1
|
Kozberg MG, Munting LP, Hanlin LH, Auger CA, van den Berg ML, Denis de Senneville B, Hirschler L, Warnking JM, Barbier EL, Farrar CT, Greenberg SM, Bacskai BJ, van Veluw SJ. Vasomotion loss precedes impaired cerebrovascular reactivity and microbleeds in cerebral amyloid angiopathy. Brain Commun 2025; 7:fcaf186. [PMID: 40406166 PMCID: PMC12096159 DOI: 10.1093/braincomms/fcaf186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 04/11/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral haemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA. To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype (WT) littermates from 7 to 14 months of age, tracking amyloid-β accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18- and 24-month-old APP23 transgenic mice and WT littermates to detect microbleeds and to assess cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) with pseudo-continuous arterial spin labelling. We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in WT mice with age. This decline corresponded in timing to initial vascular amyloid-β deposition (∼8-10 months of age), although it was more strongly correlated with age than with vascular amyloid-β burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in the majority of APP23 mice by 18 months of age. Additionally, CBF and evoked CVR were intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.
Collapse
Affiliation(s)
- Mariel G Kozberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leon P Munting
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lee H Hanlin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Corinne A Auger
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Lydiane Hirschler
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jan M Warnking
- Univ. Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, U1216, Grenoble 38000, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, Grenoble Institut Neurosciences, U1216, Grenoble 38000, France
| | - Christian T Farrar
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
2
|
Pikus P, Turner RS, Rebeck GW. Mouse models of Anti-Aβ immunotherapies. Mol Neurodegener 2025; 20:57. [PMID: 40361247 PMCID: PMC12076828 DOI: 10.1186/s13024-025-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The development of anti-amyloid-beta (Aβ) immunotherapies as the first disease modifying therapy for Alzheimer's Disease (AD) is a breakthrough of basic research and translational science. MAIN TEXT Genetically modified mouse models developed to study AD neuropathology and physiology were used for the discovery of Aβ immunotherapies and helped ultimately propel therapies to FDA approval. Nonetheless, the combination of modest efficacy and significant rates of an adverse side effect (amyloid related imaging abnormalities, ARIA), has prompted reverse translational research in these same mouse models to better understand the mechanism of the therapies. CONCLUSION This review considers the use of these mouse models in understanding the mechanisms of Aβ clearance, cerebral amyloid angiopathy (CAA), blood brain barrier breakdown, neuroinflammation, and neuronal dysfunction in response to Aβ immunotherapy.
Collapse
Affiliation(s)
- Philip Pikus
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, 3800 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA.
| |
Collapse
|
3
|
Kaloss AM, Browning JL, Li J, Pan Y, Watsen S, Sontheimer H, Theus MH, Olsen ML. Vascular amyloidβ load in the meningeal arterial network correlates with loss of cerebral blood flow and pial collateral vessel enlargement in the J20 murine model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.635937. [PMID: 40161825 PMCID: PMC11952299 DOI: 10.1101/2025.02.05.635937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Global reduction in cerebral blood flow (CBF) is an early pathology in Alzheimer's disease, preceding significant plaque accumulation and neurological decline. Chronic reduced CBF and subsequent reduction in tissue oxygenation and glucose may drive neurodegeneration, yet the underlying cause of globally reduced CBF remains unclear. METHODS Using premortem delivery of Methoxy-XO4 to label Aβ, and arterial vascular labeling, we assessed Aβ burden on the pial artery/arteriole network and cerebral blood flow in aged male and female WT and J20 AD mice. RESULTS The pial artery/arteriole vascular network selectively displayed extensive vascular Aβ burden. Pial collateral arteriole vessels, the by-pass system that reroutes blood flow during occlusion, displayed significant enlargement in J20 mice. Despite this, CBF was decreased by approximately 15% in 12-month J20 mice when compared to WT littermates. DISCUSSION Significant Aβ burden on the meningeal arterial network may contribute to the restriction of CBF. Redistribution of CBF through enlarged pial collateral vessels may serve as a compensatory mechanism to alter CBF during disease progression in cases of CAA.
Collapse
|
4
|
Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14438. [PMID: 39698895 PMCID: PMC11848394 DOI: 10.1002/alz.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca2+-activated K+ channels (BKCa) regulate cerebrovascular reactivity and are impaired in AD. BKCa activity depends on intracellular Ca2+ (Ca2+ sparks) and nitro-oxidative post-translational modifications. However, whether these mechanisms underlie BKCa impairment in AD remains unknown. METHODS Cerebral arteries from 5x-FAD and wild-type (WT) littermates were used for molecular biology, electrophysiology, ex vivo, and in vivo experiments. RESULTS Arterial BKCa activity is reduced in 5x-FAD via sex-dependent mechanisms: in males, there is lower BKα subunit expression and less Ca2+ sparks. In females, we observed reversible nitro-oxidative modification of BKCa. Further, BKCa is involved in hemodynamic regulation in WT mice, and its dysfunction is associated with vascular deficits in 5x-FAD. DISCUSSION Our data highlight the central role played by BKCa in cerebral hemodynamic regulation and that molecular mechanisms of its impairment diverge based on sex in 5x-FAD. HIGHLIGHTS Cerebral microvascular BKCa dysfunction occurs in both female and male 5x-FAD. Reduction in BKα subunit protein and Ca2+ sparks drive the dysfunction in males. Nitro-oxidative stress is present in females, but not males, 5x-FAD. Reversible nitro-oxidation of BKα underlies BKCa dysfunction in female 5x-FAD.
Collapse
Affiliation(s)
- Josiane F. Silva
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Felipe D. Polk
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paige E. Martin
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Stephenie H. Thai
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Andrea Savu
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Matthew Gonzales
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Allison M. Kath
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Michael T. Gee
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paulo W. Pires
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Sarver Heart CenterUniversity of Arizona College of MedicineTucsonArizonaUSA
- Bio5 InstituteUniversity of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|
5
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2025; 30:367-378. [PMID: 39043843 PMCID: PMC11750623 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Ma Y, Bos D, Wolters FJ, Niessen W, Hofman A, Ikram MA, Vernooij MW. Changes in Cerebral Hemodynamics and Progression of Subclinical Vascular Brain Disease: A Population-Based Cohort Study. Stroke 2025; 56:95-104. [PMID: 39633567 DOI: 10.1161/strokeaha.124.047593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cerebral hypoperfusion is associated with vascular brain injury and neurodegeneration, but their longitudinal relationship is largely unknown, especially in healthy older adults. METHODS We investigated the longitudinal relationship between cerebral hemodynamics and subclinical vascular brain disease in community-dwelling older adults without stroke or dementia at baseline. Participants underwent brain magnetic resonance imaging scans every 3 to 4 years between 2005 and 2016. Cerebral blood flow (CBF) was measured through 2-dimensional phase-contrast magnetic resonance imaging; the cerebrovascular resistance index (CVRi) was defined as the ratio of mean arterial blood pressure to total CBF. Simultaneous progression in subclinical brain disease was evaluated through repeated magnetic resonance imaging assessment of white matter hyperintensities (WMH), cerebral microbleeds, lacune, and brain atrophy. The longitudinal relationship was estimated using generalized estimating equations, with adjustment for age, sex, smoking habits, body mass index, systolic blood pressure (for CBF measures), lipid level, history of diabetes and cardiovascular disease, and the baseline burden of magnetic resonance imaging markers. RESULTS Among 3623 older adults (mean age, 61.4±9.3 years; 54.6% women), large decreases and increases in CBF and increases in CVRi over time were associated with white matter hyperintensity progression. The risk ratios for white matter hyperintensity progression were 1.36 (95% CI, 1.19-1.55) for large decreases in total CBF (lowest quartile), 1.02 (95% CI, 0.91-1.14) for moderate decreases (second quartile), and 1.28 (95% CI, 1.14-1.45) for large increases (highest quartile), compared with stable CBF (third quartile). The corresponding risk ratios for changes in CVRi were 1.13 (95% CI, 1.00-1.30), 1.25 (95% CI, 1.09-1.43), and 1.33 (95% CI, 1.16-1.52) for the second to fourth (versus lowest) quartiles, respectively, showing a dose-response relationship. The changes in CBF also demonstrate a similar U-shaped association with the progression of brain atrophy and incident microbleeds, whereas increases in CVRi were associated with lower microbleed risk. CONCLUSIONS Longitudinal changes in CBF and CVRi may capture distinct pathophysiologies linking cerebral hemodynamics to subclinical brain disease, extending beyond single-time point measurements.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (Y.M., A.H.)
| | - Daniel Bos
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Frank J Wolters
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Wiro Niessen
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Medical Informatics (W.N.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, the Netherlands (W.N.)
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (Y.M., A.H.)
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology (D.B., F.J.W., A.H., M.A.I., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine (D.B., F.J.W., W.N., M.W.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
da Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543962. [PMID: 37333104 PMCID: PMC10274786 DOI: 10.1101/2023.06.06.543962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. Large conductance Ca 2+ -activated K + channels (BK Ca ) play an essential role in vasodilatory responses and maintenance of myogenic tone in resistance arteries. BK Ca impairment can lead to microvascular dysfunction and hemodynamic deficits in the brain. We hypothesized that reduced BK Ca function in cerebral arteries mediates microvascular and neurovascular responses in the 5x-FAD model of AD. METHODS BK Ca activity in the cerebral microcirculation was assessed by patch clamp electrophysiology and pressure myography, in situ Ca 2+ sparks by spinning disk confocal microscopy, hemodynamics by laser speckle contrast imaging. Molecular and biochemical analyses were conducted by affinity-purification assays, qPCR, Western blots and immunofluorescence. RESULTS We observed that pial arteries from 5-6 months-old male and female 5x-FAD mice exhibited a hyper-contractile phenotype than wild-type (WT) littermates, which was linked to lower vascular BK Ca activity and reduced open probability. In males, BK Ca dysfunction is likely a consequence of an observed lower expression of the pore-forming subunit BKα and blunted frequency of Ca 2+ sparks, which are required for BK Ca activity. However, in females, impaired BK Ca function is, in part, a consequence of reversible nitro-oxidative changes in the BK α subunit, which reduces its open probability and regulation of vascular tone. We further show that BK Ca function is involved in neurovascular coupling in mice, and its dysfunction is linked to neurovascular dysfunction in the model. CONCLUSION These data highlight the central role played by BK Ca in cerebral microvascular and neurovascular regulation, as well as sex-dependent mechanisms underlying its dysfunction in a mouse model of AD.
Collapse
|
8
|
Kozberg MG, Munting LP, Maresco LH, Auger CA, van den Berg ML, Denis de Senneville B, Hirschler L, Warnking JM, Barbier EL, Farrar CT, Greenberg SM, Bacskai BJ, van Veluw SJ. Loss of spontaneous vasomotion precedes impaired cerebrovascular reactivity and microbleeds in a mouse model of cerebral amyloid angiopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591414. [PMID: 38746419 PMCID: PMC11092483 DOI: 10.1101/2024.04.26.591414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-β accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-β clearance, may be impaired in CAA. Methods To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype littermates from 7 to 14 months of age, tracking amyloid-β accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18-, and 24-month-old APP23 transgenic mice and wildtype littermates to detect microbleeds and to assess cerebral blood flow and cerebrovascular reactivity with pseudo-continuous arterial spin labeling. Results We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in wildtype mice with age. This decline corresponded in timing to initial vascular amyloid-β deposition (∼8-10 months of age), although was more strongly correlated with age than with vascular amyloid-β burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in APP23 mice by 18 months of age. Additionally, evoked cerebrovascular reactivity was intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Conclusions Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.
Collapse
|
9
|
Aslanyan V, Mack WJ, Ortega NE, Nasrallah IM, Pajewski NM, Williamson JD, Pa J. Cerebrovascular reactivity in Alzheimer's disease signature regions is associated with mild cognitive impairment in adults with hypertension. Alzheimers Dement 2024; 20:1784-1796. [PMID: 38108158 PMCID: PMC10984494 DOI: 10.1002/alz.13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Vascular risk factors contribute to cognitive decline suggesting that maintaining cerebrovascular health could reduce dementia risk. The objective of this study is to evaluate the association of cerebrovascular reactivity (CVR), a measure of brain blood vessel elasticity, with mild cognitive impairment (MCI) and dementia. METHODS Participants were enrolled in the Systolic Blood Pressure Intervention Trial Memory and Cognition in Decreased Hypertension (SPRINT-MIND) magnetic resonance imaging substudy. Baseline CVR in Alzheimer's disease (AD) signature regions were primary variables of interest. The occipital pole and postcentral gyrus were included as control regions. RESULTS Higher AD composite CVR was associated with lower MCI risk. No significant associations between inferior temporal gyrus, occipital pole, or postcentral gyrus CVR and MCI risk, or any regional CVR-combined risk associations were observed. DISCUSSION CVR in AD signature regions is negatively associated with occurrence of MCI, implicating CVR in AD signature regions as a potential mechanism leading to cognitive impairment.
Collapse
Affiliation(s)
- Vahan Aslanyan
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nancy E. Ortega
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nicholas M. Pajewski
- Department of Biostatistics and Data ScienceDivision of Public Health ScienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeff D. Williamson
- Section of Gerontology and Geriatric MedicineDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Judy Pa
- Alzheimer's Disease Cooperative Study (ADCS)Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, Collins-Praino LE, Walker FR, Nilsson M, Ong LK. Leakage beyond the primary lesion: A temporal analysis of cerebrovascular dysregulation at sites of hippocampal secondary neurodegeneration following cortical photothrombotic stroke. J Neurochem 2023; 167:733-752. [PMID: 38010732 DOI: 10.1111/jnc.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023]
Abstract
We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Rebecca J Hood
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sonia Sanchez-Bezanilla
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Daniel J Beard
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ruslan Rust
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren, Switzerland
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Renée J Turner
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon M Stuckey
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Nilsson
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Centre for Rehab Innovations, The University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
- LKC School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia
- Heart and Stroke Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- School of Health and Medical Sciences & Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|
11
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, Sohrabi HR, Kozberg MG, Shirzadi Z, Terwindt GM, van Buchem MA, Smith EE, Werring DJ, Martins RN, Wermer MJH, Greenberg SM. Progression of cerebral amyloid angiopathy: a pathophysiological framework. Lancet Neurol 2023; 22:632-642. [PMID: 37236210 DOI: 10.1016/s1474-4422(23)00114-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
Cerebral amyloid angiopathy, which is defined by cerebrovascular deposition of amyloid β, is a common age-related small vessel pathology associated with intracerebral haemorrhage and cognitive impairment. Based on complementary lines of evidence from in vivo studies of individuals with hereditary, sporadic, and iatrogenic forms of cerebral amyloid angiopathy, histopathological analyses of affected brains, and experimental studies in transgenic mouse models, we present a framework and timeline for the progression of cerebral amyloid angiopathy from subclinical pathology to the clinical manifestation of the disease. Key stages that appear to evolve sequentially over two to three decades are (stage one) initial vascular amyloid deposition, (stage two) alteration of cerebrovascular physiology, (stage three) non-haemorrhagic brain injury, and (stage four) appearance of haemorrhagic brain lesions. This timeline of stages and the mechanistic processes that link them have substantial implications for identifying disease-modifying interventions for cerebral amyloid angiopathy and potentially for other cerebral small vessel diseases.
Collapse
Affiliation(s)
- Emma A Koemans
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jasmeer P Chhatwal
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Susanne J van Veluw
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ellis S van Etten
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias J P van Osch
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hamid R Sohrabi
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mariel G Kozberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Zahra Shirzadi
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Gisela M Terwindt
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark A van Buchem
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric E Smith
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, London, UK; National Hospital for Neurology and Neurosurgery, London, UK
| | - Ralph N Martins
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Perth, WA, Australia; Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Marieke J H Wermer
- Department of Neurology and Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Steven M Greenberg
- Department of Neurology and Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Zhukov O, He C, Soylu-Kucharz R, Cai C, Lauritzen AD, Aldana BI, Björkqvist M, Lauritzen M, Kucharz K. Preserved blood-brain barrier and neurovascular coupling in female 5xFAD model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1089005. [PMID: 37261266 PMCID: PMC10228387 DOI: 10.3389/fnagi.2023.1089005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Dysfunction of the cerebral vasculature is considered one of the key components of Alzheimer's disease (AD), but the mechanisms affecting individual brain vessels are poorly understood. Methods Here, using in vivo two-photon microscopy in superficial cortical layers and ex vivo imaging across brain regions, we characterized blood-brain barrier (BBB) function and neurovascular coupling (NVC) at the level of individual brain vessels in adult female 5xFAD mice, an aggressive amyloid-β (Aβ) model of AD. Results We report a lack of abnormal increase in adsorptive-mediated transcytosis of albumin and preserved paracellular barrier for fibrinogen and small molecules despite an extensive load of Aβ. Likewise, the NVC responses to somatosensory stimulation were preserved at all regulatory segments of the microvasculature: penetrating arterioles, precapillary sphincters, and capillaries. Lastly, the Aβ plaques did not affect the density of capillary pericytes. Conclusion Our findings provide direct evidence of preserved microvascular function in the 5xFAD mice and highlight the critical dependence of the experimental outcomes on the choice of preclinical models of AD. We propose that the presence of parenchymal Aβ does not warrant BBB and NVC dysfunction and that the generalized view that microvascular impairment is inherent to Aβ aggregation may need to be revised.
Collapse
Affiliation(s)
- Oleg Zhukov
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chen He
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rana Soylu-Kucharz
- Biomarkers in Brain Disease, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Björkqvist
- Biomarkers in Brain Disease, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Chen S, Li J, Meng S, He T, Shi Z, Wang C, Wang Y, Cao H, Huang Y, Zhang Y, Gong Y, Gao Y. Microglia and macrophages in the neuro-glia-vascular unit: From identity to functions. Neurobiol Dis 2023; 179:106066. [PMID: 36889483 DOI: 10.1016/j.nbd.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tingyu He
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Senbokuya N, Wakasa R, Kuwayama M, Shimizu H. Improving accuracy of cerebral blood flow measurements in laser speckle flowmetry. Brain Res 2023; 1803:148231. [PMID: 36608757 DOI: 10.1016/j.brainres.2023.148231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Laser speckle flowmetry (LSF) can measure moving red blood cells in real time as changes in tissue blood flow; however, LSF values may not be sufficiently reproducible due to body movements and other factors. Therefore, it is difficult to compare absolute values of LSF directly. This study aimed to verify the influence of head fixation on improving the measurement accuracy and enabling the comparison of LSF values semi-quantitatively using an external standard. We first examined the effects of head fixation on LSF values obtained during cerebral blood flow (CBF) measurement through a bone window over the cerebrum in Sprague-Dawley rats. The LSF values in the bone window were semi-quantitated using the ratio of the external standard LSF values measured simultaneously in the same field of view in a unilateral common carotid artery ligation model to evaluate CBF. Head fixation halved the variability of LSF values when compared with measurements made without head fixation. The LSF laser focus position did not affect the LSF values provided the focus was positioned within the exposed cranium. Semi-quantitation of LSF values made it possible to monitor changes in CBF in each respective bone window over time in a model of unilateral carotid ligation. In conclusion, the stabilizing effect of head fixation on LSF values was clarified, and we observed that to improve measurement accuracy, the head should be immobilized. Semi-quantitation of LSF values was first introduced by using an external standard and appears to be useful in monitoring the CBF of each location separately.
Collapse
Affiliation(s)
- Naomoto Senbokuya
- Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
| | - Ryosei Wakasa
- Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Mikiko Kuwayama
- Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Hiroaki Shimizu
- Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| |
Collapse
|
16
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
17
|
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS 2022; 19:88. [PMID: 36345028 PMCID: PMC9639294 DOI: 10.1186/s12987-022-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-β (Aβ) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aβ. METHODS To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aβ deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aβ. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS Our data support the cross-talk between metabolic disease and Aβ deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.
Collapse
Affiliation(s)
- Maria Vargas-Soria
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Currently at Department of Physiology, School of Health Sciences, University of Granada, Granada, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susanne J van Veluw
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
18
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
19
|
Zhu WM, Neuhaus A, Beard DJ, Sutherland BA, DeLuca GC. Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease. Brain 2022; 145:2276-2292. [PMID: 35551356 PMCID: PMC9337814 DOI: 10.1093/brain/awac174] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
To match the metabolic demands of the brain, mechanisms have evolved to couple neuronal activity to vasodilation, thus increasing local cerebral blood flow and delivery of oxygen and glucose to active neurons. Rather than relying on metabolic feedback signals such as the consumption of oxygen or glucose, the main signalling pathways rely on the release of vasoactive molecules by neurons and astrocytes, which act on contractile cells. Vascular smooth muscle cells and pericytes are the contractile cells associated with arterioles and capillaries, respectively, which relax and induce vasodilation. Much progress has been made in understanding the complex signalling pathways of neurovascular coupling, but issues such as the contributions of capillary pericytes and astrocyte calcium signal remain contentious. Study of neurovascular coupling mechanisms is especially important as cerebral blood flow dysregulation is a prominent feature of Alzheimer’s disease. In this article we will discuss developments and controversies in the understanding of neurovascular coupling and finish by discussing current knowledge concerning neurovascular uncoupling in Alzheimer’s disease.
Collapse
Affiliation(s)
- Winston M Zhu
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Ain Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Oka F, Lee JH, Yuzawa I, Li M, von Bornstaedt D, Eikermann-Haerter K, Qin T, Chung DY, Sadeghian H, Seidel JL, Imai T, Vuralli D, Platt RF, Nelson MT, Joutel A, Sakadzic S, Ayata C. CADASIL mutations sensitize the brain to ischemia via spreading depolarizations and abnormal extracellular potassium homeostasis. J Clin Invest 2022; 132:149759. [PMID: 35202003 PMCID: PMC9012276 DOI: 10.1172/jci149759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy, subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of small vessel disease characterized by migraine with aura, leukoaraiosis, strokes and dementia. CADASIL mutations cause cerebrovascular dysfunction in both animal models and humans. Here, we show that two different human CADASIL mutations (Notch3 R90C or R169C) worsen ischemic stroke outcomes in transgenic mice, explained by a higher blood flow threshold to maintain tissue viability. Both mutants developed larger infarcts and worse neurological deficits compared with wild type regardless of age or sex after filament middle cerebral artery occlusion. However, full-field laser speckle flowmetry during distal middle cerebral artery occlusion showed comparable perfusion deficits in mutants and their respective wild type controls. Circle of Willis anatomy and pial collateralization also did not differ among the genotypes. In contrast, mutants had a higher cerebral blood flow threshold below which infarction ensued, suggesting increased sensitivity of brain tissue to ischemia. Electrophysiological recordings revealed a 1.5- to 2-fold higher frequency of peri-infarct spreading depolarizations in CADASIL mutants. Higher extracellular K+ elevations during spreading depolarizations in the mutants implicated a defect in extracellular K+ clearance. Altogether, these data reveal a novel mechanism of enhanced vulnerability to ischemic injury linked to abnormal extracellular ion homeostasis and susceptibility to ischemic depolarizations in CADASIL.
Collapse
Affiliation(s)
- Fumiaki Oka
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Japan
| | - Jeong Hyun Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea, Democratic Peoples Republic of
| | - Izumi Yuzawa
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Mei Li
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Daniel von Bornstaedt
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Katharina Eikermann-Haerter
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Tao Qin
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - David Y Chung
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Homa Sadeghian
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Jessica L Seidel
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Takahiko Imai
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Doga Vuralli
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Rosangela Fm Platt
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States of America
| | - Anne Joutel
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Sava Sakadzic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States of America
| | - Cenk Ayata
- Department of Radiology, Harvard Medical School and Massachusetts General Hospital, Charlestown, United States of America
| |
Collapse
|
21
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
22
|
Lourenço CF, Laranjinha J. Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Front Physiol 2021; 12:729201. [PMID: 34744769 PMCID: PMC8569710 DOI: 10.3389/fphys.2021.729201] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
The brain has impressive energy requirements and paradoxically, very limited energy reserves, implying its huge dependency on continuous blood supply. Aditionally, cerebral blood flow must be dynamically regulated to the areas of increased neuronal activity and thus, of increased metabolic demands. The coupling between neuronal activity and cerebral blood flow (CBF) is supported by a mechanism called neurovascular coupling (NVC). Among the several vasoactive molecules released by glutamatergic activation, nitric oxide (•NO) is recognized to be a key player in the process and essential for the development of the neurovascular response. Classically, •NO is produced in neurons upon the activation of the glutamatergic N-methyl-D-aspartate (NMDA) receptor by the neuronal isoform of nitric oxide synthase and promotes vasodilation by activating soluble guanylate cyclase in the smooth muscle cells of the adjacent arterioles. This pathway is part of a more complex network in which other molecular and cellular intervenients, as well as other sources of •NO, are involved. The elucidation of these interacting mechanisms is fundamental in understanding how the brain manages its energy requirements and how the failure of this process translates into neuronal dysfunction. Here, we aimed to provide an integrated and updated perspective of the role of •NO in the NVC, incorporating the most recent evidence that reinforces its central role in the process from both viewpoints, as a physiological mediator and a pathological stressor. First, we described the glutamate-NMDA receptor-nNOS axis as a central pathway in NVC, then we reviewed the link between the derailment of the NVC and neuronal dysfunction associated with neurodegeneration (with a focus on Alzheimer's disease). We further discussed the role of oxidative stress in the NVC dysfunction, specifically by decreasing the •NO bioavailability and diverting its bioactivity toward cytotoxicity. Finally, we highlighted some strategies targeting the rescue or maintenance of •NO bioavailability that could be explored to mitigate the NVC dysfunction associated with neurodegenerative conditions. In line with this, the potential modulatory effects of dietary nitrate and polyphenols on •NO-dependent NVC, in association with physical exercise, may be used as effective non-pharmacological strategies to promote the •NO bioavailability and to manage NVC dysfunction in neuropathological conditions.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
23
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Choi B, Crouzet C, Lau WL, Cribbs DH, Fisher MJ. Cerebral Blood Flow in Chronic Kidney Disease. J Stroke Cerebrovasc Dis 2021; 30:105702. [PMID: 33714675 PMCID: PMC8384649 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The prevalence of mild cognitive impairment increases with age and is further exacerbated by chronic kidney disease (CKD). CKD is associated with (1) mild cognitive impairment, (2) impaired endothelial function, (3) impaired blood-brain barrier, (4) increased cerebral microhemorrhage burden, (5) increased cerebral blood flow (CBF), (6) impaired cerebral autoregulation, (7) impaired cerebrovascular reactivity, and (8) increased arterial stiffness. We report preliminary findings from our group that demonstrate altered cerebrovascular reactivity in a mouse model of CKD-associated vascular calcification. The CBF of CKD mice increased more quickly in response to hypercapnia (p < 0.05) but then decreased prematurely during hypercapnia challenge (p < 0.05). Together, these results indicate that altered kidney function can lead to alterations in the cerebral microvasculature, and hence brain health.
Collapse
Affiliation(s)
- Bernard Choi
- Departments of Biomedical Engineering and Surgery, University of California, Irvine, CA, United States; Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road East, Irvine, CA 92612, United States; Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, United States.
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road East, Irvine, CA 92612, United States; Department of Biomedical Engineering, University of California, Irvine, CA, United States.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California, Orange, CA, United States.
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, United States.
| | - Mark J Fisher
- Beckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road East, Irvine, CA 92612, United States; Department of Neurology, University of California Irvine, Orange, CA, United States.
| |
Collapse
|
25
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
26
|
Influence of Intragastric Administration of Traditional Japanese Medicine, Ninjin'Yoeito, on Cerebral Blood Flow via Muscarinic Acetylcholine Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9930023. [PMID: 34408784 PMCID: PMC8367494 DOI: 10.1155/2021/9930023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Ninjin'yoeito (NYT) is a traditional medicine that has been used for mitigating physical frailty, such as fatigue and anorexia, as well as for cognitive dysfunction. Maintenance of adequate cerebral blood flow (CBF) is important for preventing cognitive dysfunction. The present study aimed to examine the effect of NYT on CBF. Male C57BL/6 J mice were anesthetized with urethane and were artificially ventilated. We measured CBF in the neocortex with laser-speckle contrast imaging for 10 min before administration and 60 min after administration. We administered NYT solution (0.25, 0.5, 1, and 2 g/kg) or vehicle (distilled water; DW) over 5 min via an intragastric catheter. We surgically transected the vagus nerve to investigate its contribution as a neural pathway and intraperitoneally injected atropine to block muscarinic acetylcholine receptors. Finally, we tested the CBF response to cutaneous brushing stimulation applied to the left hind paw (30 sec). CBF decreased after DW administration, starting from 30 min onward, whereas CBF did not change after NYT. The averaged CBF change following DW administration differed from that following NYT (1 g/kg) but not from those following the other doses of NYT. Arterial pressure was not affected by either solution. CBF after NYT (1 g/kg) was not affected by vagotomy but was lower following additional atropine. In response to brushing stimulation, CBF in the right (contralateral) parietal cortex increased. The magnitude of CBF increase following NYT was greater than that following DW. These results suggest that NYT prevents CBF decrease via cholinergic activation independent of vagal activity and enhances the CBF response to somatosensory stimulation.
Collapse
|
27
|
Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1821-1841. [PMID: 33557692 PMCID: PMC8327123 DOI: 10.1177/0271678x21992462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurological degenerative disorder and is the most common cause of dementia in the elderly. Clinically, AD manifests with memory and cognitive decline associated with deposition of hallmark amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although the mechanisms underlying AD remains unclear, two hypotheses have been proposed. The established amyloid hypothesis states that Aβ accumulation is the basis of AD and leads to formation of NFTs. In contrast, the two-hit vascular hypothesis suggests that early vascular damage leads to increased accumulation of Aβ deposits in the brain. Multiple studies have reported significant morphological changes of the cerebrovasculature which can result in severe functional deficits. In this review, we delve into known structural and functional vascular alterations in various mouse models of AD and the cellular and molecular constituents that influence these changes to further disease progression. Many studies shed light on the direct impact of Aβ on the cerebrovasculature and how it is disrupted during the progression of AD. However, more research directed towards an improved understanding of how the cerebrovasculature is modified over the time course of AD is needed prior to developing future interventional strategies.
Collapse
Affiliation(s)
- Jenny I Szu
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - André Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
28
|
Nyul-Toth A, DelFavero J, Mukli P, Tarantini A, Ungvari A, Yabluchanskiy A, Csiszar A, Ungvari Z, Tarantini S. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer's disease. GeroScience 2021; 43:1947-1957. [PMID: 34160781 PMCID: PMC8492885 DOI: 10.1007/s11357-021-00401-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
There is strong clinical evidence that multifaceted gait abnormalities may be manifested at early stages of Alzheimer's disease (AD), are related to cognitive decline, and can be used as an early biomarker to identify patients at risk of progressing to full-blown dementia. Despite their importance, gait abnormalities have not been investigated in mouse models of AD, which replicate important aspects of the human disease. The Tg2576 is frequently used in AD research to test therapeutic interventions targeting cellular mechanisms contributing to the genesis of AD. This transgenic mouse strain overexpresses a mutant form of the 695 amino acid isoform of human amyloid precursor protein with K670N and M671L mutations (APPK670/671L) linked to early-onset familial AD. Tg2576 mice exhibit impaired cognitive functions and increased cortical and hippocampal soluble β-amyloid levels starting from 5 months of age and increased insoluble β-amyloid levels and amyloid plaques that resemble senile plaques associated with human AD by 13 months of age. To demonstrate early manifestations of gait dysfunction in this relevant preclinical model, we characterized gait and motor performance in 10-month-old Tg2576 mice and age-matched littermate controls using the semi-automated, highly sensitive, Catwalk XT system. We found that Tg2576 mice at the pre-plaque stage exhibited significantly altered duty cycle and step patterns and decreased stride length and stride time. Base-of-support, stride time variability, stride length variability, cadence, phase dispersions and gait symmetry indices were unaltered. The presence of measurable early gait abnormalities during the pre-plaque stages of AD in this relevant preclinical mouse model has direct translational relevance and supports the view that longitudinal monitoring of gait performance could be used in addition to behavioral testing to evaluate progression of the disease and to assess treatment efficacy.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer's disease. J Cereb Blood Flow Metab 2021; 41:1501-1516. [PMID: 33444096 PMCID: PMC8221770 DOI: 10.1177/0271678x20982383] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/23/2022]
Abstract
Reductions of baseline cerebral blood flow (CBF) of ∼10-20% are a common symptom of Alzheimer's disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.
Collapse
Affiliation(s)
- Oliver Bracko
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jean C Cruz Hernández
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Turner DA. Contrasting Metabolic Insufficiency in Aging and Dementia. Aging Dis 2021; 12:1081-1096. [PMID: 34221551 PMCID: PMC8219502 DOI: 10.14336/ad.2021.0104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic insufficiency and neuronal dysfunction occur in normal aging but is exaggerated in dementia and Alzheimer's disease (AD). Metabolic insufficiency includes factors important for both substrate supply and utilization in the brain. Metabolic insufficiency occurs through a number of serial mechanisms, particularly changes in cerebrovascular supply through blood vessel abnormalities (ie, small and large vessel vasculopathy, stroke), alterations in neurovascular coupling providing dynamic blood flow supply in relation to neuronal demand, abnormalities in blood brain barrier including decreased glucose and amino acid transport, altered glymphatic flow in terms of substrate supply across the extracellular space to cells and drainage into CSF of metabolites, impaired transport into cells, and abnormal intracellular metabolism with more reliance on glycolysis and less on mitochondrial function. Recent studies have confirmed abnormal neurovascular coupling in a mouse model of AD in response to metabolic challenges, but the supply chain from the vascular system into neurons is disrupted much earlier in dementia than in equivalently aged individuals, contributing to the progressive neuronal degeneration and cognitive dysfunction associated with dementia. We discuss several metabolic treatment approaches, but these depend on characterizing patients as to who would benefit the most. Surrogate biomarkers of metabolism are being developed to include dynamic estimates of neuronal demand, sufficiency of neurovascular coupling, and glymphatic flow to supplement traditional static measurements. These surrogate biomarkers could be used to gauge efficacy of metabolic treatments in slowing down or modifying dementia time course.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.
- Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
31
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
32
|
mTOR Attenuation with Rapamycin Reverses Neurovascular Uncoupling and Memory Deficits in Mice Modeling Alzheimer's Disease. J Neurosci 2021; 41:4305-4320. [PMID: 33888602 DOI: 10.1523/jneurosci.2144-20.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is a universal feature of aging and decreased cerebral blood flow has been identified as an early event in the pathogenesis of Alzheimer's disease (AD). Cerebrovascular dysfunction in AD includes deficits in neurovascular coupling (NVC), a mechanism that ensures rapid delivery of energy substrates to active neurons through the blood supply. The mechanisms underlying NVC impairment in AD, however, are not well understood. We have previously shown that mechanistic/mammalian target of rapamycin (mTOR) drives cerebrovascular dysfunction in models of AD by reducing the activity of endothelial nitric oxide synthase (eNOS), and that attenuation of mTOR activity with rapamycin is sufficient to restore eNOS-dependent cerebrovascular function. Here we show mTOR drives NVC impairments in an AD model through the inhibition of neuronal NOS (nNOS)- and non-NOS-dependent components of NVC, and that mTOR attenuation with rapamycin is sufficient to restore NVC and even enhance it above WT responses. Restoration of NVC and concomitant reduction of cortical amyloid-β levels effectively treated memory deficits in 12-month-old hAPP(J20) mice. These data indicate that mTOR is a critical driver of NVC dysfunction and underlies cognitive impairment in an AD model. Together with our previous findings, the present studies suggest that mTOR promotes cerebrovascular dysfunction in AD, which is associated with early disruption of nNOS activation, through its broad negative impact on nNOS as well as on non-NOS components of NVC. Our studies highlight the potential of mTOR attenuation as an efficacious treatment for AD and potentially other neurologic diseases of aging.SIGNIFICANCE STATEMENT Failure of the blood flow response to neuronal activation [neurovascular coupling (NVC)] in a model of AD precedes the onset of AD-like cognitive symptoms and is driven, to a large extent, by mammalian/mechanistic target of rapamycin (mTOR)-dependent inhibition of nitric oxide synthase activity. Our studies show that mTOR also drives AD-like failure of non-nitric oxide (NO)-mediated components of NVC. Thus, mTOR attenuation may serve to treat AD, where we find that neuronal NO synthase is profoundly reduced early in disease progression, and potentially other neurologic diseases of aging with cerebrovascular dysfunction as part of their etiology.
Collapse
|
33
|
Turner DA, Degan S, Hoffmann U, Galeffi F, Colton CA. CVN-AD Alzheimer's mice show premature reduction in neurovascular coupling in response to spreading depression and anoxia compared to aged controls. Alzheimers Dement 2021; 17:1109-1120. [PMID: 33656270 PMCID: PMC8277667 DOI: 10.1002/alz.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
We compared the efficacy of neurovascular coupling and substrate supply in cerebral cortex during severe metabolic challenges in transgenic Alzheimer's [CVN-AD] and control [C57Bl/6] mice, to evaluate the hypothesis that metabolic insufficiency is a critical component of degeneration leading to dementia. We analyzed cerebral blood flow and metabolic responses to spreading depression (induced by K+ applied to the cortex) and anoxia across aging in CVN-AD + C57Bl/6 genotypes. In the CVN-AD genotype progression to histological and cognitive hallmarks of dementia is a stereotyped function of age. We correlated physiology and imaging of the cortex with the blood flow responses measured with laser doppler probes. The results show that spreading depression resulted in a hyperemic blood flow response that was dramatically reduced (24% in amplitude, 70% in area) in both middle-aged and aged CVN-AD mice compared to C57Bl/6 age-matched controls. However, spreading depression amplitude and conduction velocity (≈6 mm/min) did not differ among groups. Anoxia (100% N2 ) showed significantly decreased (by 62%) reactive blood flow and autoregulation in aged AD-CVN mice compared to aged control animals. Significantly reduced neurovascular coupling occurred prematurely with aging in CVN-AD mice. Abbreviated physiological hyperemia and decreased resilience to anoxia may enhance early-onset metabolic deficiency through decreased substrate supply to the brain. Metabolic deficiency may contribute significantly to the degeneration associated with dementia as a function of aging and regions of the brain involved.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Box 3807, Duke University Medical Center, Durham, North Carolina, 27710, USA.,Neurobiology, Box 3209, Duke University Medical Center, Durham, North Carolina, 27710, USA.,Biomedical Engineering, Box 90281, Duke University, Durham, North Carolina, 27708, USA.,Research and Surgery Services, Durham VA Medical Center, 508 Fulton Street, Durham, North Carolina, 27705, USA
| | - Simone Degan
- Neurosurgery, Box 3807, Duke University Medical Center, Durham, North Carolina, 27710, USA.,Research and Surgery Services, Durham VA Medical Center, 508 Fulton Street, Durham, North Carolina, 27705, USA
| | - Ulrike Hoffmann
- Anesthesiology, Box 3094, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Francesca Galeffi
- Neurosurgery, Box 3807, Duke University Medical Center, Durham, North Carolina, 27710, USA.,Research and Surgery Services, Durham VA Medical Center, 508 Fulton Street, Durham, North Carolina, 27705, USA
| | - Carol A Colton
- Neurology, Box 2900, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
34
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
35
|
Abstract
Hemorrhagic stroke comprises about 20% of all strokes, with intracerebral hemorrhage (ICH) being the most common type. Frequency of ICH is increased where hypertension is untreated. ICH in particularly has a disproportionately high risk of early mortality and long-term disability. Until recently, there has been a paucity of randomized controlled trials (RCTs) to provide evidence for the efficacy of various commonly considered interventions in ICH, including acute blood pressure management, coagulopathy reversal, and surgical hematoma evacuation. Evidence-based guidelines do exist for ICH and these form the basis for a framework of care. Current approaches emphasize control of extremely high blood pressure in the acute phase, rapid reversal of vitamin K antagonists, and surgical evacuation of cerebellar hemorrhage. Lingering questions, many of which are the topic of ongoing clinical research, include optimizing individual blood pressure targets, reversal strategies for newer anticoagulant medications, and the role of minimally invasive surgery. Risk stratification models exist, which derive from findings on clinical exam and neuroimaging, but care should be taken to avoid a self-fulfilling prophecy of poor outcome from limiting treatment due to a presumed poor prognosis. Cerebral venous thrombosis is an additional subtype of hemorrhagic stroke that has a unique set of causes, natural history, and treatment and is discussed as well.
Collapse
Affiliation(s)
- Arturo Montaño
- Departments of Neurology and Neurosurgery, University of Colorado, Aurora, CO, United States
| | - Daniel F Hanley
- Departments of Neurology and Neurosurgery, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - J Claude Hemphill
- Departments of Neurology and Neurosurgery, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
36
|
Schreiber S, DiFrancesco JC. Impaired occipital cerebrovascular reactivity as a biomarker for vascular β-amyloid. Neurology 2020; 95:415-416. [DOI: 10.1212/wnl.0000000000010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
37
|
Switzer AR, Cheema I, McCreary CR, Zwiers A, Charlton A, Alvarez-Veronesi A, Sekhon R, Zerna C, Stafford RB, Frayne R, Goodyear BG, Smith EE. Cerebrovascular reactivity in cerebral amyloid angiopathy, Alzheimer disease, and mild cognitive impairment. Neurology 2020; 95:e1333-e1340. [PMID: 32641520 DOI: 10.1212/wnl.0000000000010201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/16/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To assess cerebrovascular reactivity in response to a visual task in participants with cerebral amyloid angiopathy (CAA), Alzheimer disease (AD), and mild cognitive impairment (MCI) using fMRI. METHODS This prospective cohort study included 40 patients with CAA, 22 with AD, 27 with MCI, and 25 healthy controls. Each participant underwent a visual fMRI task using a contrast-reversing checkerboard stimulus. Visual evoked potentials (VEPs) were used to compare visual cortex neuronal activity in 83 participants. General linear models using least-squares means, adjusted for multiple comparisons with the Tukey test, were used to estimate mean blood oxygen level-dependent (BOLD) signal change during the task and VEP differences between groups. RESULTS After adjustment for age and hypertension, estimated mean BOLD response amplitude was as follows: CAA 1.88% (95% confidence interval [CI] 1.60%-2.15%), AD 2.26% (1.91%-2.61%), MCI 2.15% (1.84%-2.46%), and control 2.65% (2.29%-3.00%). Only patients with CAA differed from controls (p = 0.01). In the subset with VEPs, group was not associated with prolonged latencies or lower amplitudes. Lower BOLD amplitude response was associated with higher white matter hyperintensity (WMH) volumes in CAA (for each 0.1% lower BOLD response amplitude, the WMH volume was 9.2% higher, 95% CI 6.0%-12.4%) but not other groups (p = 0.002 for interaction) when controlling for age and hypertension. CONCLUSIONS Mean visual BOLD response amplitude was lowest in participants with CAA compared to controls, without differences in VEP latencies and amplitudes. This suggests that the impaired visual BOLD response is due to reduced vascular reactivity in CAA. In contrast to participants with CAA, the visual BOLD response amplitude did not differ between those with AD or MCI and controls.
Collapse
Affiliation(s)
- Aaron R Switzer
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ikreet Cheema
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Cheryl R McCreary
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Angela Zwiers
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Anna Charlton
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ana Alvarez-Veronesi
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Ramnik Sekhon
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Charlotte Zerna
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Randall B Stafford
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Richard Frayne
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Bradley G Goodyear
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| | - Eric E Smith
- From the Department of Clinical Neurosciences (A.R.S., C.R.M., A.Z., A.C., A.A.-V., R.S., C.Z., R.B.S., R.F., B.G.G., E.E.S), Hotchkiss Brain Institute (R.F., B.G.G., E.E.S), Department of Community Health Sciences (C.Z., E.E.S), and Department of Radiology (R.F., B.G.G., E.E.S), University of Calgary, Alberta; Faculty of Medicine (I.C.), University of Toronto, Ontario; and Seaman Family MR Research Centre (C.R.M., R.F., B.G.G.), Foothills Medical Centre, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Xie H, Chung DY, Kura S, Sugimoto K, Aykan SA, Wu Y, Sakadžić S, Yaseen MA, Boas DA, Ayata C. Differential effects of anesthetics on resting state functional connectivity in the mouse. J Cereb Blood Flow Metab 2020; 40:875-884. [PMID: 31092086 PMCID: PMC7168791 DOI: 10.1177/0271678x19847123] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/05/2023]
Abstract
Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is a standard approach to examine resting state functional connectivity (RSFC), but fMRI in animal models is challenging. Recently, functional optical intrinsic signal imaging-which relies on the same hemodynamic signal underlying BOLD fMRI-has been developed as a complementary approach to assess RSFC in mice. Since it is difficult to ensure that an animal is in a truly resting state while awake, RSFC measurements under anesthesia remain an important approach. Therefore, we systematically examined measures of RSFC using non-invasive, widefield optical intrinsic signal imaging under five different anesthetics in male C57BL/6J mice. We find excellent seed-based, global, and interhemispheric connectivity using tribromoethanol (Avertin) and ketamine-xylazine, comparable to results in the literature including awake animals. Urethane anesthesia yielded intermediate results, while chloral hydrate and isoflurane were both associated with poor RSFC. Furthermore, we found a correspondence between the strength of RSFC and the power of low-frequency hemodynamic fluctuations. In conclusion, Avertin and ketamine-xylazine provide robust and reproducible measures of RSFC in mice, whereas chloral hydrate and isoflurane do not.
Collapse
Affiliation(s)
- Hongyu Xie
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kazutaka Sugimoto
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Sanem A Aykan
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi Wu
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Böhm M, Chung DY, Gómez CA, Qin T, Takizawa T, Sadeghian H, Sugimoto K, Sakadžić S, Yaseen MA, Ayata C. Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression. J Cereb Blood Flow Metab 2020; 40:808-822. [PMID: 31063009 PMCID: PMC7168797 DOI: 10.1177/0271678x19845934] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.
Collapse
Affiliation(s)
- Maximilian Böhm
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Y Chung
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Gómez
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Tsubasa Takizawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kazutaka Sugimoto
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Ii Y, Ishikawa H, Matsuyama H, Shindo A, Matsuura K, Yoshimaru K, Satoh M, Taniguchi A, Matsuda K, Umino M, Maeda M, Tomimoto H. Hypertensive Arteriopathy and Cerebral Amyloid Angiopathy in Patients with Cognitive Decline and Mixed Cerebral Microbleeds. J Alzheimers Dis 2020; 78:1765-1774. [PMID: 33185609 PMCID: PMC11062589 DOI: 10.3233/jad-200992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Hypertensive arteriopathy (HA) and cerebral amyloid angiopathy (CAA) may contribute to the development of mixed cerebral microbleeds (CMBs). Recently, the total small vessel disease (SVD) scores for HA and CAA were proposed, which are determined by a combination of MRI markers to reflect overall severity of these microangiopathies. OBJECTIVE We investigated whether or not total HA-SVD and CAA-SVD scores could be used to predict overlap of HA and CAA in patients with mixed CMBs. METHODS Fifty-three subjects with mixed CMBs were retrospectively analyzed. MRI markers (CMBs, lacunes, perivascular space, white matter hyperintensity [WMH] and cortical superficial siderosis [cSS]) were assessed. The HA-SVD score and CAA-SVD score were obtained for each subject. Anterior or posterior WMH was also assessed using the age-related white matter changes scale. RESULTS The two scores were positively correlated (ρ= 0.449, p < 0.001). The prevalence of lobar dominant CMB distribution (p < 0.001) and lacunes in the centrum semiovale (p < 0.001) and the severity of WMH in the parieto-occipital lobes (p = 0.004) were significantly higher in the high CAA-SVD score group. cSS was found in four patients with high CAA-SVD score who showed lobar-dominant CMB distribution and severe posterior WMH. CONCLUSION Mixed CMBs are mainly due to HA. Assessing both two scores may predict the overlap of HA and CAA in individuals with mixed CMBs. Patients with a high CAA-SVD score may have some degree of advanced CAA, especially when lobar predominant CMBs, severe posterior WMH, lobar lacunes, or cSS are observed.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kimiko Yoshimaru
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Satoh
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Mie, Japan
| | - Akira Taniguchi
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kana Matsuda
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
41
|
Vasefi M, Hudson M, Ghaboolian-Zare E. Diet Associated with Inflammation and Alzheimer's Disease. J Alzheimers Dis Rep 2019; 3:299-309. [PMID: 31867568 PMCID: PMC6918878 DOI: 10.3233/adr-190152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurocognitive disorders, such as Alzheimer's disease (AD), affect millions of people worldwide and are characterized by cognitive decline. Human and animal studies have shown that chronic immune response and inflammation are important factors in the pathogenesis of AD. Chronic inflammation can accelerate the aggregation of amyloid-β peptides and later hyperphosphorylation of tau proteins. The exact etiology of AD is not clear, but genetics and environmental factors, such as age, family history, and lifestyle are linked to neurodegenerative diseases. Lifestyle habits, such as poor diet, are associated with inflammation and could accelerate or slow down the progression of neurodegenerative diseases. Here we provide a review of the potential conditions and factors that stimulate the inflammatory processes in AD. An understanding of inflammatory mechanisms influencing the development of AD may help to protect against dementia and AD.
Collapse
Affiliation(s)
- Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX, USA
| | | | | |
Collapse
|
42
|
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer's disease. Exp Neurol 2019; 324:113112. [PMID: 31730762 DOI: 10.1016/j.expneurol.2019.113112] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration leading to severe cognitive decline and eventual death. AD pathophysiology is complex, but neurotoxic accumulation of amyloid-β (Aβ) and hyperphosphorylation of Tau are believed to be main drivers of neurodegeneration in AD. The formation and deposition of Aβ plaques occurs in the brain parenchyma as well as in the cerebral vasculature. Thus, proper blood-brain barrier (BBB) and cerebrovascular functioning are crucial for clearance of Aβ from the brain, and neurovascular dysfunction may be a critical component of AD development. Further, neuroinflammation and dysfunction of angiogenesis, neurogenesis, and neurorestorative capabilities play a role in AD pathophysiology. Currently, there is no effective treatment to prevent or restore loss of brain tissue and cognitive decline in patients with AD. Based on multifactorial and complex pathophysiological cascades in multiple Alzheimer's disease stages, effective AD therapies need to focus on targeting early AD pathology and preserving cerebrovascular function. Neural stem cells (NSCs) participate extensively in mammalian brain homeostasis and repair and exhibit pleiotropic intrinsic properties that likely make them attractive candidates for the treatment of AD. In the review, we summarize the current advances in knowledge regarding neurovascular aspects of AD-related neurodegeneration and discuss multiple actions of NSCs from preclinical studies of AD to evaluate their potential for future clinical treatment of AD.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
43
|
Standring OJ, Friedberg J, Tripodis Y, Chua AS, Cherry JD, Alvarez VE, Huber BR, Xia W, Mez J, Alosco ML, Nicks R, Mahar I, Pothast MJ, Gardner HM, Meng G, Palmisano JN, Martin BM, Dwyer B, Kowall NW, Cantu RC, Goldstein LE, Katz DI, Stern RA, McKee AC, Stein TD. Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathol 2019; 138:401-413. [PMID: 31183671 DOI: 10.1007/s00401-019-02031-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.
Collapse
Affiliation(s)
- Oliver J Standring
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Jacob Friedberg
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Alicia S Chua
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 20118, USA
| | - Jonathan D Cherry
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Victor E Alvarez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Bertrand R Huber
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Jesse Mez
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Michael L Alosco
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Raymond Nicks
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Ian Mahar
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Morgan J Pothast
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Hannah M Gardner
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Gaoyuan Meng
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
| | - Joseph N Palmisano
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brett M Martin
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Neil W Kowall
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Robert C Cantu
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Concussion Legacy Foundation, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, 01742, USA
| | - Lee E Goldstein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Departments of Psychiatry, Ophthalmology, Boston University School of Medicine, Boston, USA
- Departments of Biomedical, Electrical and Computer Engineering, Boston University College of Engineering, Boston, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Douglas I Katz
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Braintree Rehabilitation Hospital, Braintree, MA, 02118, USA
| | - Robert A Stern
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 20119, USA
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ann C McKee
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Thor D Stein
- Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston University, Boston, MA, 02118, USA.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Veterans Affairs Medical Centers, Bedford, MA, 01730, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
44
|
Pinçon A, De Montgolfier O, Akkoyunlu N, Daneault C, Pouliot P, Villeneuve L, Lesage F, Levy BI, Thorin-Trescases N, Thorin É, Ruiz M. Non-Alcoholic Fatty Liver Disease, and the Underlying Altered Fatty Acid Metabolism, Reveals Brain Hypoperfusion and Contributes to the Cognitive Decline in APP/PS1 Mice. Metabolites 2019; 9:metabo9050104. [PMID: 31130652 PMCID: PMC6572466 DOI: 10.3390/metabo9050104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfα, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma β40- and β42-amyloid levels and altered hepatic but not brain expression of genes involved in β-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Anthony Pinçon
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Olivia De Montgolfier
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Nilay Akkoyunlu
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Caroline Daneault
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Philippe Pouliot
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Frédéric Lesage
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Bernard I Levy
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière, 75010 Paris, France.
| | | | - Éric Thorin
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Medecine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
45
|
Onos KD, Uyar A, Keezer KJ, Jackson HM, Preuss C, Acklin CJ, O’Rourke R, Buchanan R, Cossette TL, Sukoff Rizzo SJ, Soto I, Carter GW, Howell GR. Enhancing face validity of mouse models of Alzheimer's disease with natural genetic variation. PLoS Genet 2019; 15:e1008155. [PMID: 31150388 PMCID: PMC6576791 DOI: 10.1371/journal.pgen.1008155] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/17/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Classical laboratory strains show limited genetic diversity and do not harness natural genetic variation. Mouse models relevant to Alzheimer's disease (AD) have largely been developed using these classical laboratory strains, such as C57BL/6J (B6), and this has likely contributed to the failure of translation of findings from mice to the clinic. Therefore, here we test the potential for natural genetic variation to enhance the translatability of AD mouse models. Two widely used AD-relevant transgenes, APPswe and PS1de9 (APP/PS1), were backcrossed from B6 to three wild-derived strains CAST/EiJ, WSB/EiJ, PWK/PhJ, representative of three Mus musculus subspecies. These new AD strains were characterized using metabolic, functional, neuropathological and transcriptional assays. Strain-, sex- and genotype-specific differences were observed in cognitive ability, neurodegeneration, plaque load, cerebrovascular health and cerebral amyloid angiopathy. Analyses of brain transcriptional data showed strain was the greatest driver of variation. We identified significant variation in myeloid cell numbers in wild type mice of different strains as well as significant differences in plaque-associated myeloid responses in APP/PS1 mice between the strains. Collectively, these data support the use of wild-derived strains to better model the complexity of human AD.
Collapse
Affiliation(s)
- Kristen D. Onos
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kelly J. Keezer
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Christoph Preuss
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Casey J. Acklin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Rita O’Rourke
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Rebecca Buchanan
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Ileana Soto
- Department of Biomedical and Translational Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| |
Collapse
|
46
|
van Veluw SJ, Reijmer YD, van der Kouwe AJ, Charidimou A, Riley GA, Leemans A, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Histopathology of diffusion imaging abnormalities in cerebral amyloid angiopathy. Neurology 2019; 92:e933-e943. [PMID: 30700595 PMCID: PMC6404469 DOI: 10.1212/wnl.0000000000007005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/23/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE We sought to determine the underlying mechanism for altered white matter diffusion tensor imaging (DTI) measures at the histopathologic level in patients with cerebral amyloid angiopathy (CAA). METHODS Formalin-fixed intact hemispheres from 9 CAA cases and 2 elderly controls were scanned at 3-tesla MRI, including a diffusion-weighted sequence. DTI measures (i.e., fractional anisotropy [FA] and mean diffusivity [MD]) and histopathology measures were obtained from 2 tracts: the anterior thalamic radiation and inferior longitudinal fasciculus. RESULTS FA was reduced in both tracts and MD was increased in cases with CAA compared to controls. Regional FA was significantly correlated with tissue rarefaction, myelin density, axonal density, and white matter microinfarcts. MD correlated significantly with tissue rarefaction, myelin density, and white matter microinfarcts, but not axonal density. FA and MD did not correlate with oligodendrocytes, astrocytes, or gliosis. Multivariate analysis revealed that tissue rarefaction (β = -0.32 ± 0.12, p = 0.009) and axonal density (β = 0.25 ± 0.12, p = 0.04) were both independently associated with FA, whereas myelin density was independently associated with MD (β = -0.32 ± 0.12, p = 0.013). Finally, we found an association between increased MD in the frontal white matter and CAA severity in the frontal cortex (p = 0.035). CONCLUSIONS These results suggest that overall tissue loss, and in particular axonal and myelin loss, are major components underlying CAA-related alterations in DTI properties observed in living patients. The findings allow for a more mechanistic interpretation of DTI parameters in small vessel disease and for mechanism-based selection of candidate treatments to prevent vascular cognitive impairment.
Collapse
Affiliation(s)
- Susanne J van Veluw
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown.
| | - Yael D Reijmer
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Andre J van der Kouwe
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Andreas Charidimou
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Grace A Riley
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Alexander Leemans
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Brian J Bacskai
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Matthew P Frosch
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Anand Viswanathan
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| | - Steven M Greenberg
- From the J. Philip Kistler Stroke Research Center, Department of Neurology (S.J.v.V., Y.D.R., A.C., G.A.R., A.V., S.M.G.), and Neuropathology Service, C.S. Kubik Laboratory for Neuropathology (M.P.F.), Massachusetts General Hospital and Harvard Medical School, Boston; MassGeneral Institute for Neurodegenerative Disease (S.J.v.V., B.J.B., M.P.F.), Charlestown Navy Yard, MA; Department of Neurology, Brain Center Rudolf Magnus (Y.D.R.), and Image Sciences Institute (A.L.), University Medical Center Utrecht, Utrecht University, the Netherlands; and Athinoula A. Martinos Center for Biomedical Imaging (A.J.v.d.K.), Department of Radiology, Massachusetts General Hospital, Charlestown
| |
Collapse
|
47
|
Govaerts K, Lechat B, Struys T, Kremer A, Borghgraef P, Van Leuven F, Himmelreich U, Dresselaers T. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer's disease with amyloid and tau pathology. NMR IN BIOMEDICINE 2019; 32:e4037. [PMID: 30489666 DOI: 10.1002/nbm.4037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease, and many patients also present with vascular dysfunction. In this study, we aimed to assess cerebral blood flow (CBF) and cerebrovascular response (CVR) as early, pre-symptomatic (3 months of age), imaging markers in a bigenic model of Alzheimer's disease (APP.V717IxTau.P301L, biAT) and in the monogenic parental strains. We further developed our previously published combination of pulsed arterial spin labeling perfusion MRI and hypo-ventilation paradigm, which allows weaning of the mice from the ventilator. Furthermore, the commonly used isoflurane anesthesia induces vasodilation and is thereby inherently a vascular challenge. We therefore assessed perfusion differences in the mouse models under free-breathing isoflurane conditions. We report (i) that we can determine CBF and hypoventilation-based CVR under ketamine/midazolam anesthesia and wean mice from the ventilator, making it a valuable tool for assessment of CBF and CVR in mice, (ii) that biAT mice exhibit lower cortical CBF than wild-type mice at age 3 months, (iii) that CVR was increased in both biAT and APP.V717I mice but not in Tau.P301L mice, identifying the APP genotype as a strong influencer of brain CVR and (iv) that perfusion differences at baseline are masked by the widely used isoflurane anesthesia.
Collapse
Affiliation(s)
- Kristof Govaerts
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Benoit Lechat
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Universiteit Hasselt, Hasselt, Belgium
| | - Anna Kremer
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Borghgraef
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fred Van Leuven
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer's and atherosclerosis. BMC Neurosci 2018; 19:62. [PMID: 30333009 PMCID: PMC6192291 DOI: 10.1186/s12868-018-0465-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
Efficient blood supply to the brain is of paramount importance to its normal functioning and improper blood flow can result in potentially devastating neurological consequences. Cerebral blood flow in response to neural activity is intrinsically regulated by a complex interplay between various cell types within the brain in a relationship termed neurovascular coupling. The breakdown of neurovascular coupling is evident across a wide variety of both neurological and psychiatric disorders including Alzheimer’s disease. Atherosclerosis is a chronic syndrome affecting the integrity and function of major blood vessels including those that supply the brain, and it is therefore hypothesised that atherosclerosis impairs cerebral blood flow and neurovascular coupling leading to cerebrovascular dysfunction. This review will discuss the mechanisms of neurovascular coupling in health and disease and how atherosclerosis can potentially cause cerebrovascular dysfunction that may lead to cognitive decline as well as stroke. Understanding the mechanisms of neurovascular coupling in health and disease may enable us to develop potential therapies to prevent the breakdown of neurovascular coupling in the treatment of vascular brain diseases including vascular dementia, Alzheimer’s disease and stroke.
Collapse
Affiliation(s)
- Osman Shabir
- The Neurovascular and Neuroimaging Research Group, Alfred Denny Building, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Jason Berwick
- The Neurovascular and Neuroimaging Research Group, Alfred Denny Building, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
49
|
Belloy ME, Shah D, Abbas A, Kashyap A, Roßner S, Van der Linden A, Keilholz SD, Keliris GA, Verhoye M. Quasi-Periodic Patterns of Neural Activity improve Classification of Alzheimer's Disease in Mice. Sci Rep 2018; 8:10024. [PMID: 29968786 PMCID: PMC6030071 DOI: 10.1038/s41598-018-28237-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Resting state (rs)fMRI allows measurement of brain functional connectivity and has identified default mode (DMN) and task positive (TPN) network disruptions as promising biomarkers for Alzheimer's disease (AD). Quasi-periodic patterns (QPPs) of neural activity describe recurring spatiotemporal patterns that display DMN with TPN anti-correlation. We reasoned that QPPs could provide new insights into AD network dysfunction and improve disease diagnosis. We therefore used rsfMRI to investigate QPPs in old TG2576 mice, a model of amyloidosis, and age-matched controls. Multiple QPPs were determined and compared across groups. Using linear regression, we removed their contribution from the functional scans and assessed how they reflected functional connectivity. Lastly, we used elastic net regression to determine if QPPs improved disease classification. We present three prominent findings: (1) Compared to controls, TG2576 mice were marked by opposing neural dynamics in which DMN areas were anti-correlated and displayed diminished anti-correlation with the TPN. (2) QPPs reflected lowered DMN functional connectivity in TG2576 mice and revealed significantly decreased DMN-TPN anti-correlations. (3) QPP-derived measures significantly improved classification compared to conventional functional connectivity measures. Altogether, our findings provide insight into the neural dynamics of aberrant network connectivity in AD and indicate that QPPs might serve as a translational diagnostic tool.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
- Department of Biomedical Engineering, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA.
| | - Disha Shah
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anzar Abbas
- Department of Neuroscience, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Amrit Kashyap
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstraße 19. Haus C, 04103, Leipzig, Germany
| | - Annemie Van der Linden
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Shella D Keilholz
- Department of Biomedical Engineering, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
- Department of Neuroscience, Emory University, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Georgios A Keliris
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Pharmaceutical, Veterinary and Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| |
Collapse
|
50
|
Ni R, Rudin M, Klohs J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAβ mouse model of Alzheimer's disease. PHOTOACOUSTICS 2018; 10:38-47. [PMID: 29682448 PMCID: PMC5909030 DOI: 10.1016/j.pacs.2018.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 05/18/2023]
Abstract
The effect of cerebral amyloidosis on cerebral hemodynamics was investigated with photoacoustic tomography (PAT) and magnetic resonance imaging (MRI). First, the sensitivity and robustness of PAT for deriving metrics of vascular and tissue oxygenation in the murine brain was assessed in wild-type mice with a hyperoxia-normoxia challenge. Secondly, cerebral oxygenation was assessed in young and aged arcAβ mice and wild-type controls with PAT, while cerebral blood flow (CBF) was determined by perfusion MRI. The investigations revealed that PAT can sensitively and robustly detect physiological changes in vascular and tissue oxygenation. An advanced stage of cerebral amyloidosis in arcAβ mice is accompanied by a decreases in cortical CBF and the cerebral metabolic rate of oxygen (CMRO2), as oxygen extraction fraction (OEF) has been found unaffected. Thus, PAT constitutes a robust non-invasive tool for deriving metrics of tissue oxygenation, extraction and metabolism in the mouse brain under physiological and disease states.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8093 Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8093 Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, 8008 Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|