1
|
Li R, Tang Y, Wang H, Hu P, Yu L, Lv C, Zhang Y, Gerdes AM, Wang Y. Local DIO2 Elevation Is an Adaption in Malformed Cerebrovasculature. Circ Res 2025; 136:1010-1027. [PMID: 40130314 DOI: 10.1161/circresaha.124.325857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability alongside lacking effective medication. Thyroid hormones (THs), including thyroxine and triiodothyronine, are essential for vascular development, yet whether they participate in malformed cerebrovascular pathology remains elusive. METHODS Single-cell transcriptome analysis characterized human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Adeno-associated virus-mediated Dio2 (iodothyronine deiodinase 2; an enzyme that converts thyroxine to active triiodothyronine) overexpression/knockdown or triiodothyronine/methimazole (an antithyroid drug) treatment was applied to mouse models of cerebral cavernous malformations (endothelial-specific Pdcd10 knockout mice, Pdcd10 endothelial-specific knockout [KO]) and brain arteriovenous malformations (endothelial-specific KrasG12D mutant mice, KrasG12D) to evaluate the involvement of DIO2 and TH signaling in cerebrovascular malformations. RESULTS TH signaling was markedly activated in fibroblasts of human cerebral cavernous malformation and arteriovenous malformation single-cell samples, accompanied by elevated DIO2 expression. Similar DIO2 upregulation was observed in cerebrovascular fibroblasts of Pdcd10 KO/KrasG12D mice and patient brain sections. Exogenous Dio2 or triiodothyronine replenishment effectively reduced brain hemorrhage, excessive ECM (extracellular matrix) remodeling, and vascular leakage in juvenile and adult male and female Pdcd10 KO/KrasG12D mice. In contrast, Dio2 silencing or TH inhibition deteriorated vascular anomalies. Mechanistically, transcription factor FOXK1 (forkhead box K1) was determined to interact with the DIO2 promoter region. The activation of fibroblast PI3K (phosphoinositide 3-kinase)-Akt (protein kinase B)-mTOR (mammalian target of rapamycin) signaling in Pdcd10 KO/KrasG12D mice triggered Foxk1 nuclear translocation to promote Dio2 transcription. Triiodothyronine treatment mitigated inflammatory infiltration, normalized mitochondrial morphology, and restored mitochondrial biogenesis in malformed brain vessels by activating the Pgc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha)-Sod2 (superoxide dismutase 2)/Prdx3 (peroxiredoxin 3)/Gpx1 (glutathione peroxidase 1) axis to reduce reactive oxygen species accumulation. We also determined that the vascular repair effects of triiodothyronine were Pgc1a-dependent. CONCLUSIONS We delineate a novel DIO2-mediated adaption in malformed cerebrovasculature and conclude that targeting TH signaling may represent a potential therapy for cerebrovascular disorders.
Collapse
Affiliation(s)
- Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Yushan Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Haiyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Pengyan Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury (A.M.G.)
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, Henan, China (Y.W.)
- Institute of Cardiovascular Disease, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China (Y.W.)
| |
Collapse
|
2
|
Chen LN, Zhou H, Xi K, Cheng S, Liu Y, Fu Y, Ma X, Xu P, Ji SY, Wang WW, Shen DD, Zhang H, Shen Q, Chai R, Zhang M, Yang L, Han F, Mao C, Cai X, Zhang Y. Proton perception and activation of a proton-sensing GPCR. Mol Cell 2025; 85:1640-1657.e8. [PMID: 40215960 DOI: 10.1016/j.molcel.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/22/2025] [Accepted: 02/28/2025] [Indexed: 04/20/2025]
Abstract
Maintaining pH at cellular, tissular, and systemic levels is essential for human health. Proton-sensing GPCRs regulate physiological and pathological processes by sensing the extracellular acidity. However, the molecular mechanism of proton sensing and activation of these receptors remains elusive. Here, we present cryoelectron microscopy (cryo-EM) structures of human GPR4, a prototypical proton-sensing GPCR, in its inactive and active states. Our studies reveal that three extracellular histidine residues are crucial for proton sensing of human GPR4. The binding of protons induces substantial conformational changes in GPR4's ECLs, particularly in ECL2, which transforms from a helix-loop to a β-turn-β configuration. This transformation leads to the rearrangements of H-bond network and hydrophobic packing, relayed by non-canonical motifs to accommodate G proteins. Furthermore, the antagonist NE52-QQ57 hinders human GPR4 activation by preventing hydrophobic stacking rearrangement. Our findings provide a molecular framework for understanding the activation mechanism of a human proton-sensing GPCR, aiding future drug discovery.
Collapse
Affiliation(s)
- Li-Nan Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kun Xi
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shizhuo Cheng
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongfeng Liu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yifan Fu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiangyu Ma
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Ping Xu
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su-Yu Ji
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei-Wei Wang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan-Dan Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qingya Shen
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Min Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Lin Yang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Chunyou Mao
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China; Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou 310016, China.
| | - Yan Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, Department of Pharmacology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
3
|
He Q, Zhou Y, Wu L, Huang L, Yuan Y, Flores JJ, Luo X, Tao Y, Chen X, Kanamaru H, Dong S, Zhu S, Yu Q, Han M, Sherchan P, Li J, Tang J, Xie Z, Zhang JH. Inhibition of acid-sensing receptor GPR4 attenuates neuronal ferroptosis via RhoA/YAP signaling in a rat model of subarachnoid hemorrhage. Free Radic Biol Med 2024; 225:333-345. [PMID: 39393553 DOI: 10.1016/j.freeradbiomed.2024.10.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) is a devastating stroke, in which acidosis is one of detrimental complications. The extracellular pH reduction can activate G protein-coupled receptor 4 (GPR4) in the brain. Yet, the extent to which proton-activated GPR4 contributes to the early brain injury (EBI) post-SAH remains largely unexplored. Ferroptosis, iron-dependent programmed cell death, has recently been shown to contribute to EBI. We aimed to investigate the effects of GPR4 inhibition on neurological deficits and neuronal ferroptosis after SAH in rats. METHODS A total 253 Sprague Dawley (SD) male rats (weighing 275-330g) were utilized in this study. SAH was induced by endovascular perforation. NE-52-QQ57 (NE), a selective antagonist of GPR4 was administered intraperitoneally 1-h post-SAH. To explore the mechanisms, RhoA activator U-46619 and YAP activator PY-60 were delivered intracerebroventricularly. Short- and long-term neurobehavior, SAH grading, Western blot assay, ELISA assay, immunofluorescence staining, and transmission electron microscopy was performed post-SAH. RESULTS Following SAH, there was an upregulation of GPR4 expression in neurons. GPR4 inhibition by NE improved both short-term and long-term neurological outcomes post-SAH. NE also reduced neuronal ferroptosis, as evidenced by decreased lipid peroxidation products 4HNE and MDA levels in brain tissues, and reduced mitochondrial shrinkage, increased mitochondria crista and decreased membrane density. The application of either U-46619 or PY-60 partially offset the neuroprotective effects of NE on neuronal ferroptosis in SAH rats. CONCLUSIONS This study demonstrated that acid-sensing receptor GPR4 contributed to neuronal ferroptosis after SAH via RhoA/YAP pathway, and NE may be a potential therapeutic strategy to attenuate GPR4 mediated neuronal ferroptosis and EBI after SAH.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - You Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Lei Wu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xionghui Chen
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Hideki Kanamaru
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Siyuan Dong
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Shiyi Zhu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Yu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Mingyang Han
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Department of Anesthesiology and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
4
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
5
|
Li MS, Wang XH, Wang H. Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation. Curr Med Sci 2024; 44:475-484. [PMID: 38748372 DOI: 10.1007/s11596-024-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 06/29/2024]
Abstract
Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.
Collapse
Affiliation(s)
- Min-Shan Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Xiang-Hong Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, 430030, China.
| |
Collapse
|
6
|
Glitsch MD. Recent advances in acid sensing by G protein coupled receptors. Pflugers Arch 2024; 476:445-455. [PMID: 38340167 PMCID: PMC11006784 DOI: 10.1007/s00424-024-02919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Changes in extracellular proton concentrations occur in a variety of tissues over a range of timescales under physiological conditions and also accompany virtually all pathologies, notably cancers, stroke, inflammation and trauma. Proton-activated, G protein coupled receptors are already partially active at physiological extracellular proton concentrations and their activity increases with rising proton concentrations. Their ability to monitor and report changes in extracellular proton concentrations and hence extracellular pH appears to be involved in a variety of processes, and it is likely to mirror and in some cases promote disease progression. Unsurprisingly, therefore, these pH-sensing receptors (pHR) receive increasing attention from researchers working in an expanding range of research areas, from cellular neurophysiology to systemic inflammatory processes. This review is looking at progress made in the field of pHRs over the past few years and also highlights outstanding issues.
Collapse
Affiliation(s)
- Maike D Glitsch
- Medical School Hamburg, Am Sandtorkai 1, 20457, Hamburg, Germany.
| |
Collapse
|
7
|
Gonye EC, Dagli AV, Kumar NN, Clements RT, Xu W, Bayliss DA. Expression of endogenous epitope-tagged GPR4 in the mouse brain. eNeuro 2024; 11:ENEURO.0002-24.2024. [PMID: 38408869 DOI: 10.1523/eneuro.0002-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Alexandra V Dagli
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Natasha N Kumar
- University of New South Wales Sydney, School of Biomedical Sciences, New South Wales, Australia
| | - Rachel T Clements
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Wenhao Xu
- University of Virginia, Genetically Engineered Mouse Model Core, Charlottesville, VA, USA
| | - Douglas A Bayliss
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| |
Collapse
|