1
|
Yamamoto Y, Takahata K, Seki M, Okusa S, Tatebe H, Ueda R, Endo H, Tagai K, Moriguchi S, Kurose S, Ichihashi M, Matsuura S, Kawamura K, Zhang MR, Ueno Y, Takiyama Y, Tokuda T, Higuchi M, Ito D. SLC9A6-Linked Parkinson Syndrome in Female Heterozygotes Is Associated With PET-Detectable Tau Pathology. Neurol Genet 2025; 11:e200235. [PMID: 39810750 PMCID: PMC11731372 DOI: 10.1212/nxg.0000000000200235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Background and Objectives A previous postmortem study of men with Christianson syndrome, a disorder caused by loss-of-function mutations in the gene SLC9A6, reported a mechanistic link between pathologic tau accumulation and progressive symptoms such as cerebellar atrophy and cognitive decline. This study aimed to characterize the relationships between neuropathologic manifestations and tau accumulation in heterozygous women with SLC9A6 mutation. Methods We conducted a multimodal neuroimaging and plasma biomarker study on 3 middle-aged heterozygous women with SLC9A6 mutations (proband 1: mid-50s; proband 2: early 50s; proband 3: mid-40s) presenting with progressive extrapyramidal symptoms. Examinations included 11C-PiB PET; 18F-florzolotau PET; structural MRI; and plasma measures of neurofilament light chain (NfL) polypeptide, glial fibrillary acidic protein, phosphorylated (p)Tau181, Aβ40, and Aβ42. Neuroimaging results of all 3 patients were compared with those of 12 healthy age-matched women (49.8 ± 4.7 years) while plasma biomarker levels of probands 1 and 2 were compared with those of 14 age-matched healthy women (54.1 ± 9.0 years). Results Proband 1 was diagnosed with Parkinson disease while probands 2 and 3 were diagnosed with atypical parkinsonism. 11C-PiB PET results were negative in all patients. 18F-florzolotau PET revealed focal tau accumulations in all 3 patients, predominantly in the striatum contralateral to motor symptoms. Moreover, greater extrapyramidal symptom severity was associated with higher standardized uptake value ratios (SUVRs) for 18F-florzolotau in the striatum. Multiple comparisons showed significantly higher 18F-florzolotau SUVR values in both the caudate and putamen of proband 1, who exhibited the most severe extrapyramidal signs, while no significant increases in 18F-florzolotau SUVR values were detected in any brain region of probands 2 and 3. Structural MRI revealed slightly lower regional subcortical and gray matter volumes in all patients but not significant after multiple comparisons. Finally, plasma NfL concentration was significantly higher in probands 1 and 2 compared with healthy controls. Discussion Our 18F-florzolotau PET analysis revealed greater tau accumulation in the striatum of heterozygous women with SLC9A6 mutation associated with worsening extrapyramidal symptom severity. The heterozygosity of loss-of-function SLC9A6 mutations further suggests that tauopathy may be a primary contributor to extrapyramidal signs.
Collapse
Affiliation(s)
- Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
- Department of Neuropsychiatry, Keio University School of Medicine
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine
| | - Shohei Okusa
- Department of Neurology, Keio University School of Medicine
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Sho Moriguchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Shin Kurose
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Masanori Ichihashi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Sayo Matsuura
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Yuji Ueno
- Department of Neurology, Faculty of Medicine, University of Yamanashi
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi
- Fuefuki Central Hospital, Isawa-cho, Yamanashi; and
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba
| | - Daisuke Ito
- Memory Center, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Deivasigamani S, Thekkan S, Vergara HM, Conolly O, Cosden M, Phan T, Smith S, Marcus J, Uslaner J, Venkat D, Drolet RE, Krishnan Y, Modi S. Multimodal Blood-Based Biomarker Panel Reveals Altered Lysosomal Ionic Content in Alzheimer's Disease. ACS Chem Biol 2025; 20:137-152. [PMID: 39699875 DOI: 10.1021/acschembio.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca2+ in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.
Collapse
Affiliation(s)
| | | | | | | | - Mali Cosden
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thienlong Phan
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sean Smith
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jacob Marcus
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jason Uslaner
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Robert E Drolet
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yamuna Krishnan
- Esya Ltd., 84 Wood Lane, London W12 0BZ, U.K
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Souvik Modi
- Esya Ltd., 84 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
3
|
Hu Z, Yang J, Zhang S, Li M, Zuo C, Mao C, Zhang Z, Tang M, Shi C, Xu Y. AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice. Neural Regen Res 2025; 20:253-264. [PMID: 38767490 PMCID: PMC11246129 DOI: 10.4103/nrr.nrr-d-23-01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-β plaques, and decreased the expression of both amyloid-β and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited β-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mibo Tang
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Kavanaugh BC, Elacio J, Best CR, St Pierre DG, Pescosolido MF, Ouyang Q, Biedermann J, Bradley RS, Liu JS, Jones RN, Morrow EM. Christianson syndrome across the lifespan: genetic mutations and longitudinal study in children, adolescents, and adults. J Med Genet 2024; 61:1031-1039. [PMID: 39237363 PMCID: PMC11503119 DOI: 10.1136/jmg-2024-109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Mutations in the X-linked endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome (CS). Here, in the largest study to date, we examine genetic diversity and clinical progression in CS into adulthood. METHOD Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. 44 individuals with 31 unique NHE6 mutations, age 2-32 years, were followed prospectively, herein reporting baseline, 1 year follow-up and retrospective natural history. RESULTS We present data on the CS phenotype with regard to physical growth and adaptive and motor regression across the lifespan including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model. The rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined; a majority of adult participants (18+ years) lost gross and fine motor skills over a 1 year follow-up. Previously defined core diagnostic criteria for CS (present in>85%)-namely non-verbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia-were universally present in age 6-16; however, an additional core feature of high pain tolerance was added (present in 91%). While neurologic examinations were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. CONCLUSIONS In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype thereby identifying critical targets for treatment.
Collapse
Affiliation(s)
- Brian C Kavanaugh
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Jennifer Elacio
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Carrie R Best
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Danielle G St Pierre
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Matthew F Pescosolido
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Qing Ouyang
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - John Biedermann
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Rebecca S Bradley
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Judy S Liu
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Richard N Jones
- Quantitative Sciences Program, Department of Psychiatry and Human Behavior and Department of Neurology, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Eric M Morrow
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Fenton TA, Haouchine OY, Hallam EB, Smith EM, Jackson KC, Rahbarian D, Canales CP, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-related intellectual disability. Transl Psychiatry 2024; 14:405. [PMID: 39358332 PMCID: PMC11447000 DOI: 10.1038/s41398-024-03077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability (ID), motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicating the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered, identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data that was collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated that primary neurons from Syngap1+/- mice displayed: 1) increased network firing activity, 2) greater bursts, 3) and shorter inter-burst intervals between peaks, by utilizing high density microelectrode arrays (HD-MEA). Our work bridges in vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Elizabeth B Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Kiya C Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Alex S Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ exchanger NHE6 governing localization to the endosome compartment. J Biol Chem 2024; 300:107552. [PMID: 39002678 PMCID: PMC11375261 DOI: 10.1016/j.jbc.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl terminus as bait, we identify Golgi-associated, gamma adaptin ear-containing, ADP-ribosylation factor (ARF) binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: coimmunoprecipitation; overexpressed constructs in mammalian cells; and coimmunoprecipitation of endogenously expressed GGA1 and NHE6 from neuroblastoma cells, as well as from the mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7, and NHE9) and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the colocalization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mislocalized in GGA1 KO cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mislocalization, and Golgi retention, we find the intraluminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intracellular NHE to the endosome compartment.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Ravi Kiran Kasula
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
7
|
Afghah Z, Khan N, Datta G, Halcrow PW, Geiger JD, Chen X. Involvement of Endolysosomes and Aurora Kinase A in the Regulation of Amyloid β Protein Levels in Neurons. Int J Mol Sci 2024; 25:6200. [PMID: 38892390 PMCID: PMC11172969 DOI: 10.3390/ijms25116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aβ) generating enzyme β-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aβ degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aβ. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aβ. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aβ and extracellular amyloid plaque formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (Z.A.); (N.K.); (G.D.); (P.W.H.); (J.D.G.)
| |
Collapse
|
8
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
9
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-Related Intellectual Disability. RESEARCH SQUARE 2024:rs.3.rs-4067746. [PMID: 38562838 PMCID: PMC10984035 DOI: 10.21203/rs.3.rs-4067746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability, motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicting the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated primary neurons from Syngap1+/- mice displayed increased network firing activity, greater bursts, and shorter inter-burst intervals between peaks by employing high density microelectrode arrays (HD-MEA). Our work bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Elizabeth L Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Kiya C. Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Cesar Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Alexander S. Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| |
Collapse
|
10
|
Kumar S, Panda SP. Targeting GM2 Ganglioside Accumulation in Dementia: Current Therapeutic Approaches and Future Directions. Curr Mol Med 2024; 24:1329-1345. [PMID: 37877564 DOI: 10.2174/0115665240264547231017110613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/26/2023]
Abstract
Dementia in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and dementia with Lewy bodies (DLB) is a progressive neurological condition affecting millions worldwide. The amphiphilic molecule GM2 gangliosides are abundant in the human brain and play important roles in neuronal development, intercellular recognition, myelin stabilization, and signal transduction. GM2 ganglioside's degradation requires hexosaminidase A (HexA), a heterodimer composed of an α subunit encoded by HEXA and a β subunit encoded by HEXB. The hydrolysis of GM2 also requires a non-enzymatic protein, the GM2 activator protein (GM2-AP), encoded by GM2A. Pathogenic mutations of HEXA, HEXB, and GM2A are responsible for autosomal recessive diseases known as GM2 gangliosidosis, caused by the excessive intralysosomal accumulation of GM2 gangliosides. In AD, PD and DLB, GM2 ganglioside accumulation is reported to facilitate Aβ and α-synuclein aggregation into toxic oligomers and plaques through activation of downstream signaling pathways, such as protein kinase C (PKC) and oxidative stress factors. This review explored the potential role of GM2 ganglioside alteration in toxic protein aggregations and its related signaling pathways leading to neurodegenerative diseases. Further review explored potential therapeutic approaches, which include synthetic and phytomolecules targeting GM2 ganglioside accumulation in the brain, holding a promise for providing new and effective management for dementia.
Collapse
Affiliation(s)
- Sanjesh Kumar
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University Mathura, Uttara Pradesh-281406, India
| |
Collapse
|
11
|
Lee Y, Morrow EM. Quantitative Measurement of Tau Aggregation in Genetically Modified Rats with Neurodegeneration. Methods Mol Biol 2024; 2761:291-299. [PMID: 38427245 DOI: 10.1007/978-1-0716-3662-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Animal models of neurodegenerative diseases have helped us to better understand the pathogenesis of neurodegenerative diseases. However, recent failure to translate pre-clinical model studies to the clinic urges us to develop more rigorous and faithful animal models in neurodegenerative diseases. As genetic manipulation of rats becomes much more accessible due to availability of CRISPR-Cas9 and other genomic editing toolboxes, rats have been emerging as a new model system for neurodegenerative diseases. Even though mouse models have been dominant over the last decades, rats may provide advantages over mice. Rats are more genetically and physiologically closer to humans than to mice. Also, certain rat models can represent deposition of tau, which is one of the key pathological features of Alzheimer's diseases and tauopathies. However, there is an unmet need for standardized, rigorous testing in rat models. We adopted two commonly used biochemical and immunofluorescence methods from mice and human postmortem brains to measure tau aggregation. Due to the intrinsic differences between mice and rats, e.g., size of rat brains, certain equipment is required for rat models to study tau pathologies. Along with specific tools, here we describe the detailed methods for rat models of neurodegenerative diseases.
Collapse
Affiliation(s)
- YouJin Lee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
He H, Zhang H, Chen H, He F, Yin F, Stauber T, Zou X, Peng J. Functional analysis of two SLC9A6 frameshift variants in lymphoblastoid cells from patients with Christianson syndrome. CNS Neurosci Ther 2023; 29:4059-4069. [PMID: 37381736 PMCID: PMC10651982 DOI: 10.1111/cns.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Christianson syndrome (CS) is caused by mutations in SLC9A6 and is characterized by global developmental delay, epilepsy, hyperkinesis, ataxia, microcephaly, and behavioral disorder. However, the molecular mechanism by which these SLC9A6 mutations cause CS in humans is not entirely understood, and there is no objective method to determine the pathogenicity of single SLC9A6 variants. METHODS Trio-based whole exome sequencing (WES) was carried out on two individuals with suspicion of CS. qRT-PCR, western blot analysis, filipin staining, lysosomal enzymatic assays, and electron microscopy examination, using EBV-LCLs established from the two patients, were performed. RESULTS Trio-based WES identified a hemizygous SLC9A6 c.1560dupT, p.T521Yfs*23 variant in proband 1 and a hemizygous SLC9A6 c.608delA, p.H203Lfs*10 variant in proband 2. Both children exhibited typical phenotypes associated with CS. Expression analysis in EBV-LCLs derived from the two patients showed a significant decrease in mRNA levels and no detectable normal NHE6 protein. EBV-LCLs showed a statistically significant increase in unesterified cholesterol in patient 1, but only non-significant increase in patient 2 when stained with filipin. Activities of lysosomal enzymes (β-hexosaminidase A, β-hexosaminidase A + B, β-galactosidase, galactocerebrosidase, arylsulfatase A) of EBV-LCLs did not significantly differ between the two patients and six controls. Importantly, by electron microscopy we detected an accumulation of lamellated membrane structures, deformed mitochondria, and lipid droplets in the patients' EBV-LCLs. CONCLUSIONS The SLC9A6 p.T521Yfs*23 and p.H203Lfs*10 variants in our patients result in loss of NHE6. Alterations of mitochondria and lipid metabolism may play a role in the pathogenesis of CS. Moreover, the combination of filipin staining with electron microscopy examination of patient lymphoblastoid cells can serve as a useful complementary diagnostic method for CS.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Chen
- Department of NeurologyJiangxi Provincial Children's HospitalNanchangChina
| | - Fang He
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Fei Yin
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular MedicineMSH Medical School HamburgHamburgGermany
| | - Xiaomin Zou
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| | - Jing Peng
- Department of Pediatrics, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Intellectual and Developmental Disabilities Research CenterChangshaChina
| |
Collapse
|
13
|
Kavanaugh BC, Elacio J, Best CR, St Pierre DG, Pescosolido MF, Ouyang Q, Caruso P, Buch K, Biedermann J, Bradley RS, Liu JS, Jones RN, Morrow EM. Christianson Syndrome across the Lifespan: An International Longitudinal Study in Children, Adolescents, and Adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.11.23298218. [PMID: 37987014 PMCID: PMC10659496 DOI: 10.1101/2023.11.11.23298218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the X-linked endosomal Na+/H+ Exchanger 6 (NHE6) causes Christianson Syndrome (CS). In the largest study to date, we examine genetic diversity and clinical progression, including cerebellar degeneration, in CS into adulthood. Data were collected as part of the International Christianson Syndrome and NHE6 (SLC9A6) Gene Network Study. Forty-four individuals with 31 unique NHE6 mutations, age 2 to 32 years, were followed prospectively, herein reporting baseline, 1-year follow-up, and retrospective natural history. We present data on the CS phenotype with regard to physical growth, adaptive and motor regression, and across the lifespan, including information on mortality. Longitudinal data on body weight and height were examined using a linear mixed model: the rate of growth across development was slow and resulted in prominently decreased age-normed height and weight by adulthood. Adaptive functioning was longitudinally examined: a majority of adult (18+ years) participants lost gross and fine motor skills over a 1-year follow-up. Previously defined core diagnostic criteria for CS (present in >85%) - namely nonverbal status, intellectual disability, epilepsy, postnatal microcephaly, ataxia, hyperkinesia - were universally present in age 6 to 16; however, an additional core feature of high pain tolerance was added (present in 91%), and furthermore, evolution of symptoms were noted across the lifespan, such that postnatal microcephaly, ataxia and high pain threshold were often not apparent prior to age 6, and hyperkinesis decreased after age 16. While neurologic exams were consistent with cerebellar dysfunction, importantly, a majority of individuals (>50% older than 10) also had corticospinal tract abnormalities. Three participants died during the period of the study. In this large and longitudinal study of CS, we begin to define the trajectory of symptoms and the adult phenotype, thereby identifying critical targets for treatment.
Collapse
|
14
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ Exchanger NHE6 governing localization to the endosome compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565997. [PMID: 37986849 PMCID: PMC10659387 DOI: 10.1101/2023.11.08.565997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson syndrome (CS), an X-linked neurological disorder. Previous studies have shown that NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using co-immunoprecipitation (co-IP): using over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9) but not with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 is necessary and sufficient for interactions with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells wherein we find less NHE6 in endosomes but more NHE6 transport to lysosomes, and more Golgi retention of NHE6 with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.
Collapse
|
15
|
Silverman JL, Fenton T, Haouchine O, Hallam E, Smith E, Jackson K, Rahbarian D, Canales C, Adhikari A, Nord A, Ben-Shalom R. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. RESEARCH SQUARE 2023:rs.3.rs-3246655. [PMID: 37790402 PMCID: PMC10543290 DOI: 10.21203/rs.3.rs-3246655/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1 -related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1+/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1+/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1 RI-D, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
Affiliation(s)
- Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550093. [PMID: 37546838 PMCID: PMC10402099 DOI: 10.1101/2023.07.24.550093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1 +/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1 +/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1R-ID, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
|
17
|
Oreshko AS, Rodnyy AY, Bazovkina DV, Naumenko VS. Effects of central administration of the human Tau protein on the Bdnf, Trkb, p75, Mapt, Bax and Bcl-2 genes expression in the mouse brain. Vavilovskii Zhurnal Genet Selektsii 2023; 27:342-348. [PMID: 37465194 PMCID: PMC10350857 DOI: 10.18699/vjgb-23-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 07/20/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia, affecting millions of people worldwide. Despite intensive work by many researchers, the mechanisms underlying Alzheimer's disease development have not yet been elucidated. Recently, more studies have been directed to the investigation of the processes leading to the formation of neurofibrillary tangles consisting of hyperphosphorylated microtubule-associated Tau proteins. Pathological aggregation of this protein leads to the development of neurodegeneration associated with impaired neurogenesis and apoptosis. In the present study, the effects of central administration of aggregating human Tau protein on the expression of the Bdnf, Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the brain of C57Bl/6J mice were explored. It was found that five days after administration of the protein into the fourth lateral ventricle, significant changes occurred in the expression of the genes involved in apoptosis and neurogenesis regulation, e. g., a notable decrease in the mRNA level of the gene encoding the most important neurotrophic factor BDNF (brain-derived neurotrophic factor) was observed in the frontal cortex which could play an important role in neurodegeneration caused by pathological Tau protein aggregation. Central administration of the Tau protein did not affect the expression of the Ntrk2, Ngfr, Mapt, Bax and Bcl-2 genes in the frontal cortex and hippocampus. Concurrently, a significant decrease in the expression of the Mapt gene encoding endogenous mouse Tau protein was found in the cerebellum. However, no changes in the level or phosphorylation of the endogenous Tau protein were observed. Thus, central administration of aggregating human Tau protein decreases the expression of the Bdnf gene in the frontal cortex and the Mapt gene encoding endogenous mouse Tau protein in the cerebellum of C57Bl/6J mice.
Collapse
Affiliation(s)
- A S Oreshko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A Ya Rodnyy
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D V Bazovkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Lo CH, Zeng J. Defective lysosomal acidification: a new prognostic marker and therapeutic target for neurodegenerative diseases. Transl Neurodegener 2023; 12:29. [PMID: 37287072 PMCID: PMC10249214 DOI: 10.1186/s40035-023-00362-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Lysosomal acidification dysfunction has been implicated as a key driving factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Multiple genetic factors have been linked to lysosomal de-acidification through impairing the vacuolar-type ATPase and ion channels on the organelle membrane. Similar lysosomal abnormalities are also present in sporadic forms of neurodegeneration, although the underlying pathogenic mechanisms are unclear and remain to be investigated. Importantly, recent studies have revealed early occurrence of lysosomal acidification impairment before the onset of neurodegeneration and late-stage pathology. However, there is a lack of methods for organelle pH monitoring in vivo and a dearth of lysosome-acidifying therapeutic agents. Here, we summarize and present evidence for the notion of defective lysosomal acidification as an early indicator of neurodegeneration and urge the critical need for technological advancement in developing tools for lysosomal pH monitoring and detection both in vivo and for clinical applications. We further discuss current preclinical pharmacological agents that modulate lysosomal acidification, including small molecules and nanomedicine, and their potential clinical translation into lysosome-targeting therapies. Both timely detection of lysosomal dysfunction and development of therapeutics that restore lysosomal function represent paradigm shifts in targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| |
Collapse
|
19
|
Figueroa KP, Anderson CJ, Paul S, Dansithong W, Gandelman M, Scoles DR, Pulst SM. Slc9a6 mutation causes Purkinje cell loss and ataxia in the shaker rat. Hum Mol Genet 2023; 32:1647-1659. [PMID: 36621975 PMCID: PMC10162436 DOI: 10.1093/hmg/ddad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
- School of Medical Sciences, University of Sydney, Camperdown NSW 2006, Australia
- School of Biomedical Engineering University of Sydney, Darlington NSW 2008, Australia
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
20
|
Sampognaro PJ, Arya S, Knudsen GM, Gunderson EL, Sandoval-Perez A, Hodul M, Bowles K, Craik CS, Jacobson MP, Kao AW. Mutations in α-synuclein, TDP-43 and tau prolong protein half-life through diminished degradation by lysosomal proteases. Mol Neurodegener 2023; 18:29. [PMID: 37131250 PMCID: PMC10155372 DOI: 10.1186/s13024-023-00621-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Autosomal dominant mutations in α-synuclein, TDP-43 and tau are thought to predispose to neurodegeneration by enhancing protein aggregation. While a subset of α-synuclein, TDP-43 and tau mutations has been shown to increase the structural propensity of these proteins toward self-association, rates of aggregation are also highly dependent on protein steady state concentrations, which are in large part regulated by their rates of lysosomal degradation. Previous studies have shown that lysosomal proteases operate precisely and not indiscriminately, cleaving their substrates at very specific linear amino acid sequences. With this knowledge, we hypothesized that certain coding mutations in α-synuclein, TDP-43 and tau may lead to increased protein steady state concentrations and eventual aggregation by an alternative mechanism, that is, through disrupting lysosomal protease cleavage recognition motifs and subsequently conferring protease resistance to these proteins. RESULTS To test this possibility, we first generated comprehensive proteolysis maps containing all of the potential lysosomal protease cleavage sites for α-synuclein, TDP-43 and tau. In silico analyses of these maps indicated that certain mutations would diminish cathepsin cleavage, a prediction we confirmed utilizing in vitro protease assays. We then validated these findings in cell models and induced neurons, demonstrating that mutant forms of α-synuclein, TDP-43 and tau are degraded less efficiently than wild type despite being imported into lysosomes at similar rates. CONCLUSIONS Together, this study provides evidence that pathogenic mutations in the N-terminal domain of α-synuclein (G51D, A53T), low complexity domain of TDP-43 (A315T, Q331K, M337V) and R1 and R2 domains of tau (K257T, N279K, S305N) directly impair their own lysosomal degradation, altering protein homeostasis and increasing cellular protein concentrations by extending the degradation half-lives of these proteins. These results also point to novel, shared, alternative mechanism by which different forms of neurodegeneration, including synucleinopathies, TDP-43 proteinopathies and tauopathies, may arise. Importantly, they also provide a roadmap for how the upregulation of particular lysosomal proteases could be targeted as potential therapeutics for human neurodegenerative disease.
Collapse
Affiliation(s)
- Paul J. Sampognaro
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
- Neuromuscular Division, Department of Neurology, University of California, San Francisco, CA USA
| | - Shruti Arya
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | | | - Emma L. Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Angelica Sandoval-Perez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Molly Hodul
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| | - Kathryn Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Aimee W. Kao
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA USA
| |
Collapse
|
21
|
Dong Y, Lian R, Jin L, Zhao S, Tao W, Wang L, Li M, Jia T, Chen X, Cao S. Clinical and genetic analysis of Christianson syndrome caused by variant of SLC9A6: case report and literature review. Front Neurol 2023; 14:1152696. [PMID: 37213903 PMCID: PMC10196350 DOI: 10.3389/fneur.2023.1152696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Background Intellectual disability, X-linked, syndromic, Christianson type (MRXSCH, OMIM: 300243)-known as Christianson syndrome (CS)-is characterized by microcephaly, epilepsy, ataxia, and absence of verbal language ability. CS is attributed to mutations in the solute carrier family 9 member A6 gene (SLC9A6). Materials and methods This study reports the case of a boy 1 year and 3 months of age who was diagnosed with CS in our department. Genetic etiology was determined by whole-exome sequencing, and a minigene splicing assay was used to verify whether the mutation affected splicing. A literature review of CS cases was conducted and the clinical and genetic features were summarized. Results The main clinical manifestations of CS include seizures, developmental regression, and exceptional facial features. Whole-exome sequencing revealed a de novo splice variant in intron 11 (c.1366 + 1G > C) of SLC9A6. The mutation produced two abnormal mRNA products (verified by a minigene splicing assay), resulting in the formation of truncated protein. A total of 95 CS cases were identified in the literature, with various symptoms, such as delayed intellectual development (95/95, 100.00%), epilepsy (87/88, 98.86%), and absent verbal language (75/83, 90.36%). At least 50 pathogenic variants of SLC9A6 have been identified, with the highest frequency observed in exon 12. Conclusion Our patient is the first case with the c.1366 + 1G > C variant of SLC9A6 in CS. The summary of known cases can serve as a reference for analyzing the mutation spectrum and pathogenesis of CS.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou, China
- *Correspondence: Yan Dong,
| | - Ruofei Lian
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Jin
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Zhao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenpeng Tao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchun Li
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuejing Chen
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shushi Cao
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Fernandez MA, Bah F, Ma L, Lee Y, Schmidt M, Welch E, Morrow EM, Young-Pearse TL. Loss of endosomal exchanger NHE6 leads to pathological changes in tau in human neurons. Stem Cell Reports 2022; 17:2111-2126. [PMID: 36055242 PMCID: PMC9481919 DOI: 10.1016/j.stemcr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022] Open
Abstract
Disruption of endolysosomal and autophagy-lysosomal systems is increasingly implicated in neurodegeneration. Sodium-proton exchanger 6 (NHE6) contributes to the maintenance of proper endosomal pH, and loss-of function mutations in the X-linked NHE6 lead to Christianson syndrome (CS) in males. Neurodegenerative features of CS are increasingly recognized, with postmortem and clinical data implicating a role for tau. We generated cortical neurons from NHE6 knockout (KO) and isogenic wild-type control human induced pluripotent stem cells. We report elevated phosphorylated and sarkosyl-insoluble tau in NHE6 KO neurons. We demonstrate that NHE6 KO leads to lysosomal and autophagy dysfunction involving reduced lysosomal number and protease activity, diminished autophagic flux, and p62 accumulation. Finally, we show that treatment with trehalose or rapamycin, two enhancers of autophagy-lysosomal function, each partially rescue this tau phenotype. We provide insight into the neurodegenerative processes underlying NHE6 loss of function and into the broader role of the endosome-lysosome-autophagy network in neurodegeneration.
Collapse
Affiliation(s)
- Marty A Fernandez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fatmata Bah
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - YouJin Lee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - Elizabeth Welch
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA; Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA.
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Anderegg MA, Gyimesi G, Ho TM, Hediger MA, Fuster DG. The Less Well-Known Little Brothers: The SLC9B/NHA Sodium Proton Exchanger Subfamily—Structure, Function, Regulation and Potential Drug-Target Approaches. Front Physiol 2022; 13:898508. [PMID: 35694410 PMCID: PMC9174904 DOI: 10.3389/fphys.2022.898508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The SLC9 gene family encodes Na+/H+ exchangers (NHEs), a group of membrane transport proteins critically involved in the regulation of cytoplasmic and organellar pH, cell volume, as well as systemic acid-base and volume homeostasis. NHEs of the SLC9A subfamily (NHE 1–9) are well-known for their roles in human physiology and disease. Much less is known about the two members of the SLC9B subfamily, NHA1 and NHA2, which share higher similarity to prokaryotic NHEs than the SLC9A paralogs. NHA2 (also known as SLC9B2) is ubiquitously expressed and has recently been shown to participate in renal blood pressure and electrolyte regulation, insulin secretion and systemic glucose homeostasis. In addition, NHA2 has been proposed to contribute to the pathogenesis of polycystic kidney disease, the most common inherited kidney disease in humans. NHA1 (also known as SLC9B1) is mainly expressed in testis and is important for sperm motility and thus male fertility, but has not been associated with human disease thus far. In this review, we present a summary of the structure, function and regulation of expression of the SLC9B subfamily members, focusing primarily on the better-studied SLC9B paralog, NHA2. Furthermore, we will review the potential of the SLC9B subfamily as drug targets.
Collapse
Affiliation(s)
- Manuel A. Anderegg
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Manuel A. Anderegg,
| | - Gergely Gyimesi
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tin Manh Ho
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias A. Hediger
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Membrane Transport Discovery Lab, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022; 15:821-833. [PMID: 35274462 PMCID: PMC9311146 DOI: 10.1002/aur.2697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder characterized by developmental delay, lack of speech, seizures, intellectual disability, hypotonia, and motor coordination deficits. Motor abilities are an important outcome measure in AS as they comprise a broad repertoire of metrics including ataxia, hypotonia, delayed ambulation, crouched gait, and poor posture, and motor dysfunction affects nearly every individual with AS. Guided by collaborative work with AS clinicians studying gait, the goal of this study was to perform an in‐depth gait analysis using the automated treadmill assay, DigiGait. Our hypothesis is that gait presents a strong opportunity for a reliable, quantitative, and translational metric that can serve to evaluate novel pharmacological, dietary, and genetic therapies. In this study, we used an automated gait analysis system, in addition to standard motor behavioral assays, to evaluate components of motor, exploration, coordination, balance, and gait impairments across the lifespan in an AS mouse model. Our study demonstrated marked global motoric deficits in AS mice, corroborating previous reports. Uniquely, this is the first report of nuanced aberrations in quantitative spatial and temporal components of gait in AS mice compared to sex‐ and age‐matched wildtype littermates followed longitudinally using metrics that are analogous in AS individuals. Our findings contribute evidence toward the use of nuanced motor outcomes (i.e., gait) as valuable and translationally powerful metrics for therapeutic development for AS, as well as other genetic neurodevelopmental syndromes.
Collapse
Affiliation(s)
- Stela P Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Timothy A Fenton
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jessica Duis
- Section of Genetics & Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|