1
|
Choi J, Tang Z, Dong W, Ulibarri J, Mehinovic E, Thomas S, Höke A, Jin SC. Unleashing the Power of Multiomics: Unraveling the Molecular Landscape of Peripheral Neuropathy. Ann Clin Transl Neurol 2025; 12:674-685. [PMID: 40126913 DOI: 10.1002/acn3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Peripheral neuropathies (PNs) affect over 20 million individuals in the United States, manifesting as a wide range of sensory, motor, and autonomic nerve symptoms. While various conditions such as diabetes, metabolic disorders, trauma, autoimmune disease, and chemotherapy-induced neurotoxicity have been linked to PN, approximately one-third of PN cases remain idiopathic, underscoring a critical gap in our understanding of these disorders. Over the years, considerable efforts have focused on unraveling the complex molecular pathways underlying PN to advance diagnosis and treatment. Traditional methods such as linkage analysis, fluorescence in situ hybridization, polymerase chain reaction, and Sanger sequencing identified initial genetic variants associated with PN. However, the establishment and application of next-generation sequencing (NGS) and, more recently, long-read/single-cell sequencing have revolutionized the field, accelerating the discovery of novel disease-causing variants and challenging previous assumptions about pathogenicity. This review traces the evolution of genomic technologies in PN research, emphasizing the pivotal role of NGS in uncovering genetic complexities. We provide a comprehensive analysis of established genomic approaches such as genome-wide association studies, targeted gene panel sequencing, and whole-exome/genome sequencing, alongside emerging multiomic technologies including RNA sequencing and proteomics. Integrating these approaches promises holistic insights into PN pathophysiology, potentially revealing new biomarkers and therapeutic targets. Furthermore, we discuss the clinical implications of genomic and multiomic integration, highlighting their potential to enhance diagnostic accuracy, prognostic assessment, and personalized treatment strategies for PN. Challenges and questions in standardizing these technologies for clinical use are raised, underscoring the need for robust guidelines to maximize their clinical utility.
Collapse
Affiliation(s)
- Julie Choi
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Zitian Tang
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Wendy Dong
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jenna Ulibarri
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Elvisa Mehinovic
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Simone Thomas
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Huang W, Jeong S, Kim W, Chen L. Biomedical applications of organoids in genetic diseases. MEDICAL REVIEW (2021) 2025; 5:152-163. [PMID: 40224362 PMCID: PMC11987506 DOI: 10.1515/mr-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 04/15/2025]
Abstract
Organoid technology has significantly transformed biomedical research by providing exceptional prospects for modeling human tissues and disorders in a laboratory setting. It has significant potential for understanding the intricate relationship between genetic mutations, cellular phenotypes, and disease pathology, especially in the field of genetic diseases. The intersection of organoid technology and genetic research offers great promise for comprehending the pathophysiology of genetic diseases and creating innovative treatment approaches customized for specific patients. This review aimed to present a thorough analysis of the current advancements in organoid technology and its biomedical applications for genetic diseases. We examined techniques for modeling genetic disorders using organoid platforms, analyze the approaches for incorporating genetic disease organoids into clinical practice, and showcase current breakthroughs in preclinical application, individualized healthcare, and transplantation. Through the integration of knowledge from several disciplines, such as genetics, regenerative medicine, and biological engineering, our aim is to enhance our comprehension of the complex connection between genetic variations and organoid models in relation to human health and disease.
Collapse
Affiliation(s)
- Wenhua Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, Korea
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Lei Chen
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Loret C, Scherrer C, Rovini A, Pyromali I, Faye PA, Nizou A, Sturtz F, Favreau F, Lia AS. Advances in modeling the Charcot-Marie-Tooth disease: Human induced pluripotent stem cell-derived Schwann cells harboring SH3TC2 variants. Eur J Cell Biol 2025; 104:151485. [PMID: 40154263 DOI: 10.1016/j.ejcb.2025.151485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a powerful tool for investigating neuropathological disorders, such as Charcot-Marie-Tooth disease (CMT), the most prevalent inherited peripheral neuropathy, where the cells of interest are hardly accessible. Advancing the development of appropriate cellular models is crucial for studying the disease's pathophysiology. In this study, we present the first two isogenic hiPSC-derived Schwann cell models for studying CMT4C, also known as AR-CMTde-SH3TC2. This subtype of CMT is associated with alterations in SH3TC2 and is the most prevalent form of autosomal recessive demyelinating CMT. We aimed to study the impact of two nonsense mutations in SH3TC2. To achieve this, we used two CRISPR hiPSC clones, one carrying a homozygous nonsense mutation: c.211C>T, p.Gln71*, and the other one, carrying the most common AR-CMTde-SH3TC2 alteration, c.2860G>A, p.Arg954*. To study the endogenous expression of SH3TC2 in the cells mainly altered in AR-CMTde-SH3TC2, we initiated the differentiation of both our CMT clones and their isogenic control into Schwann cells (SCs). This study represents the first in vitro investigation of human endogenous SH3TC2 expression in AR-CMTde-SH3TC2 hiPSC-derived SC models, allowing for the examination of its expression and of its cellular impact. By comparing this AR-CMTde-SH3TC2 models to the control one, we observed disparities in RNA and protein expression of SH3TC2. Additionally, our RNA and coculture experiments with hiPSC-derived motor neurons (MNs) revealed delayed maturation of SCs and a reduced ability of SH3TC2-deficient SCs to sustain motor neuron culture. Our findings also demonstrated a disability in receptor recycling in SH3TC2-deficient cells, depending on the AR-CMTde-SH3TC2 alteration. These hiPSC-derived-SC models further provide a new modelling tool for studying Schwann cell contribution to CMT4C.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Ioanna Pyromali
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Angélique Nizou
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
4
|
Loret C, Scherrer C, Rovini A, Lesage E, Richard L, Danigo A, Sturtz F, Favreau F, Faye PA, Lia AS. Addressing myelination disorders: Novel strategies using human 3D peripheral nerve model. Brain Res Bull 2025; 222:111252. [PMID: 39938756 DOI: 10.1016/j.brainresbull.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral myelination disorders encompass a variety of disorders that affect myelin sheaths in the peripheral nervous system. The Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy, is one of the most prevalent among them. CMT stems from a wide range of genetic causes that disrupt the nerve conduction, leading to progressive muscle weakness and atrophy, sensory loss, and motor function impairment. Historically, the study of these disorders has relied heavily on animal studies, owing to the challenges in accessing human cells. However, the advent of human induced pluripotent stem cell (hiPSC)-derived neuronal cells has addressed these limitations in the realm of peripheral myelination disorders. Despite this, obtaining myelin in these models remains an expensive, time-consuming, and material-intensive process. This study presents a novel, cost-effective method utilizing hiPSC-derived Schwann cells and motor neurons in a three-dimensional culture system. Our method successfully enabled the acquisition of myelin in a control clone within just four weeks, as confirmed by electron microscopy. Furthermore, the utility of these approaches was validated by studying CMT4C, also named AR-CMTde-SH3TC2, the most common recessive demyelinating form of CMT. This revealed defects in Schwann cell support to motor neuron neurite outgrowth and impaired myelination in disease-specific hiPSC-derived lines. This approach offers valuable insights into the pathogenesis of peripheral myelination disorders and provides a platform for testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Esther Lesage
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Laurence Richard
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Aurore Danigo
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
5
|
Scherrer C, Loret C, Védrenne N, Buckley C, Lia AS, Kermene V, Sturtz F, Favreau F, Rovini A, Faye PA. From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease. J Tissue Eng 2025; 16:20417314241310508. [PMID: 40078221 PMCID: PMC11898049 DOI: 10.1177/20417314241310508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/14/2024] [Indexed: 03/14/2025] Open
Abstract
Peripheral neuropathies are disorders affecting the peripheral nervous system. Among them, Charcot-Marie-Tooth disease is an inherited sensorimotor neuropathy for which no effective treatment exists yet. Research on Charcot-Marie-Tooth disease has been hampered by difficulties in accessing relevant cells, such as sensory and motor neurons, Schwann cells, and myocytes, which interact at the neuromuscular junction, the specialized synapses formed between nerves and skeletal muscles. This review first outlines the various in vivo models and methods used to study neuromuscular junction deficiencies in Charcot-Marie-Tooth disease. We then explore novel in vitro techniques and models, including complex hiPSC-derived cultures, which offer promising isogenic and reproducible neuromuscular junction models. The adaptability of in vitro culture methods, including cell origin, cell-type combinations, and choice of culture format, adds complexity and excitement to this rapidly evolving field. This review aims to recapitulate available tools for studying Charcot-Marie-Tooth disease to understand its pathophysiological mechanisms and test potential therapies.
Collapse
Affiliation(s)
- Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Nicolas Védrenne
- University of Limoges, Inserm U1248 Pharmacology & Transplantation, Limoges, France
| | - Colman Buckley
- University of Limoges, XLIM, CNRS UMR 7252, Limoges, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
- Department of Bioinformatics, CHU Limoges, Limoges, France
| | | | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges, France
- Department of Biochemistry and Molecular Genetics, CHU Limoges, Limoges, France
| |
Collapse
|
6
|
Dong H, Qin B, Zhang H, Lei L, Wu S. Current Treatment Methods for Charcot-Marie-Tooth Diseases. Biomolecules 2024; 14:1138. [PMID: 39334903 PMCID: PMC11430469 DOI: 10.3390/biom14091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, exhibits a wide phenotypic range, genetic heterogeneity, and a variable disease course. The diverse molecular genetic mechanisms of CMT were discovered over the past three decades with the development of molecular biology and gene sequencing technologies. These methods have brought new options for CMT reclassification and led to an exciting era of treatment target discovery for this incurable disease. Currently, there are no approved disease management methods that can fully cure patients with CMT, and rehabilitation, orthotics, and surgery are the only available treatments to ameliorate symptoms. Considerable research attention has been given to disease-modifying therapies, including gene silencing, gene addition, and gene editing, but most treatments that reach clinical trials are drug treatments, while currently, only gene therapies for CMT2S have reached the clinical trial stage. In this review, we highlight the pathogenic mechanisms and therapeutic investigations of different subtypes of CMT, and promising therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Hongxian Dong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China; (H.D.); (B.Q.); (H.Z.)
| |
Collapse
|
7
|
Prior R, Silva A, Vangansewinkel T, Idkowiak J, Tharkeshwar AK, Hellings TP, Michailidou I, Vreijling J, Loos M, Koopmans B, Vlek N, Agaser C, Kuipers TB, Michiels C, Rossaert E, Verschoren S, Vermeire W, de Laat V, Dehairs J, Eggermont K, van den Biggelaar D, Bademosi AT, Meunier FA, vandeVen M, Van Damme P, Mei H, Swinnen JV, Lambrichts I, Baas F, Fluiter K, Wolfs E, Van Den Bosch L. PMP22 duplication dysregulates lipid homeostasis and plasma membrane organization in developing human Schwann cells. Brain 2024; 147:3113-3130. [PMID: 38743588 PMCID: PMC11370802 DOI: 10.1093/brain/awae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited peripheral neuropathy caused by a 1.5 Mb tandem duplication of chromosome 17 harbouring the PMP22 gene. This dose-dependent overexpression of PMP22 results in disrupted Schwann cell myelination of peripheral nerves. To obtain better insights into the underlying pathogenic mechanisms in CMT1A, we investigated the role of PMP22 duplication in cellular homeostasis in CMT1A mouse models and in patient-derived induced pluripotent stem cells differentiated into Schwann cell precursors (iPSC-SCPs). We performed lipidomic profiling and bulk RNA sequencing (RNA-seq) on sciatic nerves of two developing CMT1A mouse models and on CMT1A patient-derived iPSC-SCPs. For the sciatic nerves of the CMT1A mice, cholesterol and lipid metabolism was downregulated in a dose-dependent manner throughout development. For the CMT1A iPSC-SCPs, transcriptional analysis unveiled a strong suppression of genes related to autophagy and lipid metabolism. Gene ontology enrichment analysis identified disturbances in pathways related to plasma membrane components and cell receptor signalling. Lipidomic analysis confirmed the severe dysregulation in plasma membrane lipids, particularly sphingolipids, in CMT1A iPSC-SCPs. Furthermore, we identified reduced lipid raft dynamics, disturbed plasma membrane fluidity and impaired cholesterol incorporation and storage, all of which could result from altered lipid storage homeostasis in the patient-derived CMT1A iPSC-SCPs. Importantly, this phenotype could be rescued by stimulating autophagy and lipolysis. We conclude that PMP22 duplication disturbs intracellular lipid storage and leads to a more disordered plasma membrane owing to an alteration in the lipid composition, which might ultimately lead to impaired axo-glial interactions. Moreover, targeting lipid handling and metabolism could hold promise for the treatment of patients with CMT1A.
Collapse
Affiliation(s)
- Robert Prior
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn 53127, Germany
| | - Alessio Silva
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tim Vangansewinkel
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Tom P Hellings
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jeroen Vreijling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Maarten Loos
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | | | - Nina Vlek
- InnoSer Nederland B.V., 2333 CK Leiden, The Netherlands
| | - Cedrick Agaser
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Christine Michiels
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Elisabeth Rossaert
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Stijn Verschoren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Wendy Vermeire
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Kristel Eggermont
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Diede van den Biggelaar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| | - Adekunle T Bademosi
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frederic A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Martin vandeVen
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Ivo Lambrichts
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Esther Wolfs
- UHasselt—Hasselt University, Biomedical Research Institute, Diepenbeek 3590, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven 3000, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven 3000, Belgium
| |
Collapse
|
8
|
Moss KR, Mi R, Kawaguchi R, Ehmsen JT, Shi Q, Vargas PI, Mukherjee-Clavin B, Lee G, Höke A. hESC- and hiPSC-derived Schwann cells are molecularly comparable and functionally equivalent. iScience 2024; 27:109855. [PMID: 38770143 PMCID: PMC11103364 DOI: 10.1016/j.isci.2024.109855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/11/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Establishing robust models of human myelinating Schwann cells is critical for studying peripheral nerve injury and disease. Stem cell differentiation has emerged as a key human cell model and disease motivating development of Schwann cell differentiation protocols. Human embryonic stem cells (hESCs) are considered the ideal pluripotent cell but ethical concerns regarding their use have propelled the popularity of human induced pluripotent stem cells (hiPSCs). Given that the equivalence of hESCs and hiPSCs remains controversial, we sought to compare the molecular and functional equivalence of hESC- and hiPSC-derived Schwann cells generated with our previously reported protocol. We identified only modest transcriptome differences by RNA sequencing and insignificant proteome differences by antibody array. Additionally, both cell types comparably improved nerve regeneration and function in a chronic denervation and regeneration animal model. Our findings demonstrate that Schwann cells derived from hESCs and hiPSCs with our protocol are molecularly comparable and functionally equivalent.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruifa Mi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Riki Kawaguchi
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jeffrey T. Ehmsen
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiang Shi
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paula I. Vargas
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bipasha Mukherjee-Clavin
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabsang Lee
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
10
|
Wenzel TJ, Mousseau DD. Brain organoids engineered to give rise to glia and neural networks after 90 days in culture exhibit human-specific proteoforms. Front Cell Neurosci 2024; 18:1383688. [PMID: 38784709 PMCID: PMC11111902 DOI: 10.3389/fncel.2024.1383688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Human brain organoids are emerging as translationally relevant models for the study of human brain health and disease. However, it remains to be shown whether human-specific protein processing is conserved in human brain organoids. Herein, we demonstrate that cell fate and composition of unguided brain organoids are dictated by culture conditions during embryoid body formation, and that culture conditions at this stage can be optimized to result in the presence of glia-associated proteins and neural network activity as early as three-months in vitro. Under these optimized conditions, unguided brain organoids generated from induced pluripotent stem cells (iPSCs) derived from male-female siblings are similar in growth rate, size, and total protein content, and exhibit minimal batch-to-batch variability in cell composition and metabolism. A comparison of neuronal, microglial, and macroglial (astrocyte and oligodendrocyte) markers reveals that profiles in these brain organoids are more similar to autopsied human cortical and cerebellar profiles than to those in mouse cortical samples, providing the first demonstration that human-specific protein processing is largely conserved in unguided brain organoids. Thus, our organoid protocol provides four major cell types that appear to process proteins in a manner very similar to the human brain, and they do so in half the time required by other protocols. This unique copy of the human brain and basic characteristics lay the foundation for future studies aiming to investigate human brain-specific protein patterning (e.g., isoforms, splice variants) as well as modulate glial and neuronal processes in an in situ-like environment.
Collapse
Affiliation(s)
- Tyler J. Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
11
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
12
|
Mutschler C, Fazal SV, Schumacher N, Loreto A, Coleman MP, Arthur-Farraj P. Schwann cells are axo-protective after injury irrespective of myelination status in mouse Schwann cell-neuron cocultures. J Cell Sci 2023; 136:jcs261557. [PMID: 37642648 PMCID: PMC10546878 DOI: 10.1242/jcs.261557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Myelinating Schwann cell (SC)-dorsal root ganglion (DRG) neuron cocultures are an important technique for understanding cell-cell signalling and interactions during peripheral nervous system (PNS) myelination, injury, and regeneration. Although methods using rat SCs and neurons or mouse DRG explants are commonplace, there are no established protocols for compartmentalised myelinating cocultures with dissociated mouse cells. There consequently is a need for a coculture protocol that allows separate genetic manipulation of mouse SCs or neurons, or use of cells from different transgenic animals to complement in vivo mouse experiments. However, inducing myelination of dissociated mouse SCs in culture is challenging. Here, we describe a new method to coculture dissociated mouse SCs and DRG neurons in microfluidic chambers and induce robust myelination. Cocultures can be axotomised to study injury and used for drug treatments, and cells can be lentivirally transduced for live imaging. We used this model to investigate axon degeneration after traumatic axotomy and find that SCs, irrespective of myelination status, are axo-protective. At later timepoints after injury, live imaging of cocultures shows that SCs break up, ingest and clear axonal debris.
Collapse
Affiliation(s)
- Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| | - Andrea Loreto
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Michael P. Coleman
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| |
Collapse
|
13
|
Gao Y. Using Human iPSC-Derived Peripheral Nervous System Disease Models for Drug Discovery. Handb Exp Pharmacol 2023; 281:191-205. [PMID: 37815594 DOI: 10.1007/164_2023_690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Induced pluripotent stem cells (IPSCs), with their remarkable ability to differentiate into various cell types, including peripheral nervous system cells such as neurons and glial cells, offer an excellent platform for in vitro disease modeling. These iPSC-derived disease models have proven valuable in drug discovery, as they provide more precise simulations of a patient's disease state and allow for the assessment of potential therapeutic effectiveness and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| |
Collapse
|