1
|
Joutel A. The Pathobiology of Cerebrovascular Lesions in CADASIL Small Vessel Disease. Basic Clin Pharmacol Toxicol 2025; 136:e70028. [PMID: 40145673 PMCID: PMC11948957 DOI: 10.1111/bcpt.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Cerebral small vessel disease (cSVD) is a significant global health issue, accounting for approximately 25% of ischemic strokes and 20% of all dementia cases. CADASIL, the most common monogenic form of cSVD, is caused by stereotyped mutations in the NOTCH3 receptor that alter the number of cysteine residues in its extracellular domain (Notch3ECD). The two hallmark features of CADASIL are the loss of arterial smooth muscle cells (SMCs) and the abnormal accumulation of Notch3ECD, without associated accumulation of its transmembrane intracellular domain. Notably, cysteine-altering mutations in NOTCH3 are prevalent in the general population, and although they are not directly associated with classical CADASIL disease, they are still linked to an elevated risk of stroke and dementia. NOTCH3 is predominantly expressed in the mural cells of small blood vessels and plays an essential role in the development, maintenance, function and survival of arterial SMCs. Recent research has challenged the loss-of-function hypothesis, instead implicating Notch3ECD aggregation, involving both mutant and wild-type NOTCH3, as the primary driver of vascular pathology in CADASIL. Consequently, therapeutic strategies targeting the reduction of Notch3ECD levels in brain arteries, such as antisense therapies, are considered highly promising for clinical development.
Collapse
Affiliation(s)
- Anne Joutel
- University Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266ParisFrance
- GHU‐Paris Psychiatry and NeurosciencesSt. Anne HospitalParisFrance
| |
Collapse
|
2
|
Chen CH, Cheng YW, Zhang R, Tezenas Du Montcel S, Guey S, Hervé D, Tang SC, Chabriat H. Intracerebral Hemorrhage in Patients With CADASIL: Additive Impact of the NOTCH3 R544C Variant and Hypertension? Stroke 2025. [PMID: 40270244 DOI: 10.1161/strokeaha.124.050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is increasingly recognized in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, especially in Asian patients with the NOTCH3 R544C variant. The associations between ICH, NOTCH3 variants, and hypertension remain unclear. METHODS We enrolled patients from 2 independent cohorts with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in France (recruited since 2003) and Taiwan (recruited since 2019) and performed a cross-sectional retrospective analysis. Clinical history and evaluation were collected using standardized questionnaires and scales, while neuroimaging features were assessed with the CADA-MRIT inventory tool. Patients with and without a history of ICH were compared. Logistic regression and mediation analyses were conducted to identify factors associated with ICH. RESULTS Of 552 patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (440 from France and 112 from Taiwan), 34 (6.2%) had a history of ICH. Patients with ICH were older (62.9±11.4 versus 53.4±12.3 years), had a higher proportion of the NOTCH3 R544C variant (79.4% versus 15.3%), and had hypertension (85.3% versus 24.9%). Analysis of magnetic resonance imaging data showed that they had more cerebral microbleeds, worse cerebral atrophy, and higher number of dilated perivascular spaces in basal ganglia. Hypertension (odds ratio, 7.90 [95% CI, 2.83-22.08]) and NOTCH3 R544C variant (odds ratio, 9.91 [95% CI, 3.84-25.57]) were each independently associated with ICH, while no multiplicative interaction was detected between these 2 factors (Pinteraction=0.81). Having both NOTCH3 R544C variant and hypertension carried an additive effect on the risk of ICH (36.9% if both present, 8.8% if having NOTCH3 R544C variant without hypertension, 5.4% if having hypertension without NOTCH3 R544C variant, and 0.6% if both absent; Ptrend<0.001). Finally, in the mediation analysis, 49.9% of the effects of the NOTCH3 R544C variant on the occurrence of ICH would be explained by the effects of hypertension. CONCLUSIONS Both the NOTCH3 R544C variant and hypertension appear to be independent risk factors for ICH in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, with a potential additive effect. However, due to the study's cross-sectional design and population-specific factors, causality cannot be established. Prospective studies are thus needed to validate these findings and clarify underlying mechanisms.
Collapse
Affiliation(s)
- Chih-Hao Chen
- National Taiwan University Hospital, Neurology, Taipei (C.-H.C., Y.-W.C., S.-C.T.)
| | - Yu-Wen Cheng
- National Taiwan University Hospital, Neurology, Taipei (C.-H.C., Y.-W.C., S.-C.T.)
| | - Ruiting Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (R.Z.)
| | | | - Stéphanie Guey
- Lariboisière Hospital AP-HP, Université Paris Cité and INSERM U1161, FHU NeuroVasc, France (S.G., D.H., H.C.)
| | - Dominique Hervé
- Lariboisière Hospital AP-HP, Université Paris Cité and INSERM U1161, FHU NeuroVasc, France (S.G., D.H., H.C.)
| | - Sung-Chun Tang
- National Taiwan University Hospital, Neurology, Taipei (C.-H.C., Y.-W.C., S.-C.T.)
| | - Hugues Chabriat
- Lariboisière Hospital AP-HP, Université Paris Cité and INSERM U1161, FHU NeuroVasc, France (S.G., D.H., H.C.)
| |
Collapse
|
3
|
Cerfontaine MN, Gravesteijn G, Hack RJ, Dijkstra KL, Rodríguez-Girondo M, Gesierich B, Witjes-Ané MNW, van Doorn R, Duering M, Rutten JW, Lesnik Oberstein SAJ. Association Between Vascular NOTCH3 Aggregation and Disease Severity in a CADASIL Cohort - Implications for NOTCH3 Variant-Specific Disease Prediction. Ann Neurol 2025. [PMID: 40265482 DOI: 10.1002/ana.27240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Vascular NOTCH3 protein ectodomain aggregation is a pathological hallmark of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease typically caused by cysteine-altering variants in NOTCH3. Given their high population frequency, these NOTCH3 variants are an important genetic contributor to stroke and vascular dementia worldwide. Disease severity in CADASIL is highly variable and is mainly determined by the position of the pathogenic NOTCH3 variant in the NOTCH3 ectodomain. Here, we aimed to investigate the association between NOTCH3 aggregation load in skin vessels, cysteine-altering NOTCH3 variants, and disease severity in a prospective cohort study of 212 patients with CADASIL with 39 distinct cysteine-altering NOTCH3 variants. METHODS NOTCH3 aggregation load in skin vessels was determined by calculating the NOTCH3 score; the fraction of skin vessel wall area positive for NOTCH3 staining. Variant-specific NOTCH3 scores were calculated for variants present in 10 or more participants, by averaging the NOTCH3 scores of individuals with that distinct variant. The associations between the NOTCH3 score, NOTCH3 variants, and neuroimaging and clinical outcomes were investigated using multivariable linear mixed models, Cox regression, and mediation analyses. RESULTS The NOTCH3 score was significantly associated with lifetime stroke probability and small vessel disease neuroimaging outcomes, but not with age. Variant-specific NOTCH3 scores reflected differences in disease severity associated with distinct NOTCH3 variants. INTERPRETATION These findings suggest that differences in NOTCH3 aggregation propensity underlie the differences in disease severity associated with NOTCH3 cysteine-altering variants, and show that NOTCH3-variant specific NOTCH3 scores can contribute to improved individualized disease prediction in CADASIL. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Minne N Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco J Hack
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Benno Gesierich
- Medical Image Analysis Centre (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marie-Noëlle W Witjes-Ané
- Department of Geriatrics and Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Duering
- Medical Image Analysis Centre (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
4
|
Chabriat H. Is migraine a common manifestation of CADASIL? Arguments Pros. J Headache Pain 2025; 26:64. [PMID: 40169951 PMCID: PMC11963349 DOI: 10.1186/s10194-025-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Migraine with aura (MA) is a hallmark feature of CADASIL, a hereditary small-vessel disease caused by NOTCH3 mutations. While MA is prevalent in CADASIL, its underlying mechanisms remain unclear, and the links observed can be questioned or debated. This study examined the prevalence, clinical characteristics, and pathophysiology of MA in patients with CADASIL. METHODS Clinical and experimental data were reviewed to assess MA prevalence, aura characteristics, sex differences, and pathophysiological insights from CADASIL models to confirm the indisputable pathophysiological links between migraine and aura and this unique genetic model of cerebral small vessel disease. RESULTS MA was 10-20 times more prevalent in patients with CADASIL than in the general population, with frequent atypical and prolonged auras. The altered sex distribution and delayed onset suggest disease-specific mechanisms. Experimental data also revealed heightened susceptibility to cortical spreading depression (CSD) in preclinical CADASIL models, linked to greater fragility in maintaining cortical ionic homeostasis. CONCLUSION The high prevalence and distinct MA features, as well as the data obtained at the preclinical level, strongly support a causal relationship mediated by neurovascular dysfunction in CADASIL. Accumulating data in this condition sheds new light on the much-debated relationship between migraine and cerebrovascular diseases.
Collapse
Affiliation(s)
- Hugues Chabriat
- Centre Neurovasculaire Translationnel-CERVCO - Département de Neurologie, APHP and Université Paris- Cité, Paris, France.
- INSERM U1127, Paris Brain Institute, 75013, Paris, France.
| |
Collapse
|
5
|
Bugallo-Casal A, Muiño E, Bravo SB, Hervella P, Arias-Rivas S, Rodríguez-Yáñez M, Vara-León E, Quintas-Rey R, Pérez-Gayol L, Maisterra-Santos O, Pizarro-Gonzálvez J, Martorell-Riera MR, Vives-Bauzá C, Fernández-Cadenas I, Castillo J, Campos F. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL. Neuromolecular Med 2025; 27:18. [PMID: 40016442 PMCID: PMC11868349 DOI: 10.1007/s12017-025-08840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common genetic form of stroke. It is caused by a cysteine-altering variant in one of the 34 epidermal growth factor-like repeat (EGFr) domains of Notch3. NOTCH3 pathogenic variants in EGFr 1-6 are associated with high disease severity, whereas those in EGFr 7-34 are associated with late stroke onset and increased survival. However, whether and how the position of the NOTCH3 variant directly affects the disease severity remains unclear. In this study, we aimed to generate human-induced pluripotent stem cells (hiPSCs) from patients with CADASIL with EGFr 1-6 and 7-34 pathogenic variants to evaluate whether the NOTCH3 position affects the cell phenotype and protein profile of the generated hiPSCs lines. Six hiPSCs lines were generated: two from patients with CADASIL with EGFr 1-6 pathogenic variants, two from patients with EGFr 7-34 variants, and two from controls. Notch3 aggregation and protein profiles were tested in the established six hiPSCs lines. Cell analysis revealed that the NOTCH3 variants did not limit the cell reprogramming efficiency. However, EGFr 1-6 variant position was associated with increased accumulation of Notch3 protein in pluripotent stem cells and proteomic changes related with cytoplasmic reorganization mechanisms. In conclusion, our analysis of hiPSCs derived from patients with CADASIL support the clinical association between the NOTCH3 variant position and severity of CADASIL.
Collapse
Affiliation(s)
- Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15705, Santiago de Compostela, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research (IR Sant Pau), 08041, Barcelona, Spain
- Epilepsy Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Susana Arias-Rivas
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706, Santiago de Compostela, Spain
| | - Enrique Vara-León
- Galician Public Foundation of Genomic Medicine, Genomics Medicine Group, 15706, Santiago de Compostela, Spain
| | - Rita Quintas-Rey
- Galician Public Foundation of Genomic Medicine, Genomics Medicine Group, Genetic Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Lara Pérez-Gayol
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Olga Maisterra-Santos
- Unidad de Memoria y Demencias, Hospital Universitario Vall d'Hebron/Vall d'Hebron Institut de Reçerca, 08035, Barcelona, Spain
| | - Jesús Pizarro-Gonzálvez
- Unidad de Memoria y Demencias, Hospital Universitario Vall d'Hebron/Vall d'Hebron Institut de Reçerca, 08035, Barcelona, Spain
| | - María Rosa Martorell-Riera
- Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitari Son Espases, 07120, Palma, Spain
| | - Cristòfol Vives-Bauzá
- Research Unit, Hospital Universitari Son Espases, IdISBa, Department of Biology, University of Balearic Islands (UIB), IUNICS, 07120, Palma, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research (IR Sant Pau), 08041, Barcelona, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Suzuki S, Itoh M. Synergistic effects of mutation and glycosylation on disease progression. Front Mol Biosci 2025; 12:1550815. [PMID: 39967653 PMCID: PMC11832388 DOI: 10.3389/fmolb.2025.1550815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Glycosylation, a post-translational modification, plays a crucial role in proper localization and function of proteins. It is regulated by multiple glycosyltransferases and can be influenced by various factors. Inherited missense mutations in glycosylated proteins such as NOTCH3, Low-density lipoprotein receptor (LDLR), and Amyloid precursor protein (APP) could affect their glycosylation states, leading to cerebral small vessel disease, hypercholesterolemia, and Alzheimer's disease, respectively. Additionally, physiological states and aging-related conditions can affect the expression levels of glycosyltransferases. However, the interplay between mutations in glycosylated proteins and changes in their glycosylation levels remains poorly understood. This mini-review summarizes the effects of glycosylation on transmembrane proteins with pathogenic mutations, including NOTCH3, LDLR, and APP. We highlight the synergistic contributions of missense amino acids in the mutant proteins and alterations in their glycosylation states to their molecular pathogenesis.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Rifino N, Baratta S, Zacarias E, Canavero I, Storti B, Stanziano M, Maderna E, Marucci G, Taroni F, Bersano A. Novel NOTCH3 mutation c.1564 T > A (p.Cys522Ser) presenting with early-onset Parkinsonism and white matter lesions. Clin Park Relat Disord 2025; 12:100297. [PMID: 39877521 PMCID: PMC11773460 DOI: 10.1016/j.prdoa.2025.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025] Open
Abstract
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, characterized by recurrent strokes, cognitive decline, and psychiatric symptoms. This report presents a novel NOTCH3 c.1564 T > A (p.Cys522Ser) mutation associated with early-onset parkinsonism and significant white matter lesions. We describe a patient who presented with early-onset parkinsonism, characterized by bradykinesia and rigidity, alongside extensive white matter lesions observed through neuroimaging. Genetic testing revealed a novel c.1564 T > A (p.Cys522Ser) mutation in the NOTCH3 gene, contributing to the clinical diagnosis of CADASIL. This case underscores the phenotypic variability of CADASIL and the potential for atypical presentations, including parkinsonism. Early identification of genetic mutations can facilitate appropriate management and counseling for affected individuals and their families. Further research is warranted to explore the mechanisms underlying the association between NOTCH3 mutations and parkinsonism. Our findings contribute to the understanding of CADASIL, suggesting that clinicians should consider CADASIL in differential diagnoses of early-onset parkinsonism, especially in patients with concurrent white matter lesions.
Collapse
Affiliation(s)
- Nicola Rifino
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Esteban Zacarias
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Isabella Canavero
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Benedetta Storti
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Mario Stanziano
- Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Emanuela Maderna
- Neuropathology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Gianluca Marucci
- Neuropathology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Anna Bersano
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
8
|
Gravesteijn G, Rutten JW, Cerfontaine MN, Hack RJ, Liao YC, Jolly AA, Guey S, Hsu SL, Park JY, Yuan Y, Kopczak A, Rifino N, Neilson SJ, Poggesi A, Shourav MMI, Saito S, Ishiyama H, Domínguez Mayoral A, Nogueira R, Muiño E, Andersen P, De Stefano N, Santo G, Sukhonpanich N, Mele F, Park A, Lee JS, Rodríguez-Girondo M, Vonk SJJ, Brodtmann A, Börjesson-Hanson A, Pantoni L, Fernández-Cadenas I, Silva AR, Montanaro VVA, Kalaria RN, Lopergolo D, Ihara M, Meschia JF, Muir KW, Bersano A, Pescini F, Duering M, Choi JC, Ling C, Kim H, Markus HS, Chabriat H, Lee YC, Lesnik Oberstein SAJ. Disease Severity Staging System for NOTCH3-Associated Small Vessel Disease, Including CADASIL. JAMA Neurol 2025; 82:49-60. [PMID: 39610302 DOI: 10.1001/jamaneurol.2024.4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Importance Typical cysteine-altering NOTCH3 (NOTCH3cys) variants are highly prevalent (approximately 1 in 300 individuals) and are associated with a broad spectrum of small vessel disease (SVD), ranging from early-onset stroke and dementia (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]) to nonpenetrance. A staging system that captures the full NOTCH3-SVD severity spectrum is needed and currently lacking. Objective To design a simple disease severity staging system that captures the broad clinicoradiological NOTCH3-SVD severity spectrum. Design, Setting, and Participants A cohort study was performed in which the NOTCH3-SVD severity staging system was developed using a discovery cohort (2019-2020) and validated in independent international CADASIL cohorts (1999-2023) and the UK Biobank. Clinical and imaging data were collected from participants originating from 23 international CADASIL cohorts and from the UK Biobank. Eligibility criteria were presence of a NOTCH3cys variant, availability of brain magnetic resonance imaging, and modified Rankin Scale score. The discovery cohort consisted of 195 NOTCH3cys-positive cases from families with CADASIL; the validation set included 1713 NOTCH3cys-positive cases from 15 countries. The UK Biobank cohort consisted of 101 NOTCH3cys-positive individuals. Data from 2-year (2019-2023) and 18-year (1999-2017) follow-up studies were also analyzed. Data analysis was performed from July 2023 to August 2024. Main Outcomes and Measures Percentage of cases following the sequence of events of the NOTCH3-SVD stages, and the association between the stages and ischemic stroke, intracerebral hemorrhage, global cognition, processing speed, brain volume, brain microstructural damage, and serum neurofilament light chain (NfL) level. Results The NOTCH3-SVD staging system encompasses 9 disease stages or substages, ranging from stage 0 (premanifest stage) to stage 4B (end stage). Of all 1908 cases, which included 195 in the discovery cohort (mean [SD] age, 52.4 [12.2] years) and 1713 in the validation cohorts (mean [SD] age, 53.1 [13.0] years), 1789 (94%) followed the sequence of events defined by the NOTCH3-SVD staging system. The NOTCH3-SVD stages were associated with neuroimaging outcomes in the NOTCH3cys-positive cases in the CADASIL cohorts and in the UK Biobank and with cognitive outcomes and serum NfL level in cases from the CADASIL cohorts. The NOTCH3-SVD staging system captured disease progression and was associated with 18-year survival. Conclusions and Relevance The NOTCH3-SVD staging system captures the full disease spectrum, from asymptomatic individuals with a NOTCH3cys variant to patients with end-stage disease. The NOTCH3-SVD staging system is a simple but effective tool for uniform disease staging in the clinic and in research.
Collapse
Affiliation(s)
- Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Minne N Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Remco J Hack
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Amy A Jolly
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Stéphanie Guey
- Centre NeuroVasculaire Translationnel and Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Lariboisière Hospital and Université Paris-Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unit 1141 NeuroDiderot, Paris, France
| | - Shao-Lun Hsu
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jae-Young Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sam J Neilson
- Centre for Stroke & Brain Imaging, University of Glasgow, Glasgow, United Kingdom
| | - Anna Poggesi
- Stroke Unit, Careggi University Hospital, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | | | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ana Domínguez Mayoral
- Unidad de Enfermedades Neurovasculares Infrecuentes, Hospital Virgen Macarena, Sevilla, Spain
| | - Renata Nogueira
- Department of Neurology, Hospital SARAH Kubitschek, Rio de Janeiro, Brazil
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Pia Andersen
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Gustavo Santo
- Department of Neurology, University Hospital of Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Nontapat Sukhonpanich
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Francesco Mele
- Neurology and Stroke Unit, Luigi Sacco University Hospital, Milan, Italy
| | - Ashley Park
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Jung Seok Lee
- College of Medicine, Jeju National University, Jeju, South Korea
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Amy Brodtmann
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Anne Börjesson-Hanson
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ana Rita Silva
- Center for Research in Neuropsychology and Cognitive Behavioral Interventions, University of Coimbra, Coimbra, Portugal
| | | | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | | | - Keith W Muir
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Pescini
- Stroke Unit, Careggi University Hospital, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Marco Duering
- Institute for Stroke and Dementia Research, University Hospital of Ludwig-Maximilians-University Munich, Munich, Germany
- Medical Image Analysis Center and Translational Imaging in Neurology, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jay Chol Choi
- College of Medicine, Jeju National University, Jeju, South Korea
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Hugues Chabriat
- Centre NeuroVasculaire Translationnel and Centre de Référence des Maladies Vasculaires Rares du Cerveau et de L'Oeil, Lariboisière Hospital and Université Paris-Cité, Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unit 1141 NeuroDiderot, Paris, France
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Brain Research Center, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | |
Collapse
|
9
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024; 66:223-235. [PMID: 38176524 PMCID: PMC11674792 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Saito S, Hosoki S, Yamaguchi E, Ishiyama H, Abe S, Yoshimoto T, Tanaka T, Hattori Y, Liao YC, Lee YC, Mizuta I, Mizuno T, Ihara M. Blended Phenotype of NOTCH3 and RNF213 Variants With Accelerated Large and Small Artery Crosstalk: A Case Report and Literature Review. Neurol Genet 2024; 10:e200176. [PMID: 39257469 PMCID: PMC11384340 DOI: 10.1212/nxg.0000000000200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 09/12/2024]
Abstract
Objectives Recent advancements in genome research have revealed not only the importance of variants associated with cerebrovascular diseases but also a notably high frequency of carriers harboring multiple variants, presenting with an elusive blended phenotype. In this study, we report the case of a 66-year-old man who experienced 3 stroke episodes over a 4-year period, starting at the age of 62 years. The patient presented with isolated infarcts in the left temporal pole with progressive stenosis in the ipsilateral middle cerebral artery based on large and small artery crosstalk. Methods Exons 2-24 of the NOTCH3 gene were analyzed by direct genomic DNA sequencing. The presence of the p.Arg4810Lys variant of the ring finger protein 213 (RNF213) gene was evaluated using real-time PCR. Results Diagnoses of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and RNF213-related vasculopathy were made based on the early-onset recurrent stroke episode, progressive intracranial artery stenosis, and presence of the heterozygous NOTCH3 p.Cys1250Arg and RNF213 p.Arg4810Lys variants. Discussion Temporal pole infarcts could represent a blended phenotype of both variants. This case highlights the importance of large and small artery crosstalk and the pivotal role of genetic analysis in determining the pathogenesis of stroke and dementia.
Collapse
Affiliation(s)
- Satoshi Saito
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Hosoki
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eriko Yamaguchi
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Ishiyama
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichiro Abe
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yoshimoto
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomotaka Tanaka
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yorito Hattori
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yi Chu Liao
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yi-Chung Lee
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- From the Department of Neurology (S.S., S.H., E.Y., H.I., S.A., T.Y., T.T., Y.H., M.I.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Neurology (Y.C.L., Y.-C.L.), Taipei Veterans General Hospital, Taipei, Taiwan; and Department of Neurology (I.M., T.M.), Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
12
|
Rodriguez-Flores JL, Khalid S, Parikshak N, Rasheed A, Ye B, Kapoor M, Backman J, Sepehrband F, Gioia SAD, Gelfman S, De T, Banerjee N, Sharma D, Martinez H, Castaneda S, D'Ambrosio D, Zhang XA, Xun P, Tsai E, Tsai IC, Khan MZ, Jahanzaib M, Mian MR, Liaqat MB, Mahmood K, Salam TU, Hussain M, Iqbal J, Aslam F, Cantor MN, Tzoneva G, Overton J, Marchini J, Reid JG, Baras A, Verweij N, Lotta LA, Coppola G, Karalis K, Economides A, Fazio S, Liedtke W, Danesh J, Kamal A, Frossard P, Coleman T, Shuldiner AR, Saleheen D. NOTCH3 p.Arg1231Cys is markedly enriched in South Asians and associated with stroke. Nat Commun 2024; 15:8029. [PMID: 39271666 PMCID: PMC11399414 DOI: 10.1038/s41467-024-51819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10-9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10-10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10-6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations.
Collapse
Affiliation(s)
| | - Shareef Khalid
- Columbia University, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Bin Ye
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Tanima De
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | - Ellen Tsai
- University of California at Los Angeles, Los Angeles, CA, USA
| | - I-Chun Tsai
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | | | | | | | | | - Khalid Mahmood
- Dow University of Health Sciences and Civil Hospital, Karachi, Pakistan
| | | | | | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Faizan Aslam
- Department of Neurology, Aziz Fatima Hospital, Faisalabad, Pakistan
| | | | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | - Sergio Fazio
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | | | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ayeesha Kamal
- Section of Neurology, Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Danish Saleheen
- Columbia University, New York, NY, USA.
- Center for Non-Communicable Diseases, Karachi, Pakistan.
| |
Collapse
|
13
|
Zedde M, Romani I, Scaravilli A, Cocozza S, Trojano L, Ragno M, Rifino N, Bersano A, Gerevini S, Pantoni L, Valzania F, Pascarella R. Expanding the Neurological Phenotype of Anderson-Fabry Disease: Proof of Concept for an Extrapyramidal Neurodegenerative Pattern and Comparison with Monogenic Vascular Parkinsonism. Cells 2024; 13:1131. [PMID: 38994983 PMCID: PMC11240674 DOI: 10.3390/cells13131131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic sphingolipidosis involving virtually the entire body. Among its manifestation, the involvement of the central and peripheral nervous system is frequent. In recent decades, it has become evident that, besides cerebrovascular damage, a pure neuronal phenotype of AFD exists in the central nervous system, which is supported by clinical, pathological, and neuroimaging data. This neurodegenerative phenotype is often clinically characterized by an extrapyramidal component similar to the one seen in prodromal Parkinson's disease (PD). We analyzed the biological, clinical pathological, and neuroimaging data supporting this phenotype recently proposed in the literature. Moreover, we compared the neurodegenerative PD phenotype of AFD with a classical monogenic vascular disease responsible for vascular parkinsonism and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). A substantial difference in the clinical and neuroimaging features of neurodegenerative and vascular parkinsonism phenotypes emerged, with AFD being potentially responsible for both forms of the extrapyramidal involvement, and CADASIL mainly associated with the vascular subtype. The available studies share some limitations regarding both patients' information and neurological and genetic investigations. Further studies are needed to clarify the potential association between AFD and extrapyramidal manifestations.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Ilaria Romani
- Department of Neurosciences, Psychology, Pharmacology and Child Health, University of Florence, 50139 Firenze, Italy;
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80133 Napoli, Italy; (A.S.); (S.C.)
| | - Luigi Trojano
- Dipartimento di Psicologia, Università della Campania ‘Luigi Vanvitelli’, viale Ellittico 31, 81100 Caserta, Italy;
| | - Michele Ragno
- Centro Medico Salute 23, Via O. Licini 5, 63066 Grottammare (AP), Italy;
| | - Nicola Rifino
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; (N.R.); (A.B.)
| | - Simonetta Gerevini
- Head Diagnostic Dept and Neuroradiology Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy;
| | - Leonardo Pantoni
- Neuroscience Research Center, Department of Biomedical and Clinical Science, University of Milan, 20122 Milano, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
14
|
Boston G, Jobson D, Mizuno T, Ihara M, Kalaria RN. Most common NOTCH3 mutations causing CADASIL or CADASIL-like cerebral small vessel disease: A systematic review. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100227. [PMID: 38966425 PMCID: PMC11223087 DOI: 10.1016/j.cccb.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a monogenic disorder caused by mutations in the NOTCH3 gene. The main aim of our survey was to determine if there is an association between phenotypes and genotypes across the most common NOTCH3 mutations found in CADASIL patients. We systematically searched clinical studies and genomic databases from 1996 to 2023 to first identify the most common mutations responsible for CADASIL. We found the six most common NOTCH3 missense mutations globally were the p.R75P, p.R133C, p.R141C, p.R169C, p.R182C, and p.R544C, of which p.R133C was described to occur most often. Focusing on studies with comprehensive clinical records, our analysis further suggested that the p.R75P, p.R141C, p.R182C and p.R544C genotypes were highly congruent with the presence of white matter hyperintensities on magnetic resonance imaging (MRI), which was the most common phenotypic characteristic across all four mutations. We found the p.R141C mutation was associated with increased severity of disease. We also found the average age of onset in p.R544C carriers was more than a decade later compared to the p.R141C carriers. However, statistical analysis showed there were no overall differences between the phenotypic characteristics of the two common mutations, p.R141C and p.R544C. Geographically, China and Japan were the only two countries to report all the four common mutations vis a vis p.R75P, p.R141C, p.R182C and p.R544C. There is a possibility that this is due to a combination of a founder effect, but there also could be sampling biases.
Collapse
Affiliation(s)
- Georgina Boston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dan Jobson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Ishiyama H, Kim H, Saito S, Takeda S, Takegami M, Yamamoto Y, Abe S, Nakazawa S, Tanaka T, Washida K, Morita Y, Oh ST, Jung HJ, Choi JC, Nakaoku Y, Nakahara J, Koga M, Toyoda K, Amemiya K, Ikeda Y, Hatakeyama K, Mizuta I, Mizuno T, Kim KK, Ihara M. Pro-Hemorrhagic Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Associated with NOTCH3 p.R75P Mutation with Low Vascular NOTCH3 Aggregation Property. Ann Neurol 2024; 95:1040-1054. [PMID: 38520151 DOI: 10.1002/ana.26916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) and cerebral microbleeds (CMB) in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy are more common in East Asian populations than in people of white European ancestry. We hypothesized that the ethnic difference is explained by the East Asian-specific NOTCH3 p.R75P mutation. METHODS This retrospective observational study included 118 patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in Japanese and Korean cohorts. We investigated whether the p.R75P mutation is associated with symptomatic ICH and multiple CMB (>5) using quasi-Poisson regression models. We predicted the NOTCH3 extracellular domain protein structures in silico and graded NOTCH3 extracellular domain immunostaining in skin vessels of some patients, with subsequent comparisons between p.R75P and other conventional mutations. RESULTS Among 63 Japanese patients (median age 55 years; 56% men), 15 had a p.R75P mutation, significantly associated with symptomatic ICH (adjusted relative risk 9.56, 95% CI 2.45-37.31), multiple CMB (3.00, 1.34-6.71), and absence of temporopolar lesions (4.91, 2.29-10.52) after adjustment for age, sex, hypertension, and antithrombotics. In the Korean cohort (n = 55; median age 55 years; 51% men), the p.R75P mutation (n = 13) was also associated with symptomatic ICH (8.11, 1.83-35.89), multiple CMB (1.90, 1.01-3.56), and absence of temporopolar lesions (2.32, 1.08-4.97). Structural analysis revealed solvent-exposed free cysteine thiols in conventional mutations, directly causing aggregation, whereas a stereochemically incompatible proline residue structure in p.R75P lowers correct disulfide bond formation probability, indirectly causing aggregation. Pathologically, the p.R75P mutation resulted in less vascular NOTCH3 extracellular domain accumulation than the other conventional mutations. INTERPRETATION NOTCH3 p.R75P mutation is associated with hemorrhagic presentations, milder temporopolar lesions, and distinct mutant protein structure properties. ANN NEUROL 2024;95:1040-1054.
Collapse
Affiliation(s)
- Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichi Takeda
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichiro Abe
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shinsaku Nakazawa
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Seung-Taek Oh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jay Chol Choi
- Department of Neurology, School of Medicine, Jeju National University, Jeju City, South Korea
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kisaki Amemiya
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
16
|
Cerfontaine MN, Hack RJ, Gesierich B, Duering M, Witjes-Ané MNW, Rodríguez-Girondo M, Gravesteijn G, Rutten J, Lesnik Oberstein SAJ. Association of NOTCH3 Variant Risk Category With 2-Year Clinical and Radiologic Small Vessel Disease Progression in Patients With CADASIL. Neurology 2024; 102:e209310. [PMID: 38713890 PMCID: PMC11177591 DOI: 10.1212/wnl.0000000000209310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/01/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Pathogenic variants in NOTCH3 are the main cause of hereditary cerebral small vessel disease (SVD). SVD-associated NOTCH3 variants have recently been categorized into high risk (HR), moderate risk (MR), or low risk (LR) for developing early-onset severe SVD. The most severe NOTCH3-associated SVD phenotype is also known as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We aimed to investigate whether NOTCH3 variant risk category is associated with 2-year progression rate of SVD clinical and neuroimaging outcomes in CADASIL. METHODS A single-center prospective 2-year follow-up study was performed of patients with CADASIL. Clinical outcomes were incident stroke, disability (modified Rankin Scale), and executive function (Trail Making Test B given A t-scores). Neuroimaging outcomes were mean skeletonized mean diffusivity (MSMD), normalized white matter hyperintensity volume (nWMHv), normalized lacune volume (nLV), and brain parenchymal fraction (BPF). Cox regression and mixed-effect models, adjusted for age, sex, and cardiovascular risk factors, were used to study 2-year changes in outcomes and differences in disease progression between patients with HR-NOTCH3 and MR-NOTCH3 variants. RESULTS One hundred sixty-two patients with HR (n = 90), MR (n = 67), and LR (n = 5) NOTCH3 variants were included. For the entire cohort, there was 2-year mean progression for MSMD (β = 0.20, 95% CI 0.17-0.23, p = 7.0 × 10-24), nLV (β = 0.13, 95% CI 0.080-0.19, p = 2.1 × 10-6), nWMHv (β = 0.092, 95% CI 0.075-0.11, p = 8.8 × 10-20), and BPF (β = -0.22, 95% CI -0.26 to -0.19, p = 3.2 × 10-22), as well as an increase in disability (p = 0.002) and decline of executive function (β = -0.15, 95% CI -0.30 to -3.4 × 10-5, p = 0.05). The HR-NOTCH3 group had a higher probability of 2-year incident stroke (hazard ratio 4.3, 95% CI 1.4-13.5, p = 0.011), and a higher increase in MSMD (β = 0.074, 95% CI 0.013-0.14, p = 0.017) and nLV (β = 0.14, 95% CI 0.034-0.24, p = 0.0089) than the MR-NOTCH3 group. Subgroup analyses showed significant 2-year progression of MSMD in young (n = 17, β = 0.014, 95% CI 0.0093-0.019, p = 1.4 × 10-5) and premanifest (n = 24, β = 0.012, 95% CI 0.0082-0.016, p = 1.1 × 10-6) individuals. DISCUSSION In a trial-sensitive time span of 2 years, we found that patients with HR-NOTCH3 variants have a significantly faster progression of major clinical and neuroimaging outcomes, compared with patients with MR-NOTCH3 variants. This has important implications for clinical trial design and disease prediction and monitoring in the clinic. Moreover, we show that MSMD is a promising outcome measure for trials enrolling premanifest individuals.
Collapse
Affiliation(s)
- Minne N Cerfontaine
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Remco J Hack
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Benno Gesierich
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Marco Duering
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Marie-Noëlle W Witjes-Ané
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Mar Rodríguez-Girondo
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Gido Gravesteijn
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Julie Rutten
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| | - Saskia A J Lesnik Oberstein
- From the Departments of Clinical Genetics (M.N.C., R.J.H., G.G., J.R., S.A.J.L.O.), Geriatrics and Psychiatrics (M.-N.W.W.-A.), and Medical Statistics (M.R.-G.), Leiden University Medical Center, the Netherlands; and Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering (B.G., M.D.), University of Basel, Switzerland
| |
Collapse
|
17
|
Menéndez-Valladares P, Acevedo Aguilera R, Núñez-Jurado D, López Azcárate C, Domínguez Mayoral AM, Fernández-Vega A, Pérez-Sánchez S, Lamana Vallverdú M, García-Sánchez MI, Morales Bravo M, Busquier T, Montaner J. A Search for New Biological Pathways in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy by Proteomic Research. J Clin Med 2024; 13:3138. [PMID: 38892848 PMCID: PMC11172732 DOI: 10.3390/jcm13113138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a hereditary small vessel disease leading to significant morbidity and mortality. Despite advances in genetic diagnosis, the underlying pathophysiology remains incompletely understood. Proteomic studies offer insights into disease mechanisms by identifying altered protein expression patterns. Here, we conducted a proteomic analysis to elucidate molecular pathways associated with CADASIL. Methods: We enrolled genetically diagnosed CADASIL patients and healthy, genetically related controls. Plasma samples were subjected to proteomic analysis using the Olink platform, measuring 552 proteins across six panels. The data were analyzed from several approaches by using three different statistical methods: Exploratory Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA), differential expression with moderated t-test, and gene set enrichment analysis (GSEA). In addition, bioinformatics analysis, including volcano plot, heatmap, and Variable Importance on Projection (VIP) scores from the PLS-DA model were drawn. Results: Significant differences in protein expression were observed between CADASIL patients and controls. RSPO1 and FGF-19 exhibited elevated levels (p < 0.05), while PPY showed downregulation (p < 0.05) in CADASIL patients, suggesting their involvement in disease pathogenesis. Furthermore, MIC-A/B expression varied significantly between patients with mutations in exon 4 versus exon 11 of the NOTCH3 gene (p < 0.05), highlighting potential immunological mechanisms underlying CADASIL. We identified altered pathways using GSEA, applied after ranking the study data. Conclusions: Our study provides novel insights into the proteomic profile of CADASIL, identifying dysregulated proteins associated with vascular pathology, metabolic dysregulation, and immune activation. These findings contribute to a deeper understanding of CADASIL pathophysiology and may inform the development of targeted therapeutic strategies. Further research is warranted to validate these biomarkers and elucidate their functional roles in disease progression.
Collapse
Affiliation(s)
- Paloma Menéndez-Valladares
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
- Commission of Neurochemistry and Neurological Diseases, Spanish Society of Laboratory Medicine, 08025 Barcelona, Spain
| | - Rosa Acevedo Aguilera
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - David Núñez-Jurado
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Cristina López Azcárate
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Ana María Domínguez Mayoral
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Alejandro Fernández-Vega
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Soledad Pérez-Sánchez
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Marcel Lamana Vallverdú
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | | | - María Morales Bravo
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| | - Teresa Busquier
- Department of Radiology, Virgen Macarena University Hospital, 41009 Seville, Spain;
| | - Joan Montaner
- Department of Neurology, Virgen Macarena University Hospital, 41009 Seville, Spain; (P.M.-V.); (R.A.A.); (D.N.-J.); (C.L.A.); (S.P.-S.); (M.L.V.); (M.M.B.); (J.M.)
- Department of Neurology, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain
| |
Collapse
|
18
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
19
|
Dupré N, Gueniot F, Domenga-Denier V, Dubosclard V, Nilles C, Hill-Eubanks D, Morgenthaler-Roth C, Nelson MT, Keime C, Danglot L, Joutel A. Protein aggregates containing wild-type and mutant NOTCH3 are major drivers of arterial pathology in CADASIL. J Clin Invest 2024; 134:e175789. [PMID: 38386425 PMCID: PMC11014667 DOI: 10.1172/jci175789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Loss of arterial smooth muscle cells (SMCs) and abnormal accumulation of the extracellular domain of the NOTCH3 receptor (Notch3ECD) are the 2 core features of CADASIL, a common cerebral small vessel disease caused by highly stereotyped dominant mutations in NOTCH3. Yet the relationship between NOTCH3 receptor activity, Notch3ECD accumulation, and arterial SMC loss has remained elusive, hampering the development of disease-modifying therapies. Using dedicated histopathological and multiscale imaging modalities, we could detect and quantify previously undetectable CADASIL-driven arterial SMC loss in the CNS of mice expressing the archetypal Arg169Cys mutation. We found that arterial pathology was more severe and Notch3ECD accumulation greater in transgenic mice overexpressing the mutation on a wild-type Notch3 background (TgNotch3R169C) than in knockin Notch3R170C/R170C mice expressing this mutation without a wild-type Notch3 copy. Notably, expression of Notch3-regulated genes was essentially unchanged in TgNotch3R169C arteries. We further showed that wild-type Notch3ECD coaggregated with mutant Notch3ECD and that elimination of 1 copy of wild-type Notch3 in TgNotch3R169C was sufficient to attenuate Notch3ECD accumulation and arterial pathology. These findings suggest that Notch3ECD accumulation, involving mutant and wild-type NOTCH3, is a major driver of arterial SMC loss in CADASIL, paving the way for NOTCH3-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Florian Gueniot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Valérie Domenga-Denier
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Virginie Dubosclard
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Christelle Nilles
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - David Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Christelle Morgenthaler-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Mark T. Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Illkirch, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont, USA
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
20
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
21
|
Zhang R, Chen CH, Tezenas Du Montcel S, Lebenberg J, Cheng YW, Dichgans M, Tang SC, Chabriat H. The CADA-MRIT: An MRI Inventory Tool for Evaluating Cerebral Lesions in CADASIL Across Cohorts. Neurology 2023; 101:e1665-e1677. [PMID: 37652700 PMCID: PMC10624497 DOI: 10.1212/wnl.0000000000207713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/12/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent genetic cerebrovascular disease. The clinical aspects of the disease in relation to the various types of lesions on MRI vary widely not only within families but also between different cohorts reported worldwide. Many limitations prevent comparison of imaging data obtained with different scanners and sequences in different patient cohorts. We aimed to develop and validate a simple tool to inventory quickly the key MRI features in CADASIL to compare imaging data across different populations. METHODS The Inventory Tool (CADA-MRIT) was designed by consensus after repeated expert meetings. It consists of 11 imaging items to assess periventricular, deep, and superficial white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMB), centrum semiovale and basal ganglia dilated perivascular spaces (dPVS), superficial and deep atrophy, large infarcts, and macrobleeds. The reliability, clinical relevance, and time-effectiveness of CADA-MRIT were assessed using data from 3 independent patient cohorts. RESULTS Imaging data from 671 patients with CADASIL (440 from France, 119 from Germany, and 112 from Taiwan) were analyzed. Their mean age was 53.4 ± 12.2 years, 54.5% were women, 56.2% had stroke, and 31.1% had migraine with aura. Any lacune was present in at least 70% of individuals, whereas CMB occurred in 83% of patients from the Asian cohort and in only 35% of European patients. CADA-MRIT scores obtained for WMH, CMB, and dPVS were comparable regardless of the scanner or sequence used (weighted κ > 0.60). Intrarater and interrater agreements were from good to very good (weighted κ > 0.60). Global WMH and atrophy scores correlated strongly with accurate volumetric quantification of WMH or brain parenchymal fraction (Pearson r > 0.60). Different imaging scores were significantly associated with the main clinical manifestations of the disease. The time for evaluating 1 patient was approximately 2-3 minutes. DISCUSSION The CADA-MRIT is an easy-to-use tool for analyzing and comparing the most frequent MRI lesions of CADASIL across different populations. This instrument is reliable. It can be used with different imaging sequences or scanners. It also provides clinically relevant scores in a very short time for completion.
Collapse
Affiliation(s)
- Ruiting Zhang
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Chih-Hao Chen
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Sophie Tezenas Du Montcel
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Jessica Lebenberg
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Yu-Wen Cheng
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Martin Dichgans
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Sung-Chun Tang
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany
| | - Hugues Chabriat
- From the Paris-Cité University (R.Z., J.L., H.C.), Inserm U1141 NeuroDiderot, France; Department of Radiology (R.Z.), the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China; Department of Neurology (C.-H.C., Y.-W.C., S.-C.T.), National Taiwan University Hospital, Taipei; Department of Clinical Neurosciences (C.-H.C.), University of Calgary, Alberta, Canada; Sorbonne Université (S.T.D.M.), Paris Brain Institute, INSERM, INRIA, CNRS, APHP; Lariboisière University Hospital (J.L., H.C.), APHP, Translational Neurovascular Centre and Department of Neurology, Reference Center for Rare Vascular Diseases of the Central Nervous System and the Retina (CERVCO), FHU NeuroVasc, Paris, France; Department of Neurology (Y.-W.C.), National Taiwan University Hospital Hsinchu Branch; Institute for Stroke and Dementia Research (M.D.), University Hospital, Ludwig Maximilian University, Munich; German Center for Neurodegenerative Diseases (DZNE) (M.D.), Munich; and Munich Cluster for Systems Neurology (SyNergy) (M.D.), Germany.
| |
Collapse
|
22
|
Chhoa H, Chabriat H, Anato AJ, Bamba M, Zittoun F, Chevret S, Biard L. Improvement of an External Predictive Model Based on New Information Using a Synthetic Data Approach: Application to CADASIL. Neurol Genet 2023; 9:e200091. [PMID: 38235365 PMCID: PMC10691224 DOI: 10.1212/nxg.0000000000200091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 01/19/2024]
Abstract
Background and Objectives Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent hereditary cerebral small vessel disease. It is caused by mutations of the NOTCH3 gene. The disease evolves progressively over decades leading to stroke, disability, cognitive decline, and functional dependency. The course and clinical severity of CADASIL seem heterogeneous. Predictive models are thus needed to improve prognostic evaluation and inform future clinical trials. A predictive model of the 3-year variation in the Mattis Dementia Rating Scale (MDRS), which reflects the global cognitive performance of patients with CADASIL, was previously proposed. This model made predictions based on demographic, clinical, and MRI data. We aimed to improve this existing predictive model by integrating a new potential factor, the location of the genetic mutation in the different epidermal growth factor (EGFr) domains of the NOTCH3 gene, dichotomized into EGFr domains 1 to 6 or 7 to 34. Methods We used a new synthetic data approach to improve the initial predictive model by incorporating additional genetic information. This method combined the predicted outcomes from the previous model and 5 "synthetic" data sets with the observed outcome in a new data set. We then applied a multiple imputation method for missing data on the mutation location. Results The new data set included 367 patients who were followed up for 30 to 42 months. In the multivariable model with synthetic data, patients with NOTCH3 mutations in EGFr domains 7 to 34 had an additional average decrease of -1.4 points (standard error 0.67, p = 0.035) in their MDRS score variation over 3 years compared with patients with mutations located in EGFr domains 1 to 6. Cross-validation results highlighted the improved predictive performance of the enhanced model. Moreover, the model estimation was found to be more robust than fitting a model without synthetic data. Discussion The use of synthetic data improved the predictive model of MDRS change over 3 years in CADASIL. The predictive performance and estimation robustness of the predictive model were enhanced using this approach, whether genetic information was used. A statistically significant association between the location of the mutation in the NOTCH3 gene and the 3-year MDRS score variation was detected.
Collapse
Affiliation(s)
- Henri Chhoa
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Hugues Chabriat
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Adelina Joanita Anato
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Mamadou Bamba
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Florent Zittoun
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Sylvie Chevret
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| | - Lucie Biard
- From the ECSTRRA Team (H. Chhoa, S.C., L.B.), Université Paris-Cité, UMR1153, INSERM; Translational Neurovascular Centre (H. Chabriat), GH Saint-Louis-Lariboisière, Assistance Publique des Hôpitaux de Paris APHP, Université Paris-Cité and DHU NeuroVasc Sorbonne Paris-Cité; UMR 1161 (H. Chabriat), INSERM; and ENSAI (A.J.A., M.B., F.Z.), Ecole d'ingénieur statistique, data science et big data, Bruz, France
| |
Collapse
|
23
|
Krivosic V, Paques M, Hervé D, Duliére C, Taleb A, Gastellier N, Jouvent E, Lebenberg J, Tadayoni R, Chabriat H. Retinal vascular density in CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy). BMJ Neurol Open 2023; 5:e000417. [PMID: 37181492 PMCID: PMC10173959 DOI: 10.1136/bmjno-2023-000417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background and objective Retinal vascular density (VD) measured using optical coherence tomography with angiography (OCTA) has been suggested as a potential marker of intracerebral vascular changes in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). We aimed to determine whether VD is related to the clinical and imaging manifestations of the disease. Methods OCTA was performed in 104 CADASIL patients (parallel to their clinical and imaging assessment) and in 83 healthy individuals. Results A significant reduction of VD related to age was detected in patients and controls in the superficial and deep vascular plexus of the whole foveal or parafoveal retinal area (p<0.0001). After adjustment for age, these parameters were found significantly lower in patients than in controls (p<0.03). Multivariable analysis did not show any association between retinal VD and history of stroke, modified Rankin Scale or Mini-Mental Status Examination scores. No significant association was found with MRI lesions either. Conclusion In CADASIL, retinal VD is decreased early and progresses with ageing but does not appear related to the severity of clinical or imaging manifestations.
Collapse
Affiliation(s)
| | - Michel Paques
- CIC Ophtalmology - 15-20 Hospital, INSERM, Paris, France
| | - Dominique Hervé
- CNVT - CERVCO and Neurology, Hopital Lariboisiere, APHP, Paris, France
| | | | - Abbas Taleb
- CNVT - CERVCO and Neurology, Hopital Lariboisiere, APHP, Paris, France
| | | | - Eric Jouvent
- U1141, INSERM and Université Paris-Cité, Paris, France
| | - Jessica Lebenberg
- CNVT - CERVCO and Neurology, Hopital Lariboisiere, APHP, Paris, France
| | | | - Hugues Chabriat
- CNVT - CERVCO and Neurology, Hopital Lariboisiere, APHP, Paris, France
- U1141, INSERM and Université Paris-Cité, Paris, France
| |
Collapse
|