1
|
Liu X, Ma B, Hu S, Li D, Pan C, Xu Z, Chen H, Wang Y, Wang H. Phase-adapted metal ion supply for spinal cord repair with a Mg-Zn incorporated chimeric microsphere. Biomaterials 2025; 320:123253. [PMID: 40107180 DOI: 10.1016/j.biomaterials.2025.123253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/14/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Dynamic alterations in metal ion concentrations are observed in the pathological process of spinal cord injury (SCI). Hence, strategically supplying metal ions in a phase-adapted manner is promising to facilitate injured spinal cord repair by preventing pathological damage. To achieve this, a chimeric hydrogel microsphere with Mg2+-crosslinked methacrylate gelatin as the "shell" and Zn2+-loaded poly (lactic-co-glycolic acid) (PLGA) as the "core" was designed. The chimeric microspheres allow continuous delivery of Mg2+ or Zn2+ at the exact required phase in SCI pathological process. Early release of Mg2+ reduced inflammation by diminishing the secretion of proinflammatory cytokines due to changes in macrophage polarization, which further suppressed scar formation to create an ideal space for neural regeneration. The subsequently released Zn2+ at the late phase effectively promoted neural cell proliferation and regeneration, which was accompanied by activation of mature neurons, interneurons, and motor neurons, leading to significant behavioral recovery. Thus, this study underscores the critical role of metal ions at different phases of injured spinal cord repair and describes the construction of an injectable chimeric hydrogel microsphere carrying distinct metal ions with a core-shell structure. Chimeric microspheres overcome the discrepancy between the inflammatory response and neural regeneration and are a promising therapeutic strategy for injured spinal cord repair.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Biao Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Sihan Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dandan Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Chun Pan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Zhuobin Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Hao Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
| | - Yongxiang Wang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China; Department of Orthopaedics, Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Huihui Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
2
|
Takanashi JI. Magnetic resonance imaging and spectroscopy in hypomyelinating leukodystrophy. Brain Dev 2025; 47:104345. [PMID: 40174481 DOI: 10.1016/j.braindev.2025.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Recent advancements in molecular biology and radiology have led to the identification of several new leukodystrophies. A key diagnostic feature of leukodystrophies is the increased white matter signal intensity observed on T2-weighted magnetic resonance (MR) images. Leukodystrophies are typically classified into two main categories: hypomyelinating leukodystrophies (HLD) and other forms, including demyelinating leukodystrophies. HLD is characterized by a primary defect in myelin due to genetic variants that affect structural myelin proteins, oligodendrocyte transcription factors, RNA translation, and lysosomal proteins. Radiologically, HLD tends to show less pronounced white matter hyperintensity on T2-weighted images than demyelinating leukodystrophies. A definitive diagnosis can often be made by identifying abnormalities in regions beyond the white matter, such as the basal ganglia or cerebellum, or through the presence of characteristic clinical symptoms. N-acetylaspartate, a neuroaxonal marker observed on MR spectroscopy, is typically reduced in many neurological conditions, but N-acetylaspartate levels often remain normal in HLD, which is considered a distinctive feature of this disorder. This article provides an overview of the latest imaging findings and clinical features associated with HLD.
Collapse
Affiliation(s)
- Jun-Ichi Takanashi
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owadashinden, Yachiyo-Shi, Chiba 276-8524, Japan.
| |
Collapse
|
3
|
Nmezi B, Rodriguez Bey G, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Loeza-Alcocer E, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold MS, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. Nat Commun 2025; 16:1373. [PMID: 39910058 PMCID: PMC11799162 DOI: 10.1038/s41467-025-56378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene (LMNB1) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR edited cell lines and mouse models, we have identified a silencer element that is lost in ADLD patients and that specifically targets expression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving LMNB1 and the recruitment of the PRC2 transcriptional repressor complex. Loss of the silencer element in ADLD identifies a role for non-coding regulatory elements in tissue specificity and disease causation.
Collapse
Affiliation(s)
- Bruce Nmezi
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guillermo Rodriguez Bey
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kseniia Dudnyk
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santana M Lardo
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Herdman
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Jacko
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandy Rubio
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emanuel Loeza-Alcocer
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Kofler
- Dept. of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongkyeong Kim
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
- Epitor Therapeutics, New York, NY, USA
| | - Julia Rankin
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | - Emma Kivuva
- Dept. of Clinical Genetics, Royal Devon University Hospital, Exeter, UK
| | | | - Katherine Schon
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jelle van den Ameele
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sérgio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Filipe Palavra
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Center for Child Development-Neuropediatrics Unit, Hospital Pediátrico, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
- Laboratory of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Jonas Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lisa Pan
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Murad Alturkustani
- Department of Pathology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Hammond
- Departments of Pathology and Clinical Neurological Sciences, Western University and London Health Sciences Centre, Quebec City, Canada
| | - Francois Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec City, QC, Canada
- Division of Regenerative Medicine, CHU de Quebec research center, Laval University, Quebec City, QC, Canada
| | - Michael S Gold
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Raili Raininko
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah J Hainer
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Quasar S Padiath
- Dept of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Dept. of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Werren EA, Rodriguez Bey G, Majethia P, Kaur P, Patil SJ, Kekatpure MV, Afenjar A, Qebibo L, Burglen L, Tomoum H, Demurger F, Duborg C, Siddiqui S, Tsan YC, Abdullah U, Ali Z, Saadi SM, Baig SM, Houlden H, Maroofian R, Padiath QS, Bielas SL, Shukla A. Biallelic EPB41L3 variants underlie a developmental disorder with seizures and myelination defects. Brain 2024; 147:4033-4042. [PMID: 39292993 PMCID: PMC11733690 DOI: 10.1093/brain/awae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Erythrocyte membrane protein band 4.1 like 3 (EPB41L3: NM_012307.5), also known as DAL1, encodes the ubiquitously expressed, neuronally enriched 4.1B protein, part of the 4.1 superfamily of membrane-cytoskeleton adaptors. The 4.1B protein plays key roles in cell spreading, migration and cytoskeletal scaffolding that support oligodendrocyte axon adhesions essential for proper myelination. We herein describe six individuals from five unrelated families with global developmental delay, intellectual disability, seizures, hypotonia, neuroregression and delayed myelination. Exome sequencing identified biallelic variants in EPB41L3 in all affected individuals: two nonsense [c.466C>T, p.(R156*); c.2776C>T, p.(R926*)] and three frameshift [c.666delT, p.(F222Lfs*46); c.2289dupC, p.(V764Rfs*19); c.948_949delTG, p.(A317Kfs*33)]. Quantitative-real time PCR and western blot analyses of human fibroblasts harbouring EPB41L3:c.666delT, p.(F222Lfs*46) indicated ablation of EPB41L3 mRNA and 4.1B protein expression. Inhibition of the nonsense mediated decay (NMD) pathway led to an upregulation of EPB41L3:c.666delT transcripts, supporting NMD as a pathogenic mechanism. Epb41l3-deficient mouse oligodendroglia cells showed significant reduction in mRNA expression of key myelin genes, reduced branching and increased apoptosis. Our report provides the first clinical description of an autosomal recessive disorder associated with variants in EPB41L3, which we refer to as EPB41L3-associated developmental disorder (EADD). Moreover, our functional studies substantiate the pathogenicity of EPB41L3 hypothesized loss-of-function variants.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Guillermo Rodriguez Bey
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Narayana Health-Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India
| | - Minal V Kekatpure
- Department of Neurology, Division of Pediatric Neurology, Mazumdar Shaw Medical Center, Narayana Health, Bangalore 560099, India
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
| | - Leila Qebibo
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
- Developmental Brain Disorders Laboratory, Imagine Institute, Paris 75015, France
| | - Lydie Burglen
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Unit of Molecular Genetics, Department of Genetics, Trousseau Hospital, APHP Sorbonne University, Paris 75012, France
- Developmental Brain Disorders Laboratory, Imagine Institute, Paris 75015, France
| | - Hoda Tomoum
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Florence Demurger
- Department of Clinical Genetics, Vannes Hospital, Vannes 56017, France
| | - Christele Duborg
- Service de Génétique Moléculaire, CHU Rennes, Hôpital Sud, CLAD Ouest, Rennes 40770, France
| | - Shahyan Siddiqui
- Department of Neuroimaging and Interventional Radiology, STAR Institute of Neurosciences, STAR Hospitals, Hyderabad 500034, India
| | - Yao-Chang Tsan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan
| | - Zafar Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Khyber Pakhtunkhwa 19120, Pakistan
| | - Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, NIBGE-PIEAS, Faisalabad 61010, Pakistan
| | - Shahid Mahmood Baig
- Faculty of Life Sciences, Health Services Academy, Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Quasar Saleem Padiath
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
5
|
Farrokhi S, Eslahi A, Alizadeh F, Kerachian MA, Mojarrad M. Assessment the Efficacy of the CRISPR System for Inducing Mutations in the AIMP2 Gene to Create a Cell Line Model of HLD17 Disease. Mol Biotechnol 2024:10.1007/s12033-024-01257-9. [PMID: 39433694 DOI: 10.1007/s12033-024-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/22/2024] [Indexed: 10/23/2024]
Abstract
Hypomyelinating leukodystrophy-17 is a neurodevelopmental disorder caused by autosomal recessive mutations in the AIMP2 gene, resulting in a lack of myelin deposition during brain development, leading to variable neurological symptoms. Research on brain function in these disorders is challenging due to the lack of access to brain tissue. To overcome this problem, researchers have utilized different cell and animal models. The CRISPR-Cas9 system is considered the most optimal and effective method for genetic modification and developing cell models. We studied the efficacy of the CRISPR-Cas9 technology in inducing mutations in the AIMP2 gene in HEK293 cell lines. The study involved transfecting HEK293 cells with recombinant PX458 plasmids targeting spCas-9 and AIMP2 sgRNA. The cells were evaluated using fluorescent microscopy and enriched using serial dilution. The CRISPR/Cas9 plasmids were validated through PCR and Sanger sequencing. After serial dilution, AS-PCR, Sanger sequencing, and TIDE program analysis showed the construct successfully induces an indel mutation in HEK cells. Our findings demonstrated the great efficacy of the CRISPR system and produced a construct for inducing mutations in the AIMP2 gene, which can be utilized to edit the AIMP2 gene in nerve cells and create a cellular model of the HLD17 disease.
Collapse
Affiliation(s)
- Shima Farrokhi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Das Adhikari S, Cui Y, Wang J. BayesKAT: bayesian optimal kernel-based test for genetic association studies reveals joint genetic effects in complex diseases. Brief Bioinform 2024; 25:bbae182. [PMID: 38653490 PMCID: PMC11036342 DOI: 10.1093/bib/bbae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Genome-wide Association Studies (GWAS) methods have identified individual single-nucleotide polymorphisms (SNPs) significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT (https://github.com/wangjr03/BayesKAT), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.
Collapse
Affiliation(s)
- Sikta Das Adhikari
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Dutta D, Kanca O, Shridharan RV, Marcogliese PC, Steger B, Morimoto M, Frost FG, Macnamara E, Wangler MF, Yamamoto S, Jenny A, Adams D, Malicdan MC, Bellen HJ. Loss of the endoplasmic reticulum protein Tmem208 affects cell polarity, development, and viability. Proc Natl Acad Sci U S A 2024; 121:e2322582121. [PMID: 38381787 PMCID: PMC10907268 DOI: 10.1073/pnas.2322582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Nascent proteins destined for the cell membrane and the secretory pathway are targeted to the endoplasmic reticulum (ER) either posttranslationally or cotranslationally. The signal-independent pathway, containing the protein TMEM208, is one of three pathways that facilitates the translocation of nascent proteins into the ER. The in vivo function of this protein is ill characterized in multicellular organisms. Here, we generated a CRISPR-induced null allele of the fruit fly ortholog CG8320/Tmem208 by replacing the gene with the Kozak-GAL4 sequence. We show that Tmem208 is broadly expressed in flies and that its loss causes lethality, although a few short-lived flies eclose. These animals exhibit wing and eye developmental defects consistent with impaired cell polarity and display mild ER stress. Tmem208 physically interacts with Frizzled (Fz), a planar cell polarity (PCP) receptor, and is required to maintain proper levels of Fz. Moreover, we identified a child with compound heterozygous variants in TMEM208 who presents with developmental delay, skeletal abnormalities, multiple hair whorls, cardiac, and neurological issues, symptoms that are associated with PCP defects in mice and humans. Additionally, fibroblasts of the proband display mild ER stress. Expression of the reference human TMEM208 in flies fully rescues the loss of Tmem208, and the two proband-specific variants fail to rescue, suggesting that they are loss-of-function alleles. In summary, our study uncovers a role of TMEM208 in development, shedding light on its significance in ER homeostasis and cell polarity.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Rishi V. Shridharan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Paul C. Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Benjamin Steger
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Marie Morimoto
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - F. Graeme Frost
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Ellen Macnamara
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | | | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY10461
- Department of Genetics, Albert Einstein College of Medicine, New York, NY10461
| | - David Adams
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - May C. Malicdan
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX77030
| |
Collapse
|
8
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Ross MM, Hernandez-Espinosa DR, Aizenman E. Neurodevelopmental Consequences of Dietary Zinc Deficiency: A Status Report. Biol Trace Elem Res 2023; 201:5616-5639. [PMID: 36964812 DOI: 10.1007/s12011-023-03630-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/11/2023] [Indexed: 03/26/2023]
Abstract
Zinc is a tightly regulated trace mineral element playing critical roles in growth, immunity, neurodevelopment, and synaptic and hormonal signaling. Although severe dietary zinc deficiency is relatively uncommon in the United States, dietary zinc deficiency is a substantial public health concern in low- and middle-income countries. Zinc status may be a key determinant of neurodevelopmental processes. Indeed, limited cohort studies have shown that serum zinc is lower in people diagnosed with autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and depression. These observations have sparked multiple studies investigating the mechanisms underlying zinc status and neurodevelopmental outcomes. Animal models of perinatal and adult dietary zinc restriction yield distinct behavioral phenotypes reminiscent of features of ASD, ADHD, and depression, including increased anxiety and immobility, repetitive behaviors, and altered social behaviors. At the cellular and molecular level, zinc has demonstrated roles in neurogenesis, regulation of cellular redox status, transcription factor trafficking, synaptogenesis, and the regulation of synaptic architecture via the Shank family of scaffolding proteins. Although mechanistic questions remain, the current evidence suggests that zinc status is important for adequate neuronal development and may be a yet overlooked factor in the pathogenesis of several psychiatric conditions. This review aims to summarize current knowledge of the role of zinc in the neurophysiology of the perinatal period, the many cellular targets of zinc in the developing brain, and the potential consequences of alterations in zinc homeostasis in early life.
Collapse
Affiliation(s)
- Madeline M Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Diego R Hernandez-Espinosa
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
10
|
Das Adhikari S, Cui Y, Wang J. BayesKAT: Bayesian Optimal Kernel-based Test for genetic association studies reveals joint genetic effects in complex diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562824. [PMID: 37905124 PMCID: PMC10614916 DOI: 10.1101/2023.10.18.562824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
GWAS methods have identified individual SNPs significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power, or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT( https://github.com/wangjr03/BayesKAT ), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules, and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.
Collapse
|
11
|
Nmezi B, Bey GR, Oranburg TD, Dudnyk K, Lardo SM, Herdman N, Jacko A, Rubio S, Alcocer EL, Kofler J, Kim D, Rankin J, Kivuva E, Gutowski N, Schon K, van den Ameele J, Chinnery PF, Sousa SB, Palavra F, Toro C, Pinto E Vairo F, Saute J, Pan L, Alturkustani M, Hammond R, Gros-Louis F, Gold M, Park Y, Bernard G, Raininko R, Zhou J, Hainer SJ, Padiath QS. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551473. [PMID: 37609196 PMCID: PMC10441294 DOI: 10.1101/2023.08.03.551473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.
Collapse
|
12
|
Bey GR, Padiath QS. Enhanced differentiation of the mouse oli-neu oligodendroglial cell line using optimized culture conditions. BMC Res Notes 2023; 16:161. [PMID: 37542275 PMCID: PMC10401818 DOI: 10.1186/s13104-023-06432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Oligodendrocytes (OL) are the glial cell type in the CNS that are responsible for myelin formation. The ability to culture OLs in vitro has provided critical insights into the mechanisms underlying their function. However, primary OL cultures are tedious to obtain, difficult to propagate and are not easily conducive to genetic manipulation. To overcome these obstacles, researchers have generated immortalized OL like cell lines derived from various species. One such cell line is the mouse Oli-neu line which is thought to recapitulate characteristics of OLs in early stages of maturity. They have been extensively utilized in multiple studies as surrogates for OLs, especially in analyzing epigenetic modifications and regulatory pathways in the OL lineage. RESULTS In this report we present the development of optimized culture media and growth conditions that greatly facilitate the differentiation of Oli-neu cells. Oli-neu cells differentiated using these new protocols exhibit a higher expression of myelin related genes and increased branching, both of which are defining characteristics of mature OLs, when compared to previous culture protocols. We envision that these new culture conditions will greatly facilitate the use of Oli-neu cells and enhance their ability to recapitulate the salient features of primary OLs.
Collapse
Affiliation(s)
- Guillermo Rodriguez Bey
- Department of Human Genetics, School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA
| | - Quasar Saleem Padiath
- Department of Human Genetics, School of Public Health, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA, 15261, USA.
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|