorders, Mihara Memorial Hospital, Isesaki, Gunma, Japan
| |
Collapse
|
26
|
Marangolo P, Vasta S, Manfredini A, Caltagirone C. What Else Can Be Done by the Spinal Cord? A Review on the Effectiveness of Transpinal Direct Current Stimulation (tsDCS) in Stroke Recovery. Int J Mol Sci 2023; 24:10173. [PMID: 37373323 DOI: 10.3390/ijms241210173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Since the spinal cord has traditionally been considered a bundle of long fibers connecting the brain to all parts of the body, the study of its role has long been limited to peripheral sensory and motor control. However, in recent years, new studies have challenged this view pointing to the spinal cord's involvement not only in the acquisition and maintenance of new motor skills but also in the modulation of motor and cognitive functions dependent on cortical motor regions. Indeed, several reports to date, which have combined neurophysiological techniques with transpinal direct current stimulation (tsDCS), have shown that tsDCS is effective in promoting local and cortical neuroplasticity changes in animals and humans through the activation of ascending corticospinal pathways that modulate the sensorimotor cortical networks. The aim of this paper is first to report the most prominent tsDCS studies on neuroplasticity and its influence at the cortical level. Then, a comprehensive review of tsDCS literature on motor improvement in animals and healthy subjects and on motor and cognitive recovery in post-stroke populations is presented. We believe that these findings might have an important impact in the future making tsDCS a potential suitable adjunctive approach for post-stroke recovery.
Collapse
Affiliation(s)
- Paola Marangolo
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | - Simona Vasta
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessio Manfredini
- Department of Humanities Studies, University Federico II, 80133 Naples, Italy
| | | |
Collapse
|
27
|
Ahn JH, Lee D, Kim M, Cho JW, Chang WH, Youn J. M1 and Cerebellar tDCS for MSA-C: a Double-Blind, Randomized, Sham-Controlled, Crossover Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:386-393. [PMID: 35624201 DOI: 10.1007/s12311-022-01416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 04/25/2023]
Abstract
The effect of transcranial direct current stimulation (tDCS) for cerebellar-dominant multiple-system atrophy (MSA-C) is not well elucidated, yet. This study aimed to investigate the effect of tDCS on the primary motor cortex (M1) and cerebellum in patients with MSA-C. We recruited probable MSA-C patients and performed three single sessions of tDCS at each visit in random order (M1, cerebellum or sham). Cerebellar ataxia was evaluated with the International Cooperative Ataxia Rating Scale (ICARS) and objective gait and static balance analyses both before and after each stimulation session. Additionally, we also evaluated the factors related with objective improvement from each stimulation. Sixteen participants were enrolled, and one dropped out after 2 sessions of stimulation due to consent withdrawal. The gait velocity, step time and single support time all significantly improved after the M1 and cerebellar tDCS treatment compared with the sham stimulation while there was no difference in the improvement of ICARS and posturography results among 3 stimulations. In terms of the related factors with improvement of gait velocity, the disease duration, baseline gait speed and single support times were correlated after M1 stimulation, while a higher ICARS score and baseline gait speed in cerebellar stimulation. There were no adverse effects reported after the tDCS sessions. Our results demonstrated that both M1 and cerebellar tDCS demonstrated benefits for MSA-C patients without significant complications. Considering the different related factors with improvement at each stimulation, the mechanism would be different between M1 and cerebellar stimulations.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Dongyeong Lee
- Department of Neurology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Youssef H, Mohamed NAEH, Hamdy M. Comparison of bihemispheric and unihemispheric M1 transcranial direct current stimulations during physical therapy in subacute stroke patients: A randomized controlled trial. Neurophysiol Clin 2023; 53:102895. [PMID: 37517104 DOI: 10.1016/j.neucli.2023.102895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Despite the central origin of stroke affecting the primary motor cortex M1, most physical and occupational rehabilitation programs focus on peripheral treatments rather than addressing the central origin of the problem. This highlights the urgent need for effective protocols to improve neurological rehabilitation and achieve better long-term functional outcomes. OBJECTIVES Our hypothesis was that the bihemispheric delivery of transcranial direct current stimulation (tDCS) is superior to unihemispheric in enhancing motor function after stroke, in both the upper and lower extremities. METHODS 35 sub-acute ischemic stroke survivors were randomly divided into three groups: bihemispheric and unihemispheric treatment groups, or sham groups. Each participant received a 20-minute session of tDCS with an intensity of 2 mA during physical therapy sessions, three days a week, for four weeks. The outcomes were measured using Fugl-Meyer assessment scale, modified Ashworth scale, Berg balance scale, and serum brain-derived neurotrophic factor (BDNF) levels. RESULTS One-way ANOVA test indicated a significant effect of both treatment protocols on the upper extremity (p = < 0.001) and lower extremity (p = .034) for motor measures, but there was no difference between the two (p = .939). Kruskal Wallis test for spasticity showed a significant improvement in both treatment groups for elbow (p = .036) and wrist flexors (p = .025), compared to the sham group. However, there was no statistically significant difference in spasticity between uni- and bihemispheric stimulation for elbow (p = .731) or wrist flexors (p = .910). CONCLUSION There is no statistically significant difference in efficacy between bihemispheric and unihemispheric tDCS in patients presenting with acute ischemic stroke. .
Collapse
Affiliation(s)
- Hussein Youssef
- Koç University Research Center for Translational Medicine (KUTTAM), Graduate School of Health Sciences, Koç University, İstanbul, Türkiye; Department of Neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Physical Therapy & Rehabilitation, Faculty of Health Sciences, Marmara University, İstanbul, Türkiye; Street Doctor, Alexandria, Egypt.
| | | | - Mohamed Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Gan Q, Ding Y, Peng M, Chen L, Dong J, Hu J, Ma Y. The Potential of Edible and Medicinal Resource Polysaccharides for Prevention and Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:biom13050873. [PMID: 37238743 DOI: 10.3390/biom13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Yugang Ding
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Maoyao Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Linlin Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| | - Jiaxi Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No. 1166, Wenjiang District, Chengdu 611137, China
| |
Collapse
|
30
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
31
|
Determinant of the cerebellar cognitive affective syndrome in Friedreich's ataxia. J Neurol 2023; 270:2969-2974. [PMID: 36790547 DOI: 10.1007/s00415-023-11623-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Individuals with Friedreich's ataxia (FRDA) display significantly lower performances in many cognitive domains with a pattern of impairment that falls within the cerebellar cognitive affective syndrome (CCAS). OBJECTIVE To assess in a large cohort of individuals with FRDA, the main determinant of the CCAS using multiple variable regression models. METHODS This is a monocentric observational study that included 39 individuals with FRDA. Ataxic motor symptoms were evaluated with the SARA and cognitive functions with the CCAS-Scale (CCAS-S). Age, SARA, GAA1, Age of symptoms onset (ASO), Age and disease duration (DD) were chosen as covariates in a linear regression model to predict CCAS-S failed items and covariates in a logistic regression model to predict definite CCAS. RESULTS Patients mean age, SARA score, ASO, DD and GAA1 were respectively of 29 ± 14, 22 ± 10, 14 ± 11, 15 ± 9 and 712 ± 238 (4 point-mutations). Mean CCAS-S raw score was of 86 ± 16, mean number of failed items was 2.9 ± 1.6. Twenty-three individuals had definite CCAS. The multiple linear regression model with age, SARA, ASO, DD & GAA1 as covariates was statistically significant to predict CCAS-S failed items. The SARA was the only significant coefficient in regression models for predicting CCAS-S failed items number and the definite CCAS occurrence. CONCLUSIONS CCAS is highly prevalent in adult individuals with FRDA. CCAS is predicted by ataxic motor symptoms severity. This finding supports common core cerebellar pathophysiology in both cognitive and motor symptoms in FRDA and warrants screening for CCAS, especially in patients with SARA > 20.
Collapse
|
32
|
Abderrakib A, Ligot N, Torcida N, Sadeghi Meibodi N, Naeije G. Crossed Cerebellar Diaschisis Worsens the Clinical Presentation in Acute Large Vessel Occlusion. Cerebrovasc Dis 2023; 52:552-559. [PMID: 36716718 DOI: 10.1159/000528676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/02/2022] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Initial NIHSS in anterior large vessel occlusion (LVO) correlates partially with the hypoperfusion volume. We aimed at assessing the contribution of crossed cerebellar diaschisis (CCD) from the hypoperfused territory on LVO initial clinical deficit. METHODS CCD was retrospectively identified by brain CT perfusion imaging (CTP) in patients with anterior LVO treated by mechanical thrombectomy from January 2017 to July 2021. CCD was defined by CTP parameter alteration in the contralateral cerebellar hemisphere to the LVO. NIHSS, clinical/perfusion variables, and CCD were included in regression models to assess their interrelationships. RESULTS 206 patients were included. CCD was present in 90 patients (69%). NIHSS scores were higher on admission and at stroke discharge among patients with CCD (17.90 ± 6.1 vs. 11.4 ± 8.4, p < 0.001; 9.6 ± 7.7 vs. 6.6 ± 7.9, p = 0.049; respectively). Patients with a CCD had higher stroke volumes (118.2 ± 60.3 vs. 69.3 ± 59.7, p < 0.001) and lower rate of known atrial fibrillation (22% vs. 41%, p = 0.021). On multivariable logistic regression, CCD independently worsened the initial NIHSS (OR 4.85 [2.37-7.33]; p < 0.001). CONCLUSION CCD is found in 69% of LVO on admission CTP, correlates with stroke volumes, and independently worsens initial NIHSS.
Collapse
Affiliation(s)
- Anissa Abderrakib
- Neurology Department, Université Libre de Bruxelles - Cliniques Universitaires de Bruxelles - Hôpital Erasme, Bruxelles, Belgium
| | - Noémie Ligot
- Neurology Department, Université Libre de Bruxelles - Cliniques Universitaires de Bruxelles - Hôpital Erasme, Bruxelles, Belgium
| | - Nathan Torcida
- Neurology Department, Université Libre de Bruxelles - Cliniques Universitaires de Bruxelles - Hôpital Erasme, Bruxelles, Belgium
| | - Niloufar Sadeghi Meibodi
- Radiology Department, Université Libre de Bruxelles - Cliniques Universitaires de Bruxelles - Hôpital Erasme, Bruxelles, Belgium
| | - Gilles Naeije
- Neurology Department, Université Libre de Bruxelles - Cliniques Universitaires de Bruxelles - Hôpital Erasme, Bruxelles, Belgium
| |
Collapse
|
33
|
Chen X, Huang Z, Lin W, Li M, Ye Z, Qiu Y, Xia X, Chen N, Hu J, Gan S, Chen Q. Altered brain white matter structural motor network in spinocerebellar ataxia type 3. Ann Clin Transl Neurol 2022; 10:225-236. [PMID: 36479904 PMCID: PMC9930426 DOI: 10.1002/acn3.51713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Spinocerebellar ataxia type 3 is a disorder within the brain network. However, the relationship between the brain network and disease severity is still unclear. This study aims to investigate changes in the white matter (WM) structural motor network, both in preclinical and ataxic stages, and its relationship with disease severity. METHODS For this study, 20 ataxic, 20 preclinical SCA3 patients, and 20 healthy controls were recruited and received MRI scans. Disease severity was quantified using the SARA and ICARS scores. The WM motor structural network was created using probabilistic fiber tracking and was analyzed using graph theory and network-based statistics at global, nodal, and edge levels. In addition, the correlations between network topological measures and disease duration or clinical scores were analyzed. RESULTS Preclinical patients showed increasing assortativity of the motor network, altered subnetwork including 12 edges of 11 nodes, and 5 brain regions presenting reduced nodal strength. In ataxic patients assortativity of the motor network also increased, but global efficiency, global strength, and transitivity decreased. Ataxic patients showed a wider altered subnetwork and a higher number of reduced nodal strengths. A negative correlation between the transitivity of the motor network and SARA and ICARS scores was observed in ataxic patients. INTERPRETATION Changes to the WM motor network in SCA3 start before ataxia onset, and WM motor network involvement increases with disease progression. Global network topological measures of the WM motor network appear to be a promising image biomarker for disease severity. This study provides new insights into the pathophysiology of disease in SCA3/MJD.
Collapse
Affiliation(s)
- Xin‐Yuan Chen
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zi‐Qiang Huang
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Wei Lin
- Department of NeurologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Meng‐Cheng Li
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhi‐Xian Ye
- Department of NeurologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Yu‐Sen Qiu
- Department of NeurologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiao‐Yue Xia
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Na‐Ping Chen
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Jian‐Ping Hu
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Shi‐Rui Gan
- Department of NeurologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Qun‐Lin Chen
- Department of RadiologyThe First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
34
|
Schmitter CV, Straube B. The impact of cerebellar transcranial direct current stimulation (tDCS) on sensorimotor and inter-sensory temporal recalibration. Front Hum Neurosci 2022; 16:998843. [PMID: 36111210 PMCID: PMC9468227 DOI: 10.3389/fnhum.2022.998843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The characteristic temporal relationship between actions and their sensory outcomes allows us to distinguish self- from externally generated sensory events. However, the complex sensory environment can cause transient delays between action and outcome calling for flexible recalibration of predicted sensorimotor timing. Since the neural underpinnings of this process are largely unknown this study investigated the involvement of the cerebellum by means of cerebellar transcranial direct current stimulation (ctDCS). While receiving anodal, cathodal, dual-hemisphere or sham ctDCS, in an adaptation phase, participants were exposed to constant delays of 150 ms between actively or passively generated button presses and visual sensory outcomes. Recalibration in the same (visual outcome) and in another sensory modality (auditory outcome) was assessed in a subsequent test phase during which variable delays between button press and visual or auditory outcome had to be detected. Results indicated that temporal recalibration occurred in audition after anodal ctDCS while it was absent in vision. As the adaptation modality was visual, effects in audition suggest that recalibration occurred on a supra-modal level. In active conditions, anodal ctDCS improved sensorimotor recalibration at the delay level closest to the adaptation delay, suggesting a precise cerebellar-dependent temporal recalibration mechanism. In passive conditions, the facilitation of inter-sensory recalibration by anodal ctDCS was overall stronger and tuned to larger delays. These findings point to a role of the cerebellum in supra-modal temporal recalibration across sensorimotor and perceptual domains, but the differential manifestation of the effect across delay levels in active and passive conditions points to differences in the underlying mechanisms depending on the availability of action-based predictions. Furthermore, these results suggest that anodal ctDCS can be a promising tool for facilitating effects of temporal recalibration in sensorimotor and inter-sensory contexts.
Collapse
Affiliation(s)
- Christina V. Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Marburg, Germany
- *Correspondence: Christina V. Schmitter,
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
35
|
Matsugi A, Mori N, Hosomi K, Saitoh Y. Cerebellar repetitive transcranial magnetic stimulation modulates the motor learning of visually guided voluntary postural control task. Neurosci Lett 2022; 788:136859. [PMID: 36038031 DOI: 10.1016/j.neulet.2022.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
We investigated whether vermal cerebellar low-frequency repetitive transcranial magnetic stimulation (crTMS) affects motor learning of visually guided postural tracking training (VTT) using foot center of pressure (COP) as well as the stability and sensory contribution of upright standing. Twenty-one healthy volunteers participated (10 in the sham-crTMS group and 11 in the active-crTMS group). For VTT, participants stood on the force plate 1.5 m from the monitor on which the COP and target moved in a circle. Participants tracked the target with their own COP for 1 min, and 10 VTT sessions were conducted. The tracking error (TE) was compared between trials. Active- or sham-crTMS sessions were conducted prior to VTT. At baseline (before crTMS), pre-VTT (after crTMS), and post-VTT, the COP trajectory during upright static standing under four conditions (eyes, open/closed; surface, hard/rubber) was recorded. Comparison of the length of the COP trajectory or path and sensory-contribution-rate showed no significant difference between baseline and pre- and post-VTT. There was a significant decrease in TE in the sham-crTMS but not in the active-crTMS group. VTT and crTMS did not immediately affect the stability and sensory contribution of upright standing; however, crTMS immediately affected motor learning. The vermal cerebellum may contribute to motor learning of voluntary postural control.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Hojo 5-11-10, Daitou City, Osaka 574-0011, Japan.
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Machikaneyama 1-3, Toyonaka City, Osaka 560-8531, Japan; Tokuyukai Rehabilitation Clinic, Shinsenri-nishimachi 2-24-18, Toyonaka City, Osaka 560-0083, Japan
| |
Collapse
|
36
|
Abderrakib A, Ligot N, Naeije G. Cerebellar cognitive affective syndrome after acute cerebellar stroke. Front Neurol 2022; 13:906293. [PMID: 36034280 PMCID: PMC9403248 DOI: 10.3389/fneur.2022.906293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction The cerebellum modulates both motor and cognitive behaviors, and a cerebellar cognitive affective syndrome (CCAS) was described after a cerebellar stroke in 1998. Yet, a CCAS is seldom sought for, due to a lack of practical screening scales. Therefore, we aimed at assessing both the prevalence of CCAS after cerebellar acute vascular lesion and the yield of the CCAS-Scale (CCAS-S) in an acute stroke setting. Materials and methods All patients admitted between January 2020 and January 2022 with acute onset of a cerebellar ischemic or haemorrhagic first stroke at the CUB-Hôpital Erasme and who could be evaluated by the CCAS-S within a week of symptom onset were included. Results Cerebellar acute vascular lesion occurred in 25/1,580 patients. All patients could complete the CCAS-S. A definite CCAS was evidenced in 21/25 patients. Patients failed 5.2 ± 2.12 items out of 8 and had a mean raw score of 68.2 ± 21.3 (normal values 82–120). Most failed items of the CCAS-S were related to verbal fluency, attention, and working memory. Conclusion A definite CCAS is present in almost all patients with acute cerebellar vascular lesions. CCAS is efficiently assessed by CCAS-S at bedside tests in acute stroke settings. The magnitude of CCAS likely reflects a cerebello-cortical diaschisis.
Collapse
|
37
|
Maas RPPWM, Teerenstra S, Toni I, Klockgether T, Schutter DJLG, van de Warrenburg BPC. Cerebellar Transcranial Direct Current Stimulation in Spinocerebellar Ataxia Type 3: a Randomized, Double-Blind, Sham-Controlled Trial. Neurotherapeutics 2022; 19:1259-1272. [PMID: 35501469 PMCID: PMC9059914 DOI: 10.1007/s13311-022-01231-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2022] [Indexed: 12/12/2022] Open
Abstract
Repeated sessions of cerebellar anodal transcranial direct current stimulation (tDCS) have been suggested to modulate cerebellar-motor cortex (M1) connectivity and decrease ataxia severity. However, therapeutic trials involving etiologically homogeneous groups of ataxia patients are lacking. The objective of this study was to investigate if a two-week regimen of daily cerebellar tDCS sessions diminishes ataxia and non-motor symptom severity and alters cerebellar-M1 connectivity in individuals with spinocerebellar ataxia type 3 (SCA3). We conducted a randomized, double-blind, sham-controlled trial in which twenty mildly to moderately affected SCA3 patients received ten sessions of real or sham cerebellar tDCS (i.e., five days per week for two consecutive weeks). Effects were evaluated after two weeks, three months, six months, and twelve months. Change in Scale for the Assessment and Rating of Ataxia (SARA) score after two weeks was defined as the primary endpoint. Static posturography, SCA Functional Index tests, various patient-reported outcome measures, the cerebellar cognitive affective syndrome scale, and paired-pulse transcranial magnetic stimulation to examine cerebellar brain inhibition (CBI) served as secondary endpoints. Absolute change in SARA score did not differ between both trial arms at any of the time points. We observed significant short-term improvements in several motor, cognitive, and patient-reported outcomes after the last stimulation session in both groups but no treatment effects in favor of real tDCS. Nonetheless, some of the patients in the intervention arm showed a sustained reduction in SARA score lasting six or even twelve months, indicating interindividual variability in treatment response. CBI, which reflects the functional integrity of the cerebellothalamocortical tract, remained unchanged after ten tDCS sessions. Albeit exploratory, there was some indication for between-group differences in SARA speech score after six and twelve months and in the number of extracerebellar signs after three and six months. Taken together, our study does not provide evidence that a two-week treatment with daily cerebellar tDCS sessions reduces ataxia severity or restores cerebellar-M1 connectivity in early-to-middle-stage SCA3 patients at the group level. In order to potentially increase therapeutic efficacy, further research is warranted to identify individual predictors of symptomatic improvement.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Steven Teerenstra
- Department for Health Evidence, Biostatistics Section, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
38
|
Mai AS, Yong JH, Lim OZH, Tan EK. Non-Invasive Electrical Stimulation in Patients with Neurodegenerative Ataxia and Spasticity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Eur J Neurol 2022; 29:2842-2850. [PMID: 35666142 DOI: 10.1111/ene.15438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There are limited treatment options for patients with neurodegenerative ataxia and spasticity. Non-invasive electrostimulation (NES) is receiving increasing interest because of its ease of implementation, cost-effectiveness, and safety. We conducted a meta-analysis to evaluate the efficacy of NES. METHODS We screened Medline and Embase for studies using NES in ataxias and spasticity. Key outcome measurements of effectiveness included changes in: (1) Modified Ashworth Scale (MAS) scores, (2) cerebellar brain inhibition (CBI), (3) 9-hole peg test (9HPT), (4) 8-meter walking time (8MWT), (5) International Cooperative Ataxia Rating Scale (ICARS) scores, (6) Scale for Assessment and Rating of Ataxia (SARA) scores. RESULTS Seven randomised controlled trials (RCTs) involving 203 patients were included. There were significant improvements in MAS (MD -0.42, 95% CI -0.76 to -0.08, P=0.015), CBI (MD -0.35%, 95% CI -0.42 to -0.28, P<0.001), 8MWT (MD -1.88 seconds, 95% CI -3.26 to -0.49, P=0.008), ICARS (MD -7.84, 95% CI -11.90 to -3.78, P<0.001), and SARA (MD -3.01, 95% CI -4.74 to -1.28, P<0.001). There was almost no heterogeneity across all outcomes except for CBI (I2 =79%). No significant changes in 9HPT were observed when comparing NES to a sham procedure (MD -3.52 seconds, 95% CI -9.15 to 2.10, P=0.220). Most included studies were at low risk of bias, and no severe adverse effects were reported. CONCLUSION We demonstrated that NES is an effective treatment for improving coordination and balance, and increased exercise capacity in patients with ataxia and spasticity. There was also a significant modulation of CBI in ataxic patients.
Collapse
Affiliation(s)
- Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jung Hahn Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Oliver Zi Hern Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, General Hospital Campus, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
39
|
Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J Clin Neurosci 2022; 100:59-65. [DOI: 10.1016/j.jocn.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
40
|
Maas RPPWM, Schutter DJLG, Toni I, Timmann D, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation modulates timing but not acquisition of conditioned eyeblink responses in SCA3 patients. Brain Stimul 2022; 15:806-813. [PMID: 35597518 DOI: 10.1016/j.brs.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Delay eyeblink conditioning is an extensively studied motor learning paradigm that critically depends on the integrity of the cerebellum. In healthy individuals, modulation of cerebellar excitability using transcranial direct current stimulation (tDCS) has been reported to alter the acquisition and/or timing of conditioned eyeblink responses (CRs). It remains unknown whether such effects can also be elicited in patients with cerebellar disorders. OBJECTIVE To investigate if repeated sessions of cerebellar tDCS modify acquisition and/or timing of CRs in patients with spinocerebellar ataxia type 3 (SCA3) and to evaluate possible associations between disease severity measures and eyeblink conditioning parameters. METHODS Delay eyeblink conditioning was examined in 20 mildly to moderately affected individuals with SCA3 and 31 healthy controls. After the baseline session, patients were randomly assigned to receive ten sessions of cerebellar anodal tDCS or sham tDCS (i.e., five days per week for two consecutive weeks). Patients and investigators were blinded to treatment allocation. The same eyeblink conditioning protocol was administered directly after the last tDCS session. The Scale for the Assessment and Rating of Ataxia (SARA), cerebellar cognitive affective syndrome scale (CCAS-S), and disease duration were used as clinical measures of disease severity. RESULTS At baseline, SCA3 patients exhibited significantly fewer CRs than healthy controls. Acquisition was inversely associated with the number of failed CCAS-S test items but not with SARA score. Onset and peak latencies of CRs were longer in SCA3 patients and correlated with disease duration. Repeated sessions of cerebellar anodal tDCS did not affect CR acquisition, but had a significant treatment effect on both timing parameters. While a shift of CRs toward the conditioned stimulus was observed in the sham group (i.e., timing became more similar to that of healthy controls, presumably reflecting the effect of a second eyeblink conditioning session), anodal tDCS induced a shift of CRs in the opposite direction (i.e., toward the unconditioned stimulus). CONCLUSION Our findings provide the first evidence that cerebellar tDCS is capable of modifying cerebellar function in SCA3 patients. Future studies should assess whether this intervention similarly modulates temporal processing in other degenerative ataxias.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Naeije G, Schulz JB, Corben LA. The cognitive profile of Friedreich ataxia: a systematic review and meta-analysis. BMC Neurol 2022; 22:97. [PMID: 35300598 PMCID: PMC8928653 DOI: 10.1186/s12883-022-02615-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Study the cognitive profile of individuals with Friedreich ataxia (FRDA) and seek evidence for correlations between clinical, genetic and imaging characteristics and neuropsychological impairments. METHODS Based on PRISMA guidelines, a meta-analysis was realized using the Pubmed and Scopus databases to identify studies (1950-2021) reporting neuropsychological test results in genetically confirmed FRDA and control participants in at least one of the following cognitive domains: attention/executive, language, memory and visuo-spatial functions as well as emotion. Studies using identical outcomes in a minimum of two studies were pooled. Pooled effect sizes were calculated with Cohen's d. RESULTS Eighteen studies were included. Individuals with FRDA displayed significantly lower performance than individuals without FRDA in most language, attention, executive function, memory visuospatial function, emotion regulation and social cognitive tasks. Among the included studies, thirteen studies examined the relationship between neuropsychological test results and clinical parameters and reported significant association with disease severity and six studies reviewed the relationship between neuroimaging measures and cognitive performance and mainly reported links between reduced cognitive performance and changes in cerebellar structure. CONCLUSIONS Individuals with FRDA display significantly lower performances in many cognitive domains compared to control participants. The spectrum of the cognitive profile alterations in FRDA and its correlation with disease severity and cerebellar structural parameters suggest a cerebellar role in the pathophysiology of FRDA cognitive impairments.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, 1070, Brussels, Belgium.
| | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074, Aachen, Germany
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| |
Collapse
|