1
|
Karsan N, Marzoughi S, Goadsby PJ. Advances in understanding migraine for the development of novel pharmacotherapies: the use of human provocation migraine models. Expert Opin Pharmacother 2025. [PMID: 40353527 DOI: 10.1080/14656566.2025.2505231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Whilst migraine treatment has advanced significantly over recent times, the mechanisms of attack genesis and heterogeneity in treatment response are two amidst several areas that remain poorly understood and require further development. Experimental migraine provocation is an area that holds promise in advancing this understanding. AREAS COVERED We conducted a literature search using PubMed, of 'human migraine triggering' and 'human migraine provocation' to identify articles of interest. We discuss therapeutic targets that have emerged from such work, including calcitonin family peptides (amylin (AMY) and adrenomedullin (ADM)), pituitary adenylate cyclase-activating peptide (PACAP) and potassium channels. We discuss our views on the clinical translation of the outcomes of such studies, and their previous and potential future impact on migraine therapeutics. EXPERT OPINION Migraine provocation models provide a valuable means to study human migraine phenotypically and biologically, as well as to assess treatment response. Downstream intracellular mechanisms of provocation agents can be targeted during cellular processing to alter cell function and influence migraine mechanisms. It is important to caveat the clinical translation of provocation studies, given that just because a substance triggers migraine experimentally, does not necessarily mean that the substance is involved in the spontaneous human condition.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
| | - Sina Marzoughi
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
- NIHR King's Clinical Research Facility, NIHR Maudsley Biochemical Research Centre, King's College Hospital, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
2
|
Hansen NS, Korsbaek JJ, Bak LK, Jørgensen NR, Beier D, Jensen RH. Calcitonin gene-related peptide in newly diagnosed idiopathic intracranial hypertension: a prospective, cross-sectional, case-control study of cerebrospinal fluid and plasma. J Headache Pain 2025; 26:95. [PMID: 40301724 PMCID: PMC12039064 DOI: 10.1186/s10194-025-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Calcitonin Gene-Related Peptide (CGRP) is involved in migraine pain signaling, and blockage hereof is effective in migraine treatment. Headache in idiopathic intracranial hypertension (IIH) is often migraine-like but the underlying mechanisms are not understood. We report levels of CGRP in plasma and cerebrospinal fluid (CSF) of patients with newly diagnosed IIH to elucidate CGRP involvement in the pathogenesis of headache in IIH. METHOD We consecutively enrolled patients suspected of having IIH in a prospective cohort at two Danish tertiary headache centers. Patients are confirmed to have IIH or disproven of it (non-IIH). We included non-IIH with primary headache disorders as headache controls to IIH cases. We also recruited sex-, age- and BMI-matched healthy controls (HC). All participants had CSF and blood drawn and CGRP was analyzed using a validated radioimmunoassay. CSF plasma-ratios were calculated. Between-group levels were compared with ANOVA or Kruskal-Walli's test. In sub-analyses we restricted comparison of HC to non-IIH/IIH with chronic migraine; we also compared IIH with versus without headache. We correlated CGRP to lumbar opening pressure (OP), and BMI, and assessed the correlation between CGRP in plasma and CSF. Generalized or linear regression was applied to adjust for confounding by BMI, age, and active smoking. RESULTS Comparing 97 patients with IIH, 52 non-IIH, and 37 HC, we found no between-group differences in CGRP levels in plasma (p = 0.78), CSF (p = 0.79), or in CSF:plasma-ratio (p = 0.13). Adjusting for BMI, age, and smoking yielded similar results. CGRP levels were neither associated with having a migraine phenotype or chronic headache, nor with having any headache versus no headache in IIH. CGRP in plasma correlated with CGRP in CSF (p < 0.0001). CGRP did not correlate with OP or BMI. CONCLUSION CGRP levels in plasma and CSF and their ratios were comparable in IIH, non-IIH patients with headache, and sex-, age-, and BMI-matched HC. CGRP in plasma correlated with CGRP in CSF. Due to methodology, we probably measured basal resting CGRP. The role of CGRP in IIH-headache needs further clarification. A headache preventive effect in IIH of anti-CGRP targeted therapy remains a relevant unexplored area.
Collapse
Affiliation(s)
- Nadja Skadkær Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Juhl Korsbaek
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kristoffer Bak
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Translational Research Center (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Translational Research Center (TRACE), Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dagmar Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Patient Data Explorative Network, OPEN, Odense University Hospital, Odense, Denmark
| | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Al-Karagholi MAM, Zhuang ZA, Beich S, Ashina H, Ashina M. PACAP38-induced migraine attacks are independent of CGRP signaling: a randomized controlled trial. J Headache Pain 2025; 26:79. [PMID: 40229719 PMCID: PMC11998216 DOI: 10.1186/s10194-025-02022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) are key pathogenic drivers of migraine. While CGRP has become the target of several mechanism-based therapies, less is known about PACAP38 signaling in migraine pathogenesis. Previous studies suggest that PACAP38 can modulate CGRP release, but it might also induce migraine attacks via CGRP-independent mechanisms. Whether PACAP38 signaling is independent of and parallel to CGRP signaling has implications for future therapeutic strategies. Here, we aimed to ascertain whether PACAP-38 can mediate migraine attacks independently of CGRP signaling by assessing the ability of eptinezumab to prevent PACAP38-induced migraine attacks. METHODS In a double-blind, placebo-controlled, parallel-group study, we randomly allocated adults with migraine without aura to receive either an intravenous infusion of 300-mg eptinezumab or matching placebo (isotonic saline) over 30 min. Two hours post-infusion, all participants were administered PACAP38 intravenously at 10 pmol/kg/min for 20 min. The primary endpoint was the incidence of migraine attacks during the 24-hour observational period post-infusion of eptinezumab or placebo. Key secondary endpoints included between-group differences in incidence of headache, and area under the curve (AUC) for headache intensity scores, diameter of the superficial temporal artery (STA) and facial skin blood flow. RESULTS A total of 38 participants were enrolled and completed the study. No difference was observed in the incidence of PACAP38-induced migraine attacks between the eptinezumab (10 [53%] of 19) and placebo (12 [63%] of 19) groups (Fisher's exact test: P = 0.74). Headache of any intensity was reported by 15 (79%) participants in the eptinezumab group, compared with 16 (84%) participants in the placebo group (Fisher's exact test: P > 0.99). The AUC for headache intensity scores did not differ between the two groups during the first 12 h post-infusion of PACAP38 (Mann-Whitney U-test: P = 0.96). No differences were observed in AUC between the eptinezumab and placebo groups with respect to changes in STA diameter and facial skin blood flow (P > 0.05). No serious adverse events occurred. CONCLUSIONS Our results suggest that PACAP38 may mediate its signaling independently of CGRP in migraine pathogenesis. Therapies targeting PACAP signaling are thus a promising new avenue for treating migraine. TRIAL REGISTRATION ClinicalTrials.gov, NCT05635604. Registered on November 15 2022.
Collapse
Affiliation(s)
| | - Zixuan Alice Zhuang
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Beich
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Bree D, Zhao J, Stratton J, Levy D. Cortical astrocyte activation triggers meningeal nociception and migraine-like pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637109. [PMID: 39975142 PMCID: PMC11839082 DOI: 10.1101/2025.02.08.637109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Migraine attacks are believed to originate in the brain, but the exact mechanisms by which the brain generates peripheral nociceptive signals that drive migraine pain remain unclear. Sensory cortex hyperexcitability has been observed consistently across different migraine subtypes. Astrocytes detect aberrant increases in cortical activity via their Gq-coupled receptors and respond by releasing gliotransmitters and other factors with proinflammatory and nociceptive properties. In the present study, we used a rat model to investigate whether heightened cortical astrocyte Gq-coupled signaling is sufficient to drive peripheral trigeminal meningeal nociceptive responses linked to the generation of migraine headaches. We used an AAV-based chemogenetic approach that allows selective activation of cortical astrocyte Gq-GPCR signaling. We targeted astrocytes in the visual cortex as hyperexcitability in this region has been implicated in migraine. Furthermore, the meninges overlying the visual cortex are densely innervated by nociceptive fibers. We combined this chemogenetic approach with in vivo single-unit recording of meningeal nociceptors to assess changes in their ongoing activity and mechanosensitivity, along with testing of migraine-like behaviors. We further targeted calcitonin gene-related peptide (CGRP), using a monoclonal antibody (anti-CGRP mAb), to assess the relevance of cortical astrocyte activation to migraine. We discovered that heightened activation of Gq-coupled signaling in visual cortex astrocytes drives persistent discharge and increased mechanosensitivity of meningeal nociceptors. Cortical astrocytic activation also generated cephalic mechanical pain hypersensitivity, reduced exploratory behavior, and anxiety-like behaviors linked to migraine headaches. Blocking calcitonin gene-related peptide signaling suppressed astrocyte-mediated increases in meningeal nociceptor discharge and alleviated associated migraine-related behaviors. Our findings reveal a previously unappreciated role for augmented visual cortex astrocyte signaling as a triggering factor sufficient to generate meningeal nociception and migraine pain and greatly expand our understanding of migraine pathophysiology.
Collapse
Affiliation(s)
- Dara Bree
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | - Jun Zhao
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
| | | | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115
- Lead Contact
| |
Collapse
|
5
|
Fitzek MP, Boucherie DM, de Vries T, Handtmann C, Fathi H, Raffaelli B, MaassenVanDenBrink A. Migraine in men. J Headache Pain 2025; 26:3. [PMID: 39754046 PMCID: PMC11697684 DOI: 10.1186/s10194-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Migraine is a common primary headache disorder, less frequently affecting men than women, and often regarded as predominantly a "women's disease." Despite this, migraine in men presents with unique characteristics in terms of symptoms, treatment responses, comorbidities, and pain perception. Historically, research has focused more on migraine in women, overlooking critical male-specific aspects. RESULTS This review delves into the epidemiology, clinical presentation, and particular challenges of diagnosing and managing migraine in men. It addresses sex-specific triggers, hormonal influences, and comorbid conditions affecting migraine prevalence and severity in men. Additionally, the review evaluates current therapeutic strategies, underscoring the necessity for individualized approaches. Men with migraine often exhibit atypical symptoms compared to the ICHD-3 criteria and are less likely to report common associated symptoms. They also tend to have fewer psychological comorbidities, respond more favorably to pharmacological treatments, yet are less likely to seek medical support. The reasons for these sex disparities are complex, involving biological, psychosocial, and cultural factors, such as brain structural differences, differences in functional responses to painful stimuli, hormonal effects, and behavioral influences like adherence to masculine norms and stigma. CONCLUSION Men are underrepresented in clinical migraine research. In contrast, preclinical studies often focus solely in male animals as a result of various misconceptions. This disparity necessitates greater focus on sex-specific aspects of migraine to enhance diagnosis, treatment, and research. Addressing stigma, increasing healthcare access, and ensuring balanced sex and gender representation in future studies is crucial for a comprehensive understanding and effective management of migraine for all patients.
Collapse
Affiliation(s)
- Mira P Fitzek
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Junior Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Deirdre M Boucherie
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands
| | - Cleo Handtmann
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haniyeh Fathi
- Student Research Committee, Alborz University of Medical Science, Karaj, Iran
| | - Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA, 3000, The Netherlands.
| |
Collapse
|
6
|
Wang W, Zhu C, Martelletti P. Understanding Headaches Attributed to Cranial and/or Cervical Vascular Disorders: Insights and Challenges for Neurologists. Pain Ther 2024; 13:1429-1445. [PMID: 39397219 PMCID: PMC11543962 DOI: 10.1007/s40122-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
In recent decades, cranial and cervical vascular disorders have become major global health concerns, significantly impacting patients, families, and societies. Headache is a prevalent symptom of these vascular diseases and can often be the initial, primary, or sole manifestation. The intricate relationship between headaches and cranial/cervical vascular disorders poses a diagnostic and therapeutic challenge, with the underlying mechanisms remaining largely elusive. Understanding this association is crucial for the early diagnosis, prevention, and intervention of such conditions. This review aims to provide a comprehensive overview of the clinical features and potential pathogenesis of headaches attributed to cranial and cervical vascular disorders and provide a reference for disease management and a basis for potential pathological mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Headache Center, Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Chenlu Zhu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | | |
Collapse
|
7
|
Christensen SL, Levy D. Meningeal brain borders and migraine headache genesis. Trends Neurosci 2024; 47:918-932. [PMID: 39304416 PMCID: PMC11563857 DOI: 10.1016/j.tins.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.
Collapse
Affiliation(s)
- Sarah Louise Christensen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark; Translational Research Centre, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Dan Levy
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Guo S, Christensen SL, Al‐Karagholi MA, Olesen J. Molecular nociceptive mechanisms in migraine: The migraine cascade. Eur J Neurol 2024; 31:e16333. [PMID: 38894592 PMCID: PMC11235602 DOI: 10.1111/ene.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE This review will explore the categorization of migraine-provoking molecules, their cellular actions, site of action and potential drug targets based on the migraine cascade model. METHODS Personal experience and literature. RESULTS Migraine impacts over 1 billion people worldwide but is underfunded in research. Recent progress, particularly through the human and animal provocation model, has deepened our understanding of its mechanisms. This model have identified endogenous neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP) that induces controlled migraine-like attacks leading to significant discoveries of their role in migraine. This knowledge led to the development of CGRP-inhibiting drugs; a groundbreaking migraine treatment now accessible globally. Also a PACAP-inhibiting drug was effective in a recent phase II trial. Notably, rodent studies have shed light on pain pathways and the mechanisms of various migraine-inducing substances identifying novel drug targets. This is primarily done by using selective inhibitors that target specific signaling pathways of the known migraine triggers leading to the hypothesized cellular cascade model of migraine. CONCLUSION The model of migraine presents numerous opportunities for innovative drug development. The future of new migraine treatments is limited only by the investment from pharmaceutical companies.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
- Department of NeurologyZealand University HospitalRoskildeDenmark
| | - Sarah Louise Christensen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Translational Research Center, Rigshospitalet‐Glostrup, Faculty of Health and Medical SciencesUniversity of CopenhagenGlostrupDenmark
| |
Collapse
|
9
|
Li JH, Wan HX, Wu LH, Fang F, Wang JX, Dong H, Xu F. Calcitonin gene‑related peptide alleviates hyperoxia‑induced human alveolar cell injury via the CGRPR/TRPV1/Ca2 + axis. Mol Med Rep 2024; 30:110. [PMID: 38695251 PMCID: PMC11082723 DOI: 10.3892/mmr.2024.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Although exogenous calcitonin gene‑related peptide (CGRP) protects against hyperoxia‑induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia‑induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit‑8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl‑2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non‑selective currents through TRPV1 channels. The CGRP‑induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia‑induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.
Collapse
Affiliation(s)
- Jun-Hui Li
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
| | - Han-Xing Wan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
| | - Li-Hong Wu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
| | - Fang Fang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
| | - Jian-Xin Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong 266073, P.R. China
| | - Hui Dong
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, Shandong 266073, P.R. China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Raffaelli B, Do TP, Ashina H, Snellman J, Maio-Twofoot T, Ashina M. Induction of cGMP-mediated migraine attacks is independent of CGRP receptor activation. Cephalalgia 2024; 44:3331024241259489. [PMID: 38850034 DOI: 10.1177/03331024241259489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
BACKGROUND The cAMP and cGMP pathways are implicated in the initiation of migraine attacks, but their interactions remain unclear. Calcitonin gene-related peptide (CGRP) triggers migraine attacks via cAMP, whereas the phosphodiesterase-5 inhibitor sildenafil induces migraine attacks via cGMP. Our objective was to investigate whether sildenafil could induce migraine attacks in individuals with migraine pre-treated with the CGRP-receptor antibody erenumab. METHODS In this randomized, double-blind, placebo-controlled, cross-over study, adults with migraine without aura received a single subcutaneous injection of 140 mg erenumab on day 1. They were then randomized to receive sildenafil 100 mg or placebo on two experimental days, each separated by at least one week, between days 8 and 21. The primary endpoint was the difference in the incidence of migraine attacks between sildenafil and placebo during the 12-h observation period after administration. RESULTS In total, 16 participants completed the study. Ten participants (63%) experienced a migraine attack within 12 h after sildenafil administration compared to three (19%) after placebo (p = 0.016). The median headache intensity was higher after sildenafil than after placebo (area under the curve (AUC) for the 12-h observation period, p = 0.026). Furthermore, sildenafil induced a significant decrease in mean arterial blood pressure (AUC, p = 0.026) and a simultaneous increase in heart rate (AUC, p < 0.001) during the first hour after administration compared to placebo. CONCLUSION These findings provide evidence that migraine induction via the cGMP pathway can occur even under CGRP receptor blockade. TRIAL REGISTRATION ClinicalTrials.gov: Identifier NCT05889455.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | | | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Al-Khazali HM, Ashina H, Christensen RH, Wiggers A, Rose K, Iljazi A, Amin FM, Ashina M, Snellman J, Maio-Twofoot T, Schytz HW. Hypersensitivity to CGRP as a predictive biomarker of migraine prevention with erenumab. Cephalalgia 2024; 44:3331024241258734. [PMID: 38859744 DOI: 10.1177/03331024241258734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND The present study aimed to investigate the predictive value of calcitonin gene-related peptide (CGRP)-induced migraine attacks for effectiveness to erenumab treatment in people with migraine. METHODS In total, 139 participants with migraine underwent a single experimental day involving a 20-min infusion with CGRP. Following this, the participants entered a 24-week treatment period with erenumab. The primary endpoints were the predictive value of CGRP-induced migraine attacks on the effectiveness of erenumab, defined as ≥50% reduction in monthly migraine days, or ≥ 50% reduction in either monthly migraine or monthly headache days of moderate to severe intensity. RESULTS Among participants with CGRP-induced migraine attacks, 60 of 99 (61%) achieved ≥50% reduction in monthly migraine days during weeks 13-24 with erenumab. Conversely, 13 of 25 (52%) where CGRP infusion did not induce a migraine achieved the same endpoint (p = 0.498). There were no significant differences between the ≥50% reduction in either monthly migraine or monthly headache days of moderate to severe intensity between CGRP-sensitive and non-sensitive participants (p = 0.625). CONCLUSIONS Our findings suggest that the CGRP-provocation model cannot be used to predict erenumab's effectiveness. It remains uncertain whether this finding extends to other monoclonal antibodies targeting the CGRP ligand or to gepants.Trial Registration: The study was registered at ClinicalTrials.gov (NCT04592952).
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune Häckert Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Astrid Wiggers
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Rose
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Henrik W Schytz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Raffaelli B, Do TP, Chaudhry BA, Amin FM, Ashina H, Snellman J, Maio-Twofoot T, Ashina M. Activation of ATP-sensitive potassium channels triggers migraine attacks independent of calcitonin gene-related peptide receptors: a randomized placebo-controlled trial. Cephalalgia 2024; 44:3331024231222916. [PMID: 38181724 DOI: 10.1177/03331024231222916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
BACKGROUND The present study aimed to investigate whether levcromakalim, a KATP channel opener, induces migraine attacks in people with migraine pre-treated with erenumab, a monoclonal CGRP receptor antibody. METHODS In this double-blind, placebo-controlled, two-way cross-over study, adults with migraine without aura received a subcutaneous injection of 140 mg of erenumab on day 1. Subsequently, they were randomized to receive a 20-minute infusion of 0.05 mg/ml levcromakalim or placebo on two experimental days separated by at least one week (between days 8 and 21). The primary endpoint was the difference in the incidence of migraine attacks between levcromakalim and placebo during the 12-hour post-infusion period. RESULTS In total, 16 participants completed the study. During the 12-hour observation period, 14 (88%) of 16 participants experienced migraine attacks after levcromakalim, compared to two (12%) after placebo (p < 0.001). The area under the curve for median headache intensity was greater after levcromakalim than placebo (p < 0.001). Levcromakalim elicited dilation of the superficial temporal artery during the first hour after infusion, a response absent following placebo (p < 0.001). CONCLUSIONS The induction of migraine attacks via opening of KATP channels appears independent of CGRP receptor activation.Trial Registration: ClinicalTrials.gov, Identifier NCT05889442.
Collapse
Affiliation(s)
- Bianca Raffaelli
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universitä Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité (BIH), Berlin, Germany
| | - Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Boinpally R, Shebley M, Trugman JM. Atogepant: Mechanism of action, clinical and translational science. Clin Transl Sci 2024; 17:e13707. [PMID: 38266063 PMCID: PMC10777605 DOI: 10.1111/cts.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
Since the discovery of calcitonin gene-related peptide (CGRP) in 1982, its integral role in migraine pathophysiology, specifically migraine pain, has been demonstrated through cumulative scientific discoveries that have led to the development and approval of migraine-specific therapeutics. Today, eight drugs, including monoclonal antibodies and small molecule CGRP receptor antagonists, known as gepants, have received approval for acute or preventive treatment of migraine. The primary mechanism of these drugs is to block CGRP signaling, thus preventing CGRP-mediated nociception and neurogenic inflammation. Here, we focus on atogepant, a highly potent and selective gepant and the first and only oral medication approved for the preventive treatment of both episodic and chronic migraine in adults. In this article, we summarize the role of CGRP in migraine pathophysiology and the mechanism of action of atogepant. In addition, we provide an overview of atogepant's pharmacology and the key clinical trials and outcomes that have demonstrated the safety and efficacy of atogepant.
Collapse
|
14
|
Sacco S, Ornello R. Headache research in 2023: advancing therapy and technology. Lancet Neurol 2024; 23:17-19. [PMID: 38101886 DOI: 10.1016/s1474-4422(23)00450-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Affiliation(s)
- Simona Sacco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
15
|
Pleș H, Florian IA, Timis TL, Covache-Busuioc RA, Glavan LA, Dumitrascu DI, Popa AA, Bordeianu A, Ciurea AV. Migraine: Advances in the Pathogenesis and Treatment. Neurol Int 2023; 15:1052-1105. [PMID: 37755358 PMCID: PMC10535528 DOI: 10.3390/neurolint15030067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care.
Collapse
Affiliation(s)
- Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora-Larisa Timis
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Adrian Popa
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Bordeianu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| |
Collapse
|