1
|
Jannatdoust P, Valizadeh P, Bagherieh S, Cattarinussi G, Sambataro F, Cirella L, Delvecchio G. Neuroimaging alterations in relatives of patients with obsessive-compulsive disorder: A review of magnetic resonance imaging studies. J Affect Disord 2025; 384:180-207. [PMID: 40334854 DOI: 10.1016/j.jad.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/11/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Obsessive-Compulsive Disorder (OCD) demonstrates substantial heritability, implicating a genetic contribution to its pathophysiology. Neuroimaging studies of unaffected first-degree relatives offer insight into the neurobiology of the disorder. METHODS A systematic search of PubMed, Web of Science, and Scopus was conducted in August 2024 to identify Magnetic Resonance Imaging (MRI) studies comparing unaffected relatives of individuals with OCD to healthy controls. Significant findings were reported based on patterns of brain changes in individuals with OCD and their relatives. RESULTS A total of 32 studies were reviewed, including 18 functional MRI, 8 structural MRI, and 7 diffusion tensor imaging studies. Despite inconsistencies arising from heterogeneity in imaging modalities, age groups, and analytic methods, certain regions and patterns emerged repeatedly. Results were grouped into four clusters. Cluster 1, the most consistently reported, involved shared or intermediate alterations in relatives, suggesting putative endophenotypes. Frequently implicated regions included the insula, thalamus, dorsolateral and ventromedial prefrontal cortices, and parietal cortex. Cluster 2 described more pronounced alterations in relatives than in OCD patients, often in frontoparietal regions, possibly reflecting preclinical vulnerability or protective features. Cluster 3 showed opposite trends in relatives, particularly in occipital and parietal regions, which may indicate compensatory or protective processes. Although very few, there were some findings that were specific to relatives (cluster 4). CONCLUSION This review identifies neuroimaging findings in unaffected relatives of individuals with OCD. Most studies suggest potential endophenotypes, with some reflecting compensatory mechanisms. These findings support further research to validate the proposed clusters and clarify heritable neural markers of OCD.
Collapse
Affiliation(s)
- Payam Jannatdoust
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Parya Valizadeh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Luisa Cirella
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Reid JE, Pellegrini L, Drummond L, Varlakova Y, Shahper S, Baldwin DS, Manson C, Chamberlain SR, Robbins TW, Wellsted D, Fineberg NA. Differential effects of sertraline and cognitive behavioural therapy on behavioural inhibition in patients with obsessive compulsive disorder. Int Clin Psychopharmacol 2025; 40:148-155. [PMID: 38568112 DOI: 10.1097/yic.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Patients with obsessive compulsive disorder (OCD) randomised to sertraline, manualised cognitive behavioural therapy (CBT), or combination (sertraline + CBT), underwent cognitive assessment. Cognitive testing was conducted at baseline and at week 16. The stop signal reaction time task (SSRT) was used to evaluate motor impulsivity and attentional flexibility was evaluated using the intra/extra-dimensional set shifting task. Paired-samples t -tests or nonparametric variants were used to compare baseline and posttreatment scores within each treatment group. Forty-five patients were tested at baseline (sertraline n = 14; CBT n = 14; sertraline + CBT n = 17) and 23 patients at week 16 (sertraline n = 6; CBT n = 7; sertraline + CBT n = 10). The mean dosage of sertraline was numerically higher in those taking sertraline as a monotherapy (166.67 mg) compared with those taking sertraline in combination with CBT (100 mg). Analysis of pre-post treatment scores using an intent-to-treat-analysis found a significant reduction in the SSRT in those treated with sertraline, whilst there was no significant change on this task for those treated with CBT or the combination. This study found that motor inhibition improved significantly following sertraline monotherapy. Suboptimal sertraline dosing might explain the failure to detect an effect on motor inhibition in the group receiving combination of sertraline + CBT. Higher dose sertraline may have broader cognitive effects than CBT for OCD, motor impulsivity may have value as a measure of treatment outcome and, by extension, the SSRT could serve as a biomarker for personalising care.
Collapse
Affiliation(s)
- Jemma E Reid
- Cornwall Partnership NHS Foundation Trust, Cornwall
- Hertfordshire Partnership University NHS Foundation Trust
| | - Luca Pellegrini
- Hertfordshire Partnership University NHS Foundation Trust
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
- Centre for Psychedelic Research, Imperial College London
| | - Lynne Drummond
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
- South West London and St George's Mental Health NHS Trust, London
| | - Yana Varlakova
- Hertfordshire Partnership University NHS Foundation Trust
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
| | - Sonia Shahper
- Hertfordshire Partnership University NHS Foundation Trust
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
| | - David S Baldwin
- University of Southampton Faculty of Medicine, Southampton, UK
- University of Cape Town, Cape Town, South Africa
| | | | | | - Trevor W Robbins
- University of Cambridge Clinical Medical School, Addenbrookes Hospital and
| | - David Wellsted
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
| | - Naomi A Fineberg
- Hertfordshire Partnership University NHS Foundation Trust
- University of Hertfordshire, College Lane Campus, Hatfield, Hertfordshire
- University of Cambridge Clinical Medical School, Addenbrookes Hospital and
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge Cambridge, UK
| |
Collapse
|
3
|
Walder-Christensen KK, Soliman HA, Calakos N, Dzirasa K. Synaptic editing of frontostriatal circuitry prevents excessive grooming in SAPAP3-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645613. [PMID: 40196561 PMCID: PMC11974874 DOI: 10.1101/2025.03.27.645613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Synaptic dysfunction has been implicated as a key mechanism underlying the pathophysiology of psychiatric disorders. Most pharmacological therapeutics for schizophrenia, autism spectrum disorder, obsessive-compulsive disorder, and major depressive disorder temporarily augment chemical synapse function. Nevertheless, medication non-compliance is a major clinical challenge, and behavioral dysfunction often returns following pharmacotherapeutic discontinuation. Here, we deployed a designer electrical synapse to edit a single class of chemical synapses in a genetic mouse model of obsessive-compulsive disorder (OCD). Editing these synapses in juvenile mice normalized circuit function and prevented the emergence of pathological repetitive behavior in adulthood. Thus, we establish precision circuit editing as a putative strategy for preventative psychotherapeutics.
Collapse
Affiliation(s)
| | - Hannah A Soliman
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nicole Calakos
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kafui Dzirasa
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Biomedical Engineering, Duke University, Durham North Carolina 27708, USA
| |
Collapse
|
4
|
Tubío-Fungueiriño M, Cernadas E, Fernández-Delgado M, Arrojo M, Bertolin S, Real E, Menchon JM, Carracedo A, Alonso P, Fernández-Prieto M, Segalàs C. Prediction of pharmacological response in OCD using machine learning techniques and clinical and neuropsychological variables. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2025; 18:51-57. [PMID: 39551240 DOI: 10.1016/j.sjpmh.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Obsessive compulsive disorder is associated with affected executive functioning, including memory, cognitive flexibility, and organizational strategies. As it was reported in previous studies, patients with preserved executive functions respond better to pharmacological treatment, while others need to keep trying different pharmacological strategies. MATERIAL AND METHODS In this work we used machine learning techniques to predict pharmacological response (OCD patients' symptomatology reduction) based on executive functioning and clinical variables. Among those variables we used anxiety, depression and obsessive-compulsive symptoms scores by applying State-Trait Anxiety Inventory, Hamilton Depression Rating Scale and Yale-Brown Obsessive Compulsive Scale respectively, while Rey-Osterrieth Complex Figure Test was used to assess organisation skills and non-verbal memory; Digits' subtests from Wechsler Adult Intelligence Scale-IV were used to assess short-term memory and working memory; and Raven's Progressive Matrices were applied to assess problem solving and abstract reasoning. RESULTS As a result of our analyses, we created a reliable algorithm that predicts Y-BOCS score after 12 weeks based on patients' clinical characteristics (sex at birth, age, pharmacological strategy, depressive and obsessive-compulsive symptoms, years passed since diagnostic and Raven's Progressive Matrices score) and Digits' scores. A high correlation (0.846) was achieved in predicted and true values. CONCLUSIONS The present study proves the viability to predict if a patient would respond or not to a certain pharmacological strategy with high reliability based on sociodemographics, clinical variables and cognitive functions as short-term memory and working memory. These results are promising to develop future prediction models to help clinical decision making.
Collapse
Affiliation(s)
- Maria Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Eva Cernadas
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Fernández-Delgado
- Centro Singular de Investigación en Tecnoloxías Intelixentes da USC (CiTIUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Manuel Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Menchon
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Angel Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain; Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Montse Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Pública Galega Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Araújo A, Duarte IC, Sousa T, Meneses S, Pereira AT, Robbins T, Macedo A, Castelo-Branco M. "Actor-critic" dichotomous hyperactivation and hypoconnectivity in obsessive-compulsive disorder. Neuroimage Clin 2024; 45:103729. [PMID: 39787803 PMCID: PMC11762915 DOI: 10.1016/j.nicl.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Dysfunctional response inhibition, mediated by the striatum and its connections, is thought to underly the clinical manifestations of obsessive-compulsive disorder (OCD). However, the exact neural mechanisms remain controversial. In this study, we undertook a novel approach by positing that a) inhibition is a dynamic construct inherently susceptible to numerous failures, which require error-processing, and b) the actor-critic framework of reinforcement learning can integrate neural patterns of inhibition and error-processing in OCD with their behavioural correlates. We invited nineteen adults with OCD and 21 age-matched healthy controls to perform an fMRI-adjusted stop-signal task. Then, we extracted brain activation and connectivity values regarding distinct task phases in the "actor" and "critic" regions, here corresponding to the caudate's head and dorsal putamen, and midbrain's nuclei (ventral tegmental area and substantia nigra). During response preparation phases of the inhibitory process, individuals with OCD exhibited decreased functional connectivity between the "critic" structures and frontal regions involved in cognitive and executive control. Activity analysis revealed task-related hyperactivation in the midbrain alongside error-processing-specific hyperactivation in the striatum, which was correlated with excessive behavioural slowness, also found in the clinical group. Finally, we identified a remarkable opponency between activity in the ventral tegmental area and caudate leading to direct increases and indirect decreases in symptom severity. We propose a unique "actor-critic"-based domain- and timing-dependent neural profile in OCD, reflecting "harm-avoidant" styles for response suppression, and influencing symptom severity. The dichotomy of hypoconnectivity and hyperactivation in the "critic" along with the opponent relationship between the "actor" and the "critic" in determining symptom severity suggests the implication of neural adaptation mechanisms in OCD with potential relevance for neurobiologically-driven therapies.
Collapse
Affiliation(s)
- Ana Araújo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal; Department of Psychiatry, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Isabel C Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Teresa Sousa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Sofia Meneses
- Department of Psychology, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Ana T Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Trevor Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - António Macedo
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Institute of Psychological Medicine, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal; Department of Psychiatry, Local Health Unit of Coimbra, 3004-561 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal.
| |
Collapse
|
6
|
Wang Z, Zhang C, Guo Q, Fan Q, Wang L. Concurrent oculomotor hyperactivity and deficient anti-saccade performance in obsessive-compulsive disorder. J Psychiatr Res 2024; 180:402-410. [PMID: 39531947 DOI: 10.1016/j.jpsychires.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Existing studies mainly focused on the inhibition of the task-interfering response to understand the inhibitory deficits of obsessive-compulsive disorder (OCD). However, recent studies suggested that inhibitory function is broadly involved in response preparation and implementation. It is yet unknown if the inhibition dysfunction in OCD extends beyond the task-interfering response to the general inhibitory function. Here we address this issue based on the multidimensional eye-movement measurements, which can better capture the inhibitory deficits than manual responses. Thirty-one OCD patients and 32 healthy controls (HCs) completed the anti-saccade task where multidimensional eye-movement features were developed. Confirmatory factor analysis (CFA) suggested two components of inhibitory function that negatively correlated with each other: one component of oculomotor hyperactivity in generating oculomotor output which is characterized with early premature saccades, early cross rates and saccade number; the other component of task-specific oculomotor efficiency which is characterized with task accuracy, saccade latency, correction rate, and amplitude gain. Importantly, OCD showed both stronger oculomotor hyperactivity and deficient oculomotor efficiency than HCs, and the machine-learning-based classifications showed that the features of oculomotor hyperactivity had higher prediction accuracy than the features of oculomotor efficiency in distinguishing OCD from HCs. Our results suggested that OCD has concurrent deficits in oculomotor hyperactivity and oculomotor efficiency, which may originate from a common inhibitory dysfunction.
Collapse
Affiliation(s)
- Zhenni Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihui Guo
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Lihui Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Psychology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| |
Collapse
|
7
|
Eng GK, De Nadai AS, Collins KA, Recchia N, Tobe RH, Bragdon LB, Stern ER. Identifying subgroups of urge suppression in Obsessive-Compulsive Disorder using machine learning. J Psychiatr Res 2024; 177:129-139. [PMID: 39004004 PMCID: PMC11409861 DOI: 10.1016/j.jpsychires.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Obsessive-compulsive disorder (OCD) is phenomenologically heterogeneous. While predominant models suggest fear and harm prevention drive compulsions, many patients also experience uncomfortable sensory-based urges ("sensory phenomena") that may be associated with heightened interoceptive sensitivity. Using an urge-to-blink eyeblink suppression paradigm to model sensory-based urges, we previously found that OCD patients as a group had more eyeblink suppression failures and greater activation of sensorimotor-interoceptive regions than controls. However, conventional approaches assuming OCD homogeneity may obscure important within-group variability, impeding precision treatment development. This study investigated the heterogeneity of urge suppression failure in OCD and examined relationships with clinical characteristics and neural activation. Eighty-two patients with OCD and 38 controls underwent an fMRI task presenting 60-s blocks of eyeblink suppression alternating with free-blinking blocks. Latent profile analysis identified OCD subgroups based on number of erroneous blinks during suppression. Subgroups were compared on behavior, clinical characteristics, and brain activation during task. Three patient subgroups were identified. Despite similar overall OCD severity, the subgroup with the most erroneous eyeblinks had the highest sensory phenomena severity, interoceptive sensitivity, and subjective urge intensity. Compared to other subgroups, this subgroup exhibited more neural activity in somatosensory and interoceptive regions during the early phase (first 30 s) of blink suppression and reduced activity in the middle frontal gyrus during the late phase (second 30 s) as the suppression period elapsed. Heterogeneity of urge suppression in OCD was associated with clinical characteristics and brain function. Our results reveal potential treatment targets that could inform personalized medicine.
Collapse
Affiliation(s)
- Goi Khia Eng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA.
| | - Alessandro S De Nadai
- Simches Division of Child and Adolescent Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Katherine A Collins
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Nicolette Recchia
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Russell H Tobe
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA; Center for the Developing Brain, Child Mind Institute, New York, 10022, USA
| | - Laura B Bragdon
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Grossman School of Medicine, New York, 10016, USA; Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, New York, 10962, USA; Neuroscience Institute, New York University Grossman School of Medicine, New York, 10016, USA
| |
Collapse
|
8
|
Clarke AT, Fineberg NA, Pellegrini L, Laws KR. The relationship between cognitive phenotypes of compulsivity and impulsivity and clinical variables in obsessive-compulsive disorder: A systematic review and Meta-analysis. Compr Psychiatry 2024; 133:152491. [PMID: 38714143 DOI: 10.1016/j.comppsych.2024.152491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND This systematic review and meta-analysis explored the relationship between cognitive phenotypes of compulsivity and impulsivity and clinical variables in obsessive-compulsive disorder (OCD). METHODS We searched Pubmed, Scopus, Cochrane Library and PsychINFO databases until February 2023 for studies comparing patients with OCD and healthy controls on cognitive tests of compulsivity and impulsivity. The study followed PRISMA guidelines and was pre-registered on PROSPERO (CRD42021299017). RESULTS Meta-analyses of 112 studies involving 8313 participants (4289 patients with OCD and 4024 healthy controls) identified significant impairments in compulsivity (g = -0.58, [95%CI -0.68, -0.47]; k = 76) and impulsivity (g = -0.48, [95%CI -0.57, -0.38]; k = 63); no significant difference between impairments. Medication use and comorbid psychiatric disorders were not significantly related to impairments. No associations were revealed with OCD severity, depression/anxiety, or illness duration. CONCLUSION Cognitive phenotypes of compulsivity and impulsivity in patients with OCD appear to be orthogonal to clinical variables, including severity of OCD symptomatology. Their clinical impact is poorly understood and may require different clinical assessment tools and interventions.
Collapse
Affiliation(s)
- Aaron T Clarke
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Naomi A Fineberg
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK; Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, UK; University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Luca Pellegrini
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK; Hertfordshire Partnership University NHS Foundation Trust, Welwyn Garden City, UK; Centre for Psychedelic Research, Imperial College London, London, UK
| | - Keith R Laws
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
9
|
Marzuki AA, Banca P, Garofalo S, Degni LAE, Dalbagno D, Badioli M, Sule A, Kaser M, Conway-Morris A, Sahakian BJ, Robbins TW. Compulsive avoidance in youths and adults with OCD: an aversive pavlovian-to-instrumental transfer study. Transl Psychiatry 2024; 14:308. [PMID: 39060253 PMCID: PMC11282188 DOI: 10.1038/s41398-024-03028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Compulsive behaviour may often be triggered by Pavlovian cues. Assessing how Pavlovian cues drive instrumental behaviour in obsessive-compulsive disorder (OCD) is therefore crucial to understand how compulsions develop and are maintained. An aversive Pavlovian-to-Instrumental transfer (PIT) paradigm, particularly one involving avoidance/cancellation of negative outcomes, can enable such investigation and has not previously been studied in clinical-OCD. Forty-one participants diagnosed with OCD (21 adults; 20 youths) and 44 controls (21 adults; 23 youths) completed an aversive PIT task. Participants had to prevent the delivery of unpleasant noises by moving a joystick in the correct direction. They could infer these correct responses by learning appropriate response-outcome (instrumental) and stimulus-outcome (Pavlovian) associations. We then assessed whether Pavlovian cues elicited specific instrumental avoidance responses (specific PIT) and induced general instrumental avoidance (general PIT). We investigated whether task learning and confidence indices influenced PIT strength differentially between groups. There was no overall group difference in PIT performance, although youths with OCD showed weaker specific PIT than youth controls. However, urge to avoid unpleasant noises and preference for safe over unsafe stimuli influenced specific and general PIT respectively in OCD, while PIT in controls was more influenced by confidence in instrumental and Pavlovian learning. Thus, in OCD, implicit motivational factors, but not learnt knowledge, may contribute to the successful integration of aversive Pavlovian and instrumental cues. This implies that compulsive avoidance may be driven by these automatic processes. Youths with OCD show deficits in specific PIT, suggesting cue integration impairments are only apparent in adolescence. These findings may be clinically relevant as they emphasise the importance of targeting such implicit motivational processes when treating OCD.
Collapse
Affiliation(s)
- Aleya A Marzuki
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia.
| | - Paula Banca
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Sara Garofalo
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Luigi A E Degni
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | - Marco Badioli
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Akeem Sule
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Muzaffer Kaser
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | | | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Pickenhan L, Milton AL. Opening new vistas on obsessive-compulsive disorder with the observing response task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:249-265. [PMID: 38316708 PMCID: PMC11039534 DOI: 10.3758/s13415-023-01153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/07/2024]
Abstract
Obsessive-compulsive disorder (OCD), a highly prevalent and debilitating disorder, is incompletely understood in terms of underpinning behavioural, psychological, and neural mechanisms. This is attributable to high symptomatic heterogeneity; cardinal features comprise obsessions and compulsions, including clinical subcategories. While obsessive and intrusive thoughts are arguably unique to humans, dysfunctional behaviours analogous to those seen in clinical OCD have been examined in nonhuman animals. Genetic, ethological, pharmacological, and neurobehavioural approaches all contribute to understanding the emergence and persistence of compulsive behaviour. One behaviour of particular interest is maladaptive checking, whereby human patients excessively perform checking rituals despite these serving no purpose. Dysfunctional and excessive checking is the most common symptom associated with OCD and can be readily operationalised in rodents. This review considers animal models of OCD, the neural circuitries associated with impairments in habit-based and goal-directed behaviour, and how these may link to the compulsions observed in OCD. We further review the Observing Response Task (ORT), an appetitive instrumental learning procedure that distinguishes between functional and dysfunctional checking, with translational application in humans and rodents. By shedding light on the psychological and neural bases of compulsive-like checking, the ORT has potential to offer translational insights into the underlying mechanisms of OCD, in addition to being a platform for testing psychological and neurochemical treatment approaches.
Collapse
Affiliation(s)
- Luise Pickenhan
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
| |
Collapse
|
11
|
Abstract
Background Cognitive training (CT) for illness-linked neuropsychological deficits has been attempted in psychiatric disorders and, more recently, in obsessive-compulsive disorder (OCD). However, studies are few and far between, with a limited understanding of factors contributing to efficacy. This article aims to provide a comprehensive critical review of studies employing CT in OCD. Methods This systematic review follows the Preferred Reporting of Items for Systematic Review and Meta-Analyses Protocols. Empirical studies that used any form of CT/remediation in individuals with OCD were included. Results Eight articles met the criteria for inclusion, of which five were randomized controlled trials, two were case series, and one was an open-label trial. The studies have predominantly demonstrated improved trained cognitive functions, with only two showing generalization to untrained domains like clinical symptoms and socio-occupational functioning. Conclusion There are few controlled trials of CT in OCD, which limits conclusions of efficacy. Given the sparse research in the area, the review summarizes the current status of research and examines important methodological considerations that may inform future studies.
Collapse
Affiliation(s)
- Mahashweta Bhattacharya
- Dept. of Clinical Psychology, National Institute of Mental health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Obsessive-Compulsive Disorder Clinic, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Accelerator Program for Discovery in Brain Disorders using Stem cells (ADBS), Government of India
| | - Himani Kashyap
- Dept. of Clinical Psychology, National Institute of Mental health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
- Obsessive-Compulsive Disorder Clinic, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Y.C. Janardhan Reddy
- Obsessive-Compulsive Disorder Clinic, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
- Accelerator Program for Discovery in Brain Disorders using Stem cells (ADBS), Government of India
- Dept. of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
12
|
Xu C, Hou G, He T, Ruan Z, Guo X, Chen J, Wei Z, Seger CA, Chen Q, Peng Z. Local structural and functional MRI markers of compulsive behaviors and obsessive-compulsive disorder diagnosis within striatum-based circuits. Psychol Med 2024; 54:710-720. [PMID: 37642202 DOI: 10.1017/s0033291723002386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.
Collapse
Affiliation(s)
- Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen, China
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zhongqiang Ruan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xinrong Guo
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Qi Chen
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
13
|
Alizadehgoradel J, Molaei B, Barzegar Jalali K, Pouresmali A, Sharifi K, Hallajian AH, Nejati V, Glinski B, Vicario CM, Nitsche MA, Salehinejad MA. Targeting the prefrontal-supplementary motor network in obsessive-compulsive disorder with intensified electrical stimulation in two dosages: a randomized, controlled trial. Transl Psychiatry 2024; 14:78. [PMID: 38316750 PMCID: PMC10844238 DOI: 10.1038/s41398-024-02736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is associated with a high disease burden, and treatment options are limited. We used intensified electrical stimulation in two dosages to target a main circuitry associated with the pathophysiology of OCD, left dorsolateral prefrontal cortex (l-DLPFC), and pre-supplementary motor area (pre-SMA) and assessed clinical outcomes, neuropsychological performance, and brain physiology. In a double-blind, randomized controlled trial, thirty-nine patients with OCD were randomly assigned to three groups of sham, 2-mA, or 1-mA transcranial direct current stimulation (tDCS) targeting the l-DLPFC (F3) and pre-SMA (FC2) with anodal and cathodal stimulation respectively. The treatment included 10 sessions of 20-minute stimulation delivered twice per day with 20-min between-session intervals. Outcome measures were reduction in OCD symptoms, anxiety, and depressive states, performance on a neuropsychological test battery (response inhibition, working memory, attention), oscillatory brain activities, and functional connectivity. All outcome measures except EEG were examined at pre-intervention, post-intervention, and 1-month follow-up times. The 2-mA protocol significantly reduced OCD symptoms, anxiety, and depression states and improved quality of life after the intervention up to 1-month follow-up compared to the sham group, while the 1-mA protocol reduced OCD symptoms only in the follow-up and depressive state immediately after and 1-month following the intervention. Both protocols partially improved response inhibition, and the 2-mA protocol reduced attention bias to OCD-related stimuli and improved reaction time in working memory performance. Both protocols increased alpha oscillatory power, and the 2-mA protocol decreased delta power as well. Both protocols increased connectivity in higher frequency bands at frontal-central areas compared to the sham. Modulation of the prefrontal-supplementary motor network with intensified tDCS ameliorates OCD clinical symptoms and results in beneficial cognitive effects. The 2-mA intensified stimulation resulted in larger symptom reduction and improved more converging outcome variables related to therapeutic efficacy. These results support applying the intensified prefrontal-SMA tDCS in larger trials.
Collapse
Affiliation(s)
| | - Behnam Molaei
- Department of Psychiatry and Psychology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Asghar Pouresmali
- Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kiomars Sharifi
- Sharif Brain Center, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | | | - Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| | - Benedikt Glinski
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
- German Centre for Mental Health (DZPG), Bochum, Germany
| | - Mohammad Ali Salehinejad
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| |
Collapse
|
14
|
Tran DMD, Chowdhury NS, Harris JA, Livesey EJ. The effect of staircase stopping accuracy and testing environment on stop-signal reaction time. Behav Res Methods 2024; 56:500-509. [PMID: 36703001 PMCID: PMC9879560 DOI: 10.3758/s13428-022-02058-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
The stop-signal task is widely used in experimental psychology and cognitive neuroscience research, as well as neuropsychological and clinical practice for assessing response inhibition. The task requires participants to make speeded responses on a majority of trials, but to inhibit responses when a stop signal appears after the imperative cue. The stop-signal delay after the onset of the imperative cue determines how difficult it is to cancel an initiated action. The delay is typically staircased to maintain a 50% stopping accuracy for an estimation of stopping speed to be calculated. However, the validity of this estimation is compromised when participants engage in strategic slowing, motivated by a desire to avoid stopping failures. We hypothesized that maintaining stopping accuracy at 66.67% reduces this bias, and that slowing may also be impacted by the level of experimenter supervision. We found that compared with 50%, using a 66.67% stopping accuracy staircase produced slower stop-signal reaction time estimations (≈7 ms), but resulted in fewer strategic slowing exclusions. Additionally, both staircase procedures had similar within-experiment test-retest reliability. We also found that while individual and group testing in a laboratory setting produced similar estimations of stopping speed, participants tested online produced slower estimates. Our findings indicate that maintaining stopping accuracy at 66.67% is a reliable method for estimating stopping speed and can have benefits over the standard 50% staircase procedure. Further, our results show that care should be taken when comparing between experiments using different staircases or conducted in different testing environments.
Collapse
Affiliation(s)
- Dominic M D Tran
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia.
| | | | - Justin A Harris
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| | - Evan J Livesey
- School of Psychology, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Gargano SP, Santos MG, Taylor SM, Pastis I. A closer look to neural pathways and psychopharmacology of obsessive compulsive disorder. Front Behav Neurosci 2023; 17:1282246. [PMID: 38033477 PMCID: PMC10687174 DOI: 10.3389/fnbeh.2023.1282246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The intricate neural pathways involved in obsessive-compulsive disorder (OCD) affect areas of our brain that control executive functioning, organization, and planning. OCD is a chronic condition that can be debilitating, afflicting millions of people worldwide. The lifetime prevalence of OCD in the US is 2.3%. OCD is predominantly characterized by obsessions consisting of intrusive and unwanted thoughts, often with impulses that are strongly associated with anxiety. Compulsions with OCD encompass repetitive behaviors or mental acts to satisfy their afflicted obsessions or impulses. While these factors can be unique to each individual, it has been widely established that the etiology of OCD is complex as it relates to neuronal pathways, psychopharmacology, and brain chemistry involved and warrants further exploration.
Collapse
Affiliation(s)
- Steven P. Gargano
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Melody G. Santos
- Internal Medicine and Psychiatry Combined Program, Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| | - Sydney M. Taylor
- East Carolina University Brody School of Medicine, Greenville, NC, United States
| | - Irene Pastis
- Department of Psychiatry and Behavioral Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
16
|
Han S, Xue K, Chen Y, Xu Y, Li S, Song X, Guo HR, Fang K, Zheng R, Zhou B, Chen J, Wei Y, Zhang Y, Cheng J. Identification of shared and distinct patterns of brain network abnormality across mental disorders through individualized structural covariance network analysis. Psychol Med 2023; 53:6780-6791. [PMID: 36876493 DOI: 10.1017/s0033291723000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Mental disorders, including depression, obsessive compulsive disorder (OCD), and schizophrenia, share a common neuropathy of disturbed large-scale coordinated brain maturation. However, high-interindividual heterogeneity hinders the identification of shared and distinct patterns of brain network abnormalities across mental disorders. This study aimed to identify shared and distinct patterns of altered structural covariance across mental disorders. METHODS Subject-level structural covariance aberrance in patients with mental disorders was investigated using individualized differential structural covariance network. This method inferred structural covariance aberrance at the individual level by measuring the degree of structural covariance in patients deviating from matched healthy controls (HCs). T1-weighted anatomical images of 513 participants (105, 98, 190 participants with depression, OCD and schizophrenia, respectively, and 130 age- and sex-matched HCs) were acquired and analyzed. RESULTS Patients with mental disorders exhibited notable heterogeneity in terms of altered edges, which were otherwise obscured by group-level analysis. The three disorders shared high difference variability in edges attached to the frontal network and the subcortical-cerebellum network, and they also exhibited disease-specific variability distributions. Despite notable variability, patients with the same disorder shared disease-specific groups of altered edges. Specifically, depression was characterized by altered edges attached to the subcortical-cerebellum network; OCD, by altered edges linking the subcortical-cerebellum and motor networks; and schizophrenia, by altered edges related to the frontal network. CONCLUSIONS These results have potential implications for understanding heterogeneity and facilitating personalized diagnosis and interventions for mental disorders.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| |
Collapse
|
17
|
Rao PS, Rangaswamy M, Evans J, Dutt A. Prospective memory in early and established psychosis: An Indian perspective. J Neuropsychol 2023; 17:461-476. [PMID: 37070648 DOI: 10.1111/jnp.12314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Individuals affected by psychosis often have deficits in several neurocognitive functions. Prospective memory (PM), the ability to remember to do things, is crucial for activities of daily living, social and occupational functioning, but very few studies have attempted to examine this domain of functioning in people with psychosis, particularly in India. A total of 71 patients with psychosis, (both early and established psychosis), and 140 age, gender and education-matched healthy controls were assessed using the Positive and Negative Symptom Scale, Hospital Anxiety and Depression scale, and Addenbrooke's Cognitive Examination. PM was assessed using the Cambridge Prospective Memory Test and the Prospective and Retrospective Memory Questionnaire (PRMQ). Group differences were evaluated using Mann-Whitney U-tests. Significantly greater cognitive deficits, higher anxiety and depression were evident in the psychosis group compared with controls. The psychosis group performed significantly poorer on both time- and event-based tests in CAMPROMPT than controls. These differences remained when controlling for age, education, general cognitive functioning and mood. The subjective measure of PM (PRMQ) did not differentiate the two groups. The PM performance of early and established psychosis patients was similar. Comparisons with cross-cultural data (PRMQ UK norms and CAMPROMPT and PRMQ Chinese data) revealed important differences in PM performance. Individuals with psychosis have significant deficits in both time- and event-based PM. CAMPROMPT emerged as a more sensitive PM measure compared with PRMQ. Results from cross-cultural comparisons underscore the need for cultural contextualization of assessments.
Collapse
Affiliation(s)
- Pulijala Sulakshana Rao
- Department of Psychology, Christ University, Bangalore, Karnataka, 560029, India
- Duttanagar Mental Health Centre, Kolkata, 700077, India
| | - Madhavi Rangaswamy
- Department of Psychology, Christ University, Bangalore, Karnataka, 560029, India
| | - Jonathan Evans
- Department of Psychology, Christ University, Bangalore, Karnataka, 560029, India
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anirban Dutt
- Department of Psychology, Christ University, Bangalore, Karnataka, 560029, India
- Duttanagar Mental Health Centre, Kolkata, 700077, India
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
18
|
Eldridge MA, Smith MC, Oppler SH, Pearl JE, Shim JY, Lerchner W, Richmond BJ. Unilateral caudate inactivation increases motor impulsivity in rhesus monkeys. CURRENT RESEARCH IN NEUROBIOLOGY 2023. [DOI: 10.1016/j.crneur.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
19
|
Executive functioning in body dysmorphic disorder and obsessive-compulsive disorder. CNS Spectr 2023; 28:33-40. [PMID: 34313212 DOI: 10.1017/s1092852921000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To assess executive functions (EFs) in patients with body dysmorphic disorder (BDD) and obsessive-compulsive disorder (OCD) compared with healthy controls. METHODS Adults diagnosed with BDD (n = 26) or OCD (n = 29) according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and healthy controls (n = 28) underwent validated and computerized neuropsychological tests, spatial working memory (SWM), intra-extra-dimensional set shifting (IED), and stop signal task (SST), from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Test performance was compared between groups, and correlated with standardized symptom severity of BDD and OCD. Significance level was set to P < .05. RESULTS There were no statistically significant between-group differences on key outcome measures in SWM, IED, or SST. There was a weak positive correlation between symptom severity and test errors on SWM and IED in both OCD and BDD groups; increased clinical severity was associated with more errors in these tests. Furthermore, there was a negative correlation between symptom severity and SST in the BDD group. CONCLUSIONS Patients with BDD or OCD did not differ from healthy control subjects in terms of test performance; however, there were several statistically significant correlations between symptom severity and performance in those with BDD or OCD. More studies on EFs in BDD and OCD are required to elucidate if there are differences in EFs between these two disorders.
Collapse
|
20
|
Conelea CA, Morris S, McLaughlin N, Mamaril E, Benito K, Case B, Garcia A. Response Inhibition in Youth Undergoing Intensive Treatment for Obsessive Compulsive Disorder. J Obsessive Compuls Relat Disord 2023; 36:100764. [PMID: 36644665 PMCID: PMC9835685 DOI: 10.1016/j.jocrd.2022.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Response Inhibition (RI) is the ability to suppress behaviors that are inappropriate for a given context. Obsessive-compulsive disorder (OCD) has been associated with impaired RI in adults as measured by the Stop Signal Task (SST). Conflicting results have been found in terms of the relationship between OCD severity and SST performance, and no studies to date have examined the relationship between SST and response to OCD treatment. Also relatively unknown is whether RI performance in OCD is associated with developmental or gender differences. This naturalistic study examined the relationship between SST performance, OCD severity, and OCD treatment response in a pediatric sample undergoing intensive treatment involving exposure and response prevention and medication management (n = 36). The SST and Children's Yale-Brown Obsessive Compulsive Scale (CYBOCS) were administered at admission and program discharge. OCD severity was not significantly related to stop signal reaction time (SSRT) in the whole sample and among subgroups divided by age and gender. Baseline SSRT and SSRT change did not predict CYBOCS change across treatment in the whole sample, but exploratory analyses indicated both were significant predictors among female adolescents. Results suggest there may be developmental gender differences in the relationship between RI and clinical improvement in pediatric OCD.
Collapse
Affiliation(s)
- Christine A. Conelea
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, Minneapolis, MN, USA
| | - Sarah Morris
- Bradley Hospital, Pediatric Anxiety Research Center, East Providence, RI, USA
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Nicole McLaughlin
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Erin Mamaril
- Bradley Hospital, Pediatric Anxiety Research Center, East Providence, RI, USA
| | - Kristen Benito
- Bradley Hospital, Pediatric Anxiety Research Center, East Providence, RI, USA
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Brady Case
- Bradley Hospital, Pediatric Anxiety Research Center, East Providence, RI, USA
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Abbe Garcia
- Bradley Hospital, Pediatric Anxiety Research Center, East Providence, RI, USA
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
| |
Collapse
|
21
|
Kalanthroff E, Wheaton MG. An Integrative Model for Understanding Obsessive-Compulsive Disorder: Merging Cognitive Behavioral Theory with Insights from Clinical Neuroscience. J Clin Med 2022; 11:7379. [PMID: 36555995 PMCID: PMC9784452 DOI: 10.3390/jcm11247379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Several models have been proposed for the emergence and maintenance of obsessive-compulsive disorder (OCD). Although these models have provided important insights and inspired treatment development, no single model has yet sufficiently accounted for the complexed phenotype of the disorder. In the current paper, we propose a novel model that integrates elements from cognitive behavioral models of OCD with neurocognitive approaches to the disorder. This Reciprocal Interaction Model (RIM) for OCD is based on two assumptions: (a) similar observed symptoms can stem from different etiological processes; and (b) neuropsychological deficits (such as reduced response inhibition and overreliance on the habit formation system) and cognitive behavioral processes (such as temporary reduction in anxiety after engaging in compulsive behaviors) mutually affect each other such that abnormalities in one system influence the second system and vice-versa-creating a vicious cycle of pathological processes. Indeed, the bidirectional inhibitory connection between anxiety/obsessions and executive control is at the heart of the model. We begin by briefly reviewing the current models for OCD. We then move on to describe the RIM, the supporting evidence for the model, the model's predictions, and potential clinical implications.
Collapse
Affiliation(s)
- Eyal Kalanthroff
- Department of Psychology, The Hebrew University of Jerusalem and Israel, Jerusalem 91905, Israel
| | | |
Collapse
|
22
|
Correa-Ghisays P, Vicent Sánchez-Ortí J, Balanzá-Martínez V, Fuentes-Durá I, Martinez-Aran A, Ruiz-Bolo L, Correa-Estrada P, Ruiz-Ruiz JC, Selva-Vera G, Vila-Francés J, Macias Saint-Gerons D, San-Martín C, Ayesa-Arriola R, Tabarés-Seisdedos R. MICEmi: A method to identify cognitive endophenotypes of mental illnesses. Eur Psychiatry 2022; 65:e85. [PMID: 36440538 PMCID: PMC9807453 DOI: 10.1192/j.eurpsy.2022.2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Characterizing neurocognitive endophenotypes of mental illnesses (MIs) could be useful for identifying at-risk individuals, increasing early diagnosis, improving disease subtyping, and proposing therapeutic strategies to reduce the negative effects of the symptoms, in addition to serving as a scientific basis to unravel the physiopathology of the disease. However, a standardized algorithm to determine cognitive endophenotypes has not yet been developed. The main objective of this study was to present a method for the identification of endophenotypes in MI research. METHODS For this purpose, a 14-expert working group used a scoping review methodology and designed a method that includes a scoring template with five criteria and indicators, a strategy for their verification, and a decision tree. CONCLUSIONS This work is ongoing since it is necessary to obtain external validation of the applicability of the method in future research.
Collapse
Affiliation(s)
- Patricia Correa-Ghisays
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Joan Vicent Sánchez-Ortí
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Balanzá-Martínez
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Inmaculada Fuentes-Durá
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Anabel Martinez-Aran
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,Bipolar Disorders Unit, Neurosciences Institute, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
| | - Lara Ruiz-Bolo
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | | | - Juan Carlos Ruiz-Ruiz
- Department of Personality, Evaluation and Psychological Treatment, Faculty of Psychology, University of Valencia, Valencia, Spain
| | - Gabriel Selva-Vera
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| | - Joan Vila-Francés
- Intelligent Data Analysis Laboratory (IDAL), University of Valencia, Spain
| | - Diego Macias Saint-Gerons
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain
| | - Constanza San-Martín
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
| | - Rafael Tabarés-Seisdedos
- Center for Biomedical Research in Mental Health Network (CIBERSAM), ISCIII, Madrid, Spain.,INCLIVA Biomedical Research Institute, Valencia, Spain.,TMAP Unidad de Evaluación en Autonomía Personal, Dependencia y Trastornos Mentales Graves, Department of Medicine, University of Valencia, Valencia, Spain.,Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
23
|
Tubío-Fungueiriño M, Alemany-Navarro M, Alonso P, Arrojo M, Real E, Bertolin S, Menchón JM, Carracedo A, Fernández-Prieto M, Segalàs C. Neuropsychological performance and predictors of pharmacological treatment response in obsessive compulsive disorder. J Affect Disord 2022; 317:52-58. [PMID: 36029870 DOI: 10.1016/j.jad.2022.08.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obsessive Compulsive Disorder (OCD) is characterized by the presence of executive dysfunctions. As organizational strategies may play an important role as a possible endophenotype of the disorder, we decided to investigate non-verbal memory and organizational abilities in OCD. We also investigated how organization and non-verbal memory differ between responder and non-responder patients to pharmacological treatment, to test whether cognitive functions can predict the response to pharmacological treatment. METHODS In Study 1, executive and clinical functioning measures were applied to 162 OCD and 95 controls. In Study 2, clinical, intelligence and executive functioning measures were applied to 72 OCD responders and 63 OCD non-responder patients. RESULTS OCD patients and controls from Study 1 differed in copy organization (p < 0.01) and delayed recall (p = 0.048). In Study 2, the OCD responders displayed better copy organization (p = 0.013) and lower depressive, anxious and OCD symptoms (p < 0.01 in the three cases). Scores in the following instruments were found to predict the response to pharmacological treatment: HDRS, Y-BOCS, Raven progressive matrices, and Direct digit subtest from the Wechsler's scale (p < 0.01 in all four cases). LIMITATIONS In Study 1, the imbalance of the sample can be considered a limitation, whilst in Study 2, some of the levels of pharmacological resistance were not represented. CONCLUSIONS In this study, non-verbal memory and organization was affected in OCD. Responder patients also displayed better executive functioning and fluid intelligence. Organizational ability is a predictor of pharmacological response to SSRI monotherapy in a predictive model controlling for anxious symptoms.
Collapse
Affiliation(s)
- M Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - M Alemany-Navarro
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - P Alonso
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - M Arrojo
- Department of Psychiatry, Psychiatric Genetic Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - E Real
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - S Bertolin
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - J M Menchón
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| | - A Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain; Fundación Pública Galega de Medicina Xenómica- IDIS, SERGAS, Santiago de Compostela, Spain
| | - M Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), Universidade de Santiago de Compostela, (USC), Spain.
| | - C Segalàs
- OCD Clinical and Research Unit, Psychiatry Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Institut d' Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Instituto de Salud Carlos III, Spain
| |
Collapse
|
24
|
Peng Z, He L, Wen R, Verguts T, Seger CA, Chen Q. Obsessive-compulsive disorder is characterized by decreased Pavlovian influence on instrumental behavior. PLoS Comput Biol 2022; 18:e1009945. [PMID: 36215326 PMCID: PMC9584381 DOI: 10.1371/journal.pcbi.1009945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/20/2022] [Accepted: 09/28/2022] [Indexed: 02/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is characterized by uncontrollable repetitive actions thought to rely on abnormalities within fundamental instrumental learning systems. We investigated cognitive and computational mechanisms underlying Pavlovian biases on instrumental behavior in both clinical OCD patients and healthy controls using a Pavlovian-Instrumental Transfer (PIT) task. PIT is typically evidenced by increased responding in the presence of a positive (previously rewarded) Pavlovian cue, and reduced responding in the presence of a negative cue. Thirty OCD patients and thirty-one healthy controls completed the Pavlovian Instrumental Transfer test, which included instrumental training, Pavlovian training for positive, negative and neutral cues, and a PIT phase in which participants performed the instrumental task in the presence of the Pavlovian cues. Modified Rescorla-Wagner models were fitted to trial-by-trial data of participants to estimate underlying computational mechanism and quantify individual differences during training and transfer stages. Bayesian hierarchical methods were used to estimate free parameters and compare the models. Behavioral and computational results indicated a weaker Pavlovian influence on instrumental behavior in OCD patients than in HC, especially for negative Pavlovian cues. Our results contrast with the increased PIT effects reported for another set of disorders characterized by compulsivity, substance use disorders, in which PIT is enhanced. A possible reason for the reduced PIT in OCD may be impairment in using the contextual information provided by the cues to appropriately adjust behavior, especially when inhibiting responding when a negative cue is present. This study provides deeper insight into our understanding of deficits in OCD from the perspective of Pavlovian influences on instrumental behavior and may have implications for OCD treatment modalities focused on reducing compulsive behaviors.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Luning He
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rongzhen Wen
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Carol A. Seger
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Colorado State University, Colorado, United States of America
- * E-mail: (CS); (QC)
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- * E-mail: (CS); (QC)
| |
Collapse
|
25
|
Tzirini M, Roth Y, Harmelech T, Zibman S, Pell GS, Kimiskidis VK, Tendler A, Zangen A, Samaras T. Detailed measurements and simulations of electric field distribution of two TMS coils cleared for obsessive compulsive disorder in the brain and in specific regions associated with OCD. PLoS One 2022; 17:e0263145. [PMID: 36040972 PMCID: PMC9426893 DOI: 10.1371/journal.pone.0263145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The FDA cleared deep transcranial magnetic stimulation (Deep TMS) with the H7 coil for obsessive-compulsive disorder (OCD) treatment, following a double-blinded placebo-controlled multicenter trial. Two years later the FDA cleared TMS with the D-B80 coil on the basis of substantial equivalence. In order to investigate the induced electric field characteristics of the two coils, these were placed at the treatment position for OCD over the prefrontal cortex of a head phantom, and the field distribution was measured. Additionally, numerical simulations were performed in eight Population Head Model repository models with two sets of conductivity values and three Virtual Population anatomical head models and their homogeneous versions. The H7 was found to induce significantly higher maximal electric fields (p<0.0001, t = 11.08) and to stimulate two to five times larger volumes in the brain (p<0.0001, t = 6.71). The rate of decay of electric field with distance is significantly slower for the H7 coil (p < 0.0001, Wilcoxon matched-pairs test). The field at the scalp is 306% of the field at a 3 cm depth with the D-B80, and 155% with the H7 coil. The H7 induces significantly higher intensities in broader volumes within the brain and in specific brain regions known to be implicated in OCD (dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and pre-supplementary motor area (pre-SMA)) compared to the D-B80. Significant field ≥ 80 V/m is induced by the H7 (D-B80) in 15% (1%) of the dACC, 78% (29%) of the pre-SMA, 50% (20%) of the dlPFC, 30% (12%) of the OFC and 15% (1%) of the IFG. Considering the substantial differences between the two coils, the clinical efficacy in OCD should be tested and verified separately for each coil.
Collapse
Affiliation(s)
- Marietta Tzirini
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- THESS, Thessaloniki Software Solution S.A., Thessaloniki, Greece
- * E-mail:
| | - Yiftach Roth
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- BrainsWay Ltd., Jerusalem, Israel
| | | | | | - Gaby S. Pell
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- BrainsWay Ltd., Jerusalem, Israel
| | - Vasilios K. Kimiskidis
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aron Tendler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- BrainsWay Ltd., Jerusalem, Israel
- Advanced Mental Health Care Inc., United States of America
| | - Abraham Zangen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Physics, University of Malta, Msida, Malta
| |
Collapse
|
26
|
Ribeiro AP, Piquet-Pessôa M, Félix-da-Silva C, Mühlbauer JFE, de-Salles-Andrade JB, Fontenelle LF. Subjective assessments of research domain criteria constructs in addiction and compulsive disorders: a scoping review protocol. BMJ Open 2022; 12:e059232. [PMID: 36028270 PMCID: PMC9422856 DOI: 10.1136/bmjopen-2021-059232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Obsessive-compulsive and related disorders (OCRDs) and disorders due to addictive behaviours (DABs) are prevalent conditions that share behavioural and neurobiological characteristics. The Research Domain Criteria lists a series of constructs whose dysfunctions may be present in both groups of disorders. The present study will describe the research protocol of a scoping review of the literature on self-report scales and questionnaires that tap dysfunctional constructs that underlie OCRDs and DABs. METHODS AND ANALYSIS This protocol outlines a scoping review on self-report tools and questionnaires that assess OCRDs and DABs-related constructs. The scoping review will select sources in MEDLINE, EMBASE, PsychINFO and Web of Science databases. Inclusion and exclusion criteria will be designed according to the Population, Concept, Context, Types of source framework. Two reviewers will screen independently titles, abstracts and full texts to determine the eligibility of articles. A methodological framework including six stages steps ((1) identifying a research question; (2) identifying relevant studies; (3) study selection; (4) charting the data; (5) collating, summarising and reporting the result) will be used, and the findings will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews checklist. Information extracted will be collated, and quantitative results will be presented using descriptive statistics such as percentages, tables, charts and flow diagrams as appropriate. ETHICS AND DISSEMINATION Ethical approval for conducting this scoping review is not required, as this study will involve secondary analysis of existing literature. The researchers will disseminate the study results via conference presentations and publication in a peer-reviewed journal. SCOPING REVIEW PROTOCOL REGISTRATION DOI 10.17605/OSF.IO/UJ7G5.
Collapse
Affiliation(s)
- Ana Paula Ribeiro
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marcelo Piquet-Pessôa
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carina Félix-da-Silva
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Julia Fernandes Eigenheer Mühlbauer
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Juliana B de-Salles-Andrade
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Leonardo F Fontenelle
- Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ) and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Psychiatry, Monash University School of Clinical Sciences at Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Mol Psychiatry 2022; 27:3460-3467. [PMID: 35618882 DOI: 10.1038/s41380-022-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The striatum and its cortical circuits play central roles in the pathophysiology of obsessive-compulsive disorder (OCD). The striatum is subdivided by cortical connections and functions; however, the anatomical aberrations in different cortico-striatal connections and coexisting microstructural anomalies in striatal subregions of OCD patients are poorly understood. Thus, we aimed to elucidate the aberrations in cortico-striatal white matter (WM) connectivity and the associated subregional microstructure of the striatum in patients with OCD. From diffusion tensor/kurtosis imaging of 107 unmedicated OCD patients and 110 matched healthy controls (HCs), we calculated the cortico-striatal WM connectivity and segmented the striatum using probabilistic tractography. For the segmented striatal subregions, we measured average diffusion kurtosis values, which represent microstructural complexity. Connectivity and mean kurtosis values in each cortical target and associated striatal subregions were compared between groups. We identified significantly reduced orbitofrontal WM connectivity with its associated striatal subregion in patients with OCD compared to that in HCs. However, OCD patients exhibited significantly increased caudal-motor and parietal connectivity with the associated striatal subregions. The mean kurtosis values of the striatal subregions connected to the caudal-motor and parietal cortex were significantly decreased in OCD patients. Our results highlighted contrasting patterns of striatal WM connections with the orbitofrontal and caudal-motor/parietal cortices, thus supporting the cortico-striatal circuitry imbalance model of OCD. We suggest that aberrations in WM connections and the microstructure of their downstream regions in the caudal-motor-/parietal-striatal circuits may underlie OCD pathophysiology and further provide potential neuromodulation targets for the treatment of OCD.
Collapse
|
28
|
Peng Z, He T, Ren P, Jin L, Yang Q, Xu C, Wen R, Chen J, Wei Z, Verguts T, Chen Q. Imbalance between the caudate and putamen connectivity in obsessive-compulsive disorder. Neuroimage Clin 2022; 35:103083. [PMID: 35717885 PMCID: PMC9213242 DOI: 10.1016/j.nicl.2022.103083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The imbalance between the caudate and putamen connectivity in OCD patient arises from the abnormal connection of caudate. The abnormal caudate connectivity mainly results from the outward extension of cortico-striato-thalamo-cortical loop. The caudate connectivity of OCD patients is negatively associated with their task-switch performance.
Background Compulsive behaviors in obsessive–compulsive disorder (OCD) have been suggested to result from an imbalance in cortico-striatal connectivity. However, the nature of this impairment, the relative involvement of different striatal areas, their imbalance in genetically related but unimpaired individuals, and their relationship with cognitive dysfunction in OCD patients, remain unknown. Methods In the current study, striatal (i.e., caudate and putamen) whole-brain connectivity was computed in a sample of OCD patients (OCD, n = 62), unaffected first-degree relatives (UFDR, n = 53) and healthy controls (HC, n = 73) by ROI-based resting-state functional magnetic resonance imaging (rs-fMRI). A behavioral task switch paradigm outside of the scanner was also performed to measure cognitive flexibility in OCD patients. Results There were significantly increased strengths (Z-transformed Pearson correlation coefficient) in caudate connectivity in OCD patients. A significant correlation between the two types of connectivity strengths in the relevant regions was observed only in the OCD patient group. Furthermore, the caudate connectivity of patients was negatively associated with their task-switch performance. Conclusions The imbalance between the caudate and putamen connectivity, arising from the abnormal increase of caudate activity, may serve as a clinical characteristic for obsessive–compulsive disorder.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, 518020 Shenzhen, China
| | - Lili Jin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qiong Yang
- Southern Medical University, 510515 Guangzhou, China; Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Rongzhen Wen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
29
|
Thomas KS, Birch RE, Jones CRG, Vanderwert RE. Neural Correlates of Executive Functioning in Anorexia Nervosa and Obsessive-Compulsive Disorder. Front Hum Neurosci 2022; 16:841633. [PMID: 35693540 PMCID: PMC9179647 DOI: 10.3389/fnhum.2022.841633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are commonly reported to co-occur and present with overlapping symptomatology. Executive functioning difficulties have been implicated in both mental health conditions. However, studies directly comparing these functions in AN and OCD are extremely limited. This review provides a synthesis of behavioral and neuroimaging research examining executive functioning in AN and OCD to bridge this gap in knowledge. We outline the similarities and differences in behavioral and neuroimaging findings between AN and OCD, focusing on set shifting, working memory, response inhibition, and response monitoring. This review aims to facilitate understanding of transdiagnostic correlates of executive functioning and highlights important considerations for future research. We also discuss the importance of examining both behavioral and neural markers when studying transdiagnostic correlates of executive functions.
Collapse
Affiliation(s)
- Kai S. Thomas
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Catherine R. G. Jones
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ross E. Vanderwert
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
30
|
Lee D, Baek JH, Ha K, Cho EY, Choi Y, Yang SY, Kim JS, Cho Y, Won HH, Hong KS. Dissecting the genetic architecture of suicide attempt and repeated attempts in Korean patients with bipolar disorder using polygenic risk scores. Int J Bipolar Disord 2022; 10:3. [PMID: 35112160 PMCID: PMC8811109 DOI: 10.1186/s40345-022-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) has the greatest suicide risk among mental and physical disorders. A recent genome-wide association study (GWAS) of European ancestry (EUR) samples revealed that the genetic etiology of suicide attempt (SA) was not only polygenic but also, in part, diagnosis-specific. The authors aimed to examine whether the polygenic risk score (PRS) for SA derived from that study is associated with SA or repeated attempts in Korean patients with BD. This study also investigated the shared heritability of SA and mental disorders which showed an increased risk of SA and a high genetic correlation with BD. METHODS The study participants were 383 patients with BD. The history of SA was assessed on a lifetime basis. PRSs for reference disorders were calculated using the aforementioned GWAS data for SA and the Psychiatric Genomics Consortium data of BD, schizophrenia, major depressive disorder (MDD), and obsessive-compulsive disorder (OCD). RESULTS The PRS for SA was significantly associated with lifetime SA in the current subjects (Nagelkerke's R2 = 2.73%, odds ratio [OR] = 1.36, p = 0.007). Among other PRSs, only the PRS for OCD was significantly associated with lifetime SA (Nagelkerke's R2 = 2.72%, OR = 1.36, p = 0.007). The PRS for OCD was higher in multiple attempters than in single attempters (Nagelkerke's R2 = 4.91%, OR = 1.53, p = 0.043). CONCLUSION The PRS for SA derived from EUR data was generalized to SA in Korean patients with BD. The PRS for OCD seemed to affect repeated attempts. Genetic studies on suicide could benefit from focusing on specific psychiatric diagnoses and refined sub-phenotypes, as well as from utilizing multiple PRSs for related disorders.
Collapse
Affiliation(s)
- Dongbin Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
| | - Kyooseob Ha
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun-Young Cho
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Yujin Choi
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - So-Yung Yang
- Department of Psychiatry, NHIS Ilsan Hospital, Goyang-si, Gyeonggi-do, South Korea
| | - Ji Sun Kim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Yunji Cho
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Hong-Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
- Samsung Biomedical Research Institute, Seoul, South Korea.
| |
Collapse
|
31
|
Katz TC, Bui TH, Worhach J, Bogut G, Tomczak KK. Tourettic OCD: Current understanding and treatment challenges of a unique endophenotype. Front Psychiatry 2022; 13:929526. [PMID: 35966462 PMCID: PMC9363583 DOI: 10.3389/fpsyt.2022.929526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Obsessive compulsive disorder (OCD) and chronic tic disorders (CTD) including Tourette Syndrome (TS) are often comorbid conditions. While some patients present with distinct symptoms of CTD and/or OCD, a subset of patients demonstrate a unique overlap of symptoms, known as Tourettic OCD (TOCD), in which tics, compulsions, and their preceding premonitory urges are overlapping and tightly intertwined. The specific behaviors seen in TOCD are typically complex tic-like behaviors although with a compulsive and partially anxious nature reminiscent of OCD. TOCD is not classified within the Diagnostic and Statistical Manual of Mental Disorders fifth edition (DSM-5) as an independent diagnostic entity, but mounting evidence suggests that TOCD is an intermediate neuropsychiatric disorder distinct from either TS or OCD alone and as such represents a unique phenomenology. In this review of TOCD we discuss clinical, genetic, environmental, neurodevelopmental, and neurocircuit-based research to better characterize our current understanding of this disorder. TOCD is characterized by earlier age of onset, male predominance, and specific symptom clusters such as lower tendency toward compulsions related to checking, cleaning, and reassurance seeking and higher tendency toward compulsions such as rubbing, tapping, or touching associated with symmetry concerns or thoughts of exactness. Functional magnetic resonance imaging (fMRI) imaging suggests that TOCD symptoms may arise from involvement of an intermediate neurocircuitry distinct from classic OCD or classic CTD. Small cumulative contributions from multiple genetic loci have been implicated, as have environmental factors such as infection and perinatal trauma. In addition, this review addresses the treatment of TOCD which is especially complex and often treatment resistant and requires pharmacology and behavioral therapy in multiple modalities. Given the distressing impact of TOCD on patients' functioning, the goal of this review is to raise awareness of this distinct entity toward the goal of improving standards of care.
Collapse
Affiliation(s)
- Tamar C Katz
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, United States
| | - Thanh Hoa Bui
- Tic Disorders and Tourette Syndrome Program, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Jennifer Worhach
- Tic Disorders and Tourette Syndrome Program, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Gabrielle Bogut
- Tic Disorders and Tourette Syndrome Program, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Kinga K Tomczak
- Tic Disorders and Tourette Syndrome Program, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
32
|
Ahmari SE, Rauch SL. The prefrontal cortex and OCD. Neuropsychopharmacology 2022; 47:211-224. [PMID: 34400778 PMCID: PMC8617188 DOI: 10.1038/s41386-021-01130-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Obsessive Compulsive Disorder (OCD) is a highly prevalent and severe neuropsychiatric disorder, with an incidence of 1.5-3% worldwide. However, despite the clear public health burden of OCD and relatively well-defined symptom criteria, effective treatments are still limited, spotlighting the need for investigation of the neural substrates of the disorder. Human neuroimaging studies have consistently highlighted abnormal activity patterns in prefrontal cortex (PFC) regions and connected circuits in OCD during both symptom provocation and performance of neurocognitive tasks. Because of recent technical advances, these findings can now be leveraged to develop novel targeted interventions. Here we will highlight current theories regarding the role of the prefrontal cortex in the generation of OCD symptoms, discuss ways in which this knowledge can be used to improve treatments for this often disabling illness, and lay out challenges in the field for future study.
Collapse
Affiliation(s)
- Susanne E Ahmari
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Scott L Rauch
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Wang S, Celebi ME, Zhang YD, Yu X, Lu S, Yao X, Zhou Q, Miguel MG, Tian Y, Gorriz JM, Tyukin I. Advances in Data Preprocessing for Biomedical Data Fusion: An Overview of the Methods, Challenges, and Prospects. INFORMATION FUSION 2021; 76:376-421. [DOI: 10.1016/j.inffus.2021.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
34
|
Tomiyama H, Murayama K, Nemoto K, Tomita M, Hasuzawa S, Mizobe T, Kato K, Ohno A, Tsuruta S, Togao O, Hiwatashi A, Nakao T. Increased functional connectivity between presupplementary motor area and inferior frontal gyrus associated with the ability of motor response inhibition in obsessive-compulsive disorder. Hum Brain Mapp 2021; 43:974-984. [PMID: 34816523 PMCID: PMC8764470 DOI: 10.1002/hbm.25699] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Recent evidence suggests that presupplementary motor area (pre‐SMA) and inferior frontal gyrus (IFG) play an important role in response inhibition. However, no study has investigated the relationship between these brain networks at resting‐state and response inhibition in obsessive–compulsive disorder (OCD). We performed resting‐state functional magnetic resonance imaging scans and then measured the response inhibition of 41 medication‐free OCD patients and 49 healthy control (HC) participants by using the stop‐signal task outside the scanner. We explored the differences between OCD and HC groups in the functional connectivity of pre‐SMA and IFG associated with the ability of motor response inhibition. OCD patients showed a longer stop‐signal reaction time (SSRT). Compared to HC, OCD patients exhibit different associations between the ability of motor response inhibition and the functional connectivity between pre‐SMA and IFG, inferior parietal lobule, dorsal anterior cingulate cortex, insula, and anterior prefrontal cortex. Additional analysis to investigate the functional connectivity difference from the seed ROIs to the whole brain voxels revealed that, compared to HC, OCD exhibited greater functional connectivity between pre‐SMA and IFG. Also, this functional connectivity was positively correlated with the SSRT score. These results provide additional insight into the characteristics of the resting‐state functional connectivity of the regions belonging to the cortico‐striato‐thalamo‐cortical circuit and the cingulo‐opercular salience network, underlying the impaired motor response inhibition of OCD. In particular, we emphasize the importance of altered functional connectivity between pre‐SMA and IFG for the pathophysiology of motor response inhibition in OCD.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyotaka Nemoto
- Department of Neuropsychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Mayumi Tomita
- Department of Psychology, Kurume University, Kurume, Japan
| | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aikana Ohno
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Sae Tsuruta
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Papaioannou A, Kalantzi E, Papageorgiou CC, Korombili K, Bokou A, Pehlivanidis A, Papageorgiou CC, Papaioannou G. Differences in Performance of ASD and ADHD Subjects Facing Cognitive Loads in an Innovative Reasoning Experiment. Brain Sci 2021; 11:1531. [PMID: 34827530 PMCID: PMC8615740 DOI: 10.3390/brainsci11111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
We aim to investigate whether EEG dynamics differ in adults with ASD (Autism Spectrum Disorders) and ADHD (attention-deficit/hyperactivity disorder) compared with healthy subjects during the performance of an innovative cognitive task, Aristotle's valid and invalid syllogisms, and how these differences correlate with brain regions and behavioral data for each subject. We recorded EEGs from 14 scalp electrodes (channels) in 21 adults with ADHD, 21 with ASD, and 21 healthy, normal subjects. The subjects were exposed in a set of innovative cognitive tasks (inducing varying cognitive loads), Aristotle's two types of syllogism mentioned above. A set of 39 questions were given to participants related to valid-invalid syllogisms as well as a separate set of questionnaires, in order to collect a number of demographic and behavioral data, with the aim of detecting shared information with values of a feature extracted from EEG, the multiscale entropy (MSE), in the 14 channels ('brain regions'). MSE, a nonlinear information-theoretic measure of complexity, was computed to extract a feature that quantifies the complexity of the EEG. Behavior-Partial Least Squares Correlation, PLSC, is the method to detect the correlation between two sets of data, brain, and behavioral measures. -PLSC, a variant of PLSC, was applied to build a functional connectivity of the brain regions involved in the reasoning tasks. Graph-theoretic measures were used to quantify the complexity of the functional networks. Based on the results of the analysis described in this work, a mixed 14 × 2 × 3 ANOVA showed significant main effects of group factor and brain region* syllogism factor, as well as a significant brain region* group interaction. There are significant differences between the means of MSE (complexity) values at the 14 channels of the members of the 'pathological' groups of participants, i.e., between ASD and ADHD, while the difference in means of MSE between both ASD and ADHD and that of the control group is not significant. In conclusion, the valid-invalid type of syllogism generates significantly different complexity values, MSE, between ASD and ADHD. The complexity of activated brain regions of ASD participants increased significantly when switching from a valid to an invalid syllogism, indicating the need for more resources to 'face' the task escalating difficulty in ASD subjects. This increase is not so evident in both ADHD and control. Statistically significant differences were found also in the behavioral response of ASD and ADHD, compared with those of control subjects, based on the principal brain and behavior saliences extracted by PLSC. Specifically, two behavioral measures, the emotional state and the degree of confidence of participants in answering questions in Aristotle's valid-invalid syllogisms, and one demographic variable, age, statistically and significantly discriminate the three groups' ASD. The seed-PLC generated functional connectivity networks for ASD, ADHD, and control, were 'projected' on the regions of the Default Mode Network (DMN), the 'reference' connectivity, of which the structural changes were found significant in distinguishing the three groups. The contribution of this work lies in the examination of the relationship between brain activity and behavioral responses of healthy and 'pathological' participants in the case of cognitive reasoning of the type of Aristotle's valid and invalid syllogisms, using PLSC, a machine learning approach combined with MSE, a nonlinear method of extracting a feature based on EEGs that captures a broad spectrum of EEGs linear and nonlinear characteristics. The results seem promising in adopting this type of reasoning, in the future, after further enhancements and experimental tests, as a supplementary instrument towards examining the differences in brain activity and behavioral responses of ASD and ADHD patients. The application of the combination of these two methods, after further elaboration and testing as new and complementary to the existing ones, may be considered as a tool of analysis in helping detecting more effectively such types of disorders.
Collapse
Affiliation(s)
- Anastasia Papaioannou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - Eva Kalantzi
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | | | - Kalliopi Korombili
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Anastasia Bokou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Artemios Pehlivanidis
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
| | - Charalabos C. Papageorgiou
- 1st Department of Psychiatry, Eginition Hospital, Medical School, National University of Athens, 11528 Athens, Greece; (E.K.); (K.K.); (A.B.); (A.P.); (C.C.P.)
- Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS” (UMHRI), University Mental Health, Papagou, 15601 Athens, Greece
| | - George Papaioannou
- Center for Research of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, 26500 Patra, Greece;
| |
Collapse
|
36
|
Shi X, Guo Y, Zhu L, Wu W, Hordacre B, Su X, Wang Q, Chen X, Lan X, Dang G. Electroencephalographic connectivity predicts clinical response to repetitive transcranial magnetic stimulation in patients with insomnia disorder. Sleep Med 2021; 88:171-179. [PMID: 34773788 DOI: 10.1016/j.sleep.2021.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accumulating evidence suggests that low frequency repetitive transcranial magnetic stimulation (rTMS), which generally decreases cortical excitability and remodels plastic connectivity, improves sleep quality in patients with insomnia disorder. However, the effects of rTMS vary substantially across individuals and treatment is sometimes unsatisfactory, calling for biomarkers for predicting clinical outcomes. OBJECTIVE This study aimed to investigate whether functional connectivity of the target network in electroencephalography is associated with the clinical response to low frequency rTMS in patients with insomnia disorder. METHODS Twenty-five patients with insomnia disorder were subjected to 10 sessions of treatment with 1 Hz rTMS over the right dorsolateral prefrontal cortex. Resting-state electroencephalography was collected before rTMS. Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, and Mini-Mental State Exam were performed before and after rTMS treatment, with a follow-up after one month. Electroencephalographic connectivity was measured by the power envelope connectivity at the source level. Partial least squares regression identified models of connectivity that maximally accounted for the rTMS response. RESULTS Scores of Pittsburgh Sleep Quality Index, Hamilton Depression Rating Scale, and Hamilton Anxiety Rating Scale were decreased after rTMS and one-month later. Baseline weaker connectivity of a network in the beta and alpha bands between a brain region approximating the stimulated right dorsolateral prefrontal cortex and areas located in the frontal, insular, and limbic cortices was associated with a greater change in Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale following rTMS. CONCLUSIONS Low frequency rTMS could improve sleep quality and depressive moods in patients with insomnia disorder. Moreover, electroencephalographic functional connectivity would potentially be a robust biomarker for predicting the therapeutic effects.
Collapse
Affiliation(s)
- Xue Shi
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518020, Guangdong, China
| | - Lin Zhu
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Wei Wu
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Australia
| | - Xiaolin Su
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Qian Wang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoxia Chen
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Xiaoyong Lan
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
37
|
Peng Z, Xu C, Ma N, Yang Q, Ren P, Wen R, Jin L, Chen J, Wei Z, Verguts T, Chen Q. White Matter Alterations of the Goal-Directed System in Patients With Obsessive-Compulsive Disorder and Their Unaffected First-Degree Relatives. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:992-1001. [PMID: 33674244 DOI: 10.1016/j.bpsc.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND It has been postulated that the neurobiological mechanism responsible for the onset of symptoms of obsessive-compulsive disorder (OCD), especially compulsive behavior, is related to alterations of the goal-directed and habitual learning systems. However, little is known about whether changes in these learning systems co-occur with changes in the white matter structure of patients with OCD and their unaffected first-degree relatives (UFDRs). METHODS Diffusion tensor imaging data were acquired from 32 patients with OCD (21 male), 32 UFDRs (16 male), and 32 healthy control subjects (16 male). White matter tracts in the goal-directed and habitual networks were reconstructed with seed-based probabilistic tractography. Partial least squares path modeling was used to measure the covariation between white matter connectivity, psychiatric symptoms, and cognitive flexibility. RESULTS Patients with OCD showed reduced connectivity in the fiber tracts within the goal-directed but not within the habitual network compared with healthy control subjects. Using partial least squares path modeling, patients' symptoms were negatively associated with connectivity within the goal-directed but not within the habitual network. Cognitive flexibility was correlated negatively with caudate-dorsolateral prefrontal cortex tracts in patients with OCD. UFDRs also exhibited reduced white matter connectivity in the goal-directed network. CONCLUSIONS These findings suggest that the balance of learning systems in OCD may be disrupted, mainly impairing white matter in the goal-directed network. Alterations of the goal-directed network could explain overt symptoms and impaired cognitive flexibility in patients with OCD. Similar alterations in the goal-directed network are present in UFDRs. The impaired goal-directed system may be an endophenotype of OCD.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Chuanyong Xu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ning Ma
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qiong Yang
- Southern Medical University, Guangzhou, China; Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Rongzhen Wen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Lili Jin
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Beijing, China; School of Psychology, Center for Studies of Psychological Application, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
38
|
Suzuki S, Yamashita Y, Katahira K. Psychiatric symptoms influence reward-seeking and loss-avoidance decision-making through common and distinct computational processes. Psychiatry Clin Neurosci 2021; 75:277-285. [PMID: 34151477 PMCID: PMC8457174 DOI: 10.1111/pcn.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
AIM Psychiatric symptoms are often accompanied by impairments in decision-making to attain rewards and avoid losses. However, due to the complex nature of mental disorders (e.g., high comorbidity), symptoms that are specifically associated with deficits in decision-making remain unidentified. Furthermore, the influence of psychiatric symptoms on computations underpinning reward-seeking and loss-avoidance decision-making remains elusive. Here, we aim to address these issues by leveraging a large-scale online experiment and computational modeling. METHODS In the online experiment, we recruited 1900 non-diagnostic participants from the general population. They performed either a reward-seeking or loss-avoidance decision-making task, and subsequently completed questionnaires about psychiatric symptoms. RESULTS We found that one trans-diagnostic dimension of psychiatric symptoms related to compulsive behavior and intrusive thought (CIT) was negatively correlated with overall decision-making performance in both the reward-seeking and loss-avoidance tasks. A deeper analysis further revealed that, in both tasks, the CIT psychiatric dimension was associated with lower preference for the options that recently led to better outcomes (i.e. reward or no-loss). On the other hand, in the reward-seeking task only, the CIT dimension was associated with lower preference for recently unchosen options. CONCLUSION These findings suggest that psychiatric symptoms influence the two types of decision-making, reward-seeking and loss-avoidance, through both common and distinct computational processes.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Brain, Mind and Markets Laboratory, Department of Finance, Faculty of Business and EconomicsThe University of MelbourneMelbourneVictoriaAustralia
- Frontier Research Institute for Interdisciplinary SciencesTohoku UniversitySendaiJapan
| | - Yuichi Yamashita
- Department of Information MedicineNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Kentaro Katahira
- Department of Psychological and Cognitive Sciences, Graduate School of InformaticsNagoya UniversityNagoyaJapan
- Mental and Physical Functions Modeling Group, Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
39
|
Abramovitch A, De Nadai AS, Geller DA. Neurocognitive endophenotypes in pediatric OCD probands, their unaffected parents and siblings. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110283. [PMID: 33609605 PMCID: PMC8222154 DOI: 10.1016/j.pnpbp.2021.110283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Limited extant research on neurocognitive endophenotypes in obsessive-compulsive disorder (OCD) show inconsistent results. Limitations of this body of literature include small sample sizes, strict exclusion criteria, lack of objective standard normalized test scores, and significant lack of studies utilizing pediatric probands. This study aimed to address these limitations. METHODS A large carefully screened cohort of pediatric OCD (n = 102), their unaffected siblings (n = 78), and parents (n = 164), completed a neuropsychological battery. To compare participants at different ages and developmental stages, standard scores were computed using test norms. Cluster-robust regression with sample size-adjusted sandwich estimates of variance, and interclass correlations were computed. False Discovery Rate procedures were employed to correct for multiplicity. RESULTS Probands, siblings and parents demonstrated deficient task performance (Z < -0.5) on the 'number of trials to complete first category' on the Wisconsin Card Sorting Test, and on the Stroop color naming trials. Compared to test norms, the three groups exhibited medium to large effect sizes on these outcome measures. No other meaningful familial trends were found. CONCLUSIONS OCD probands, their unaffected siblings and parents exhibited deficiencies in specific subdomains of cognitive flexibility and inhibitory control, namely, initial concept formation and proactive control, which may be valid candidate neurocognitive endophenotypes of OCD. No other meaningful familial effect has been found on other functions, including other executive function indices such as perseverations and interference control. These results highlight the need to carefully examine individual outcomes from executive function tests instead of the tendency to focus largely on major outcome measures.
Collapse
Affiliation(s)
- Amitai Abramovitch
- Department of Psychology, Texas State University, San Marcos, TX, USA; Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | | | - Daniel A Geller
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Ma X, Megli A, Pittenger C, Pushkarskaya H. OCD Influences Evidence Accumulation During Decision Making in Males but Not Females During Perceptual and Value-Driven Choice. Front Psychiatry 2021; 12:687680. [PMID: 34393851 PMCID: PMC8358201 DOI: 10.3389/fpsyt.2021.687680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023] Open
Abstract
Individuals with obsessive-compulsive disorder (OCD) often have difficulty making decisions. Valuation and value-based judgements are particularly difficult. The mechanisms underlying these impairments are still poorly understood. Previous work has suggested that individuals with OCD require more information prior to making a choice during perceptual discrimination tasks. Little previous work has examined value-guided choice in OCD. Here we examined perceptual and value-based decision making in adults with OCD, using a novel task in which the two types of decision are tested in parallel using the same individually calibrated sets of visual stimuli (Perceptual and Value-based decision-making task, PVDM). Twenty-seven unmedicated participants with OCD (16 female) and thirty-one healthy controls (15 female) were tested. Data were analyzed using hierarchical drift-diffusion modeling (HDDM). Decision formation was altered in OCD, but differentially between genders: males with OCD, but not females, accumulated more information (i.e., were more cautious) and were less effective in evidence accumulation than age- and IQ-matched healthy males. Furthermore, males with OCD, but not females, were less likely than controls to adjust the process of evidence accumulation across decision contexts. These unexpectedly gender-dimorphic effects suggest that more attention should be paid to gender differences in studies of OCD, and of pathophysiology more broadly.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Ashton Megli
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| | - Christopher Pittenger
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, United States
- Yale Child Study Center, School of Medicine, Yale University, New Haven, CT, United States
| | - Helen Pushkarskaya
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
41
|
Paci M, Di Cosmo G, Perrucci MG, Ferri F, Costantini M. Cortical silent period reflects individual differences in action stopping performance. Sci Rep 2021; 11:15158. [PMID: 34312403 PMCID: PMC8313697 DOI: 10.1038/s41598-021-94494-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
Inhibitory control is the ability to suppress inappropriate movements and unwanted actions, allowing to regulate impulses and responses. This ability can be measured via the Stop Signal Task, which provides a temporal index of response inhibition, namely the stop signal reaction time (SSRT). At the neural level, Transcranial Magnetic Stimulation (TMS) allows to investigate motor inhibition within the primary motor cortex (M1), such as the cortical silent period (CSP) which is an index of GABAB-mediated intracortical inhibition within M1. Although there is strong evidence that intracortical inhibition varies during action stopping, it is still not clear whether differences in the neurophysiological markers of intracortical inhibition contribute to behavioral differences in actual inhibitory capacities. Hence, here we explored the relationship between intracortical inhibition within M1 and behavioral response inhibition. GABABergic-mediated inhibition in M1 was determined by the duration of CSP, while behavioral inhibition was assessed by the SSRT. We found a significant positive correlation between CSP's duration and SSRT, namely that individuals with greater levels of GABABergic-mediated inhibition seem to perform overall worse in inhibiting behavioral responses. These results support the assumption that individual differences in intracortical inhibition are mirrored by individual differences in action stopping abilities.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy.
| | - Giulio Di Cosmo
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D'Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
42
|
Starkweather CK, Bick SK, McHugh JM, Dougherty DD, Williams ZM. Lesion location and outcome following cingulotomy for obsessive-compulsive disorder. J Neurosurg 2021; 136:221-230. [PMID: 34243154 DOI: 10.3171/2020.11.jns202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) is among the most debilitating and medically refractory psychiatric disorders. While cingulotomy is an anatomically targeted neurosurgical treatment that has shown significant promise in treating OCD-related symptoms, the precise underlying neuroanatomical basis for its beneficial effects has remained poorly understood. Therefore, the authors sought to determine whether lesion location is related to responder status following cingulotomy. METHODS The authors reviewed the records of 18 patients who had undergone cingulotomy. Responders were defined as patients who had at least a 35% improvement in the Yale-Brown Obsessive Compulsive Scale (YBOCS) score. The authors traced the lesion sites on T1-weighted MRI scans and used an anatomical registration matrix generated by the imaging software FreeSurfer to superimpose these lesions onto a template brain. Lesion placement was compared between responders and nonresponders. The placement of lesions relative to various anatomical regions was also compared. RESULTS A decrease in postoperative YBOCS score was significantly correlated with more superiorly placed lesions (decrease -0.52, p = 0.0012). While all lesions were centered within 6 mm of the cingulate sulcus, responder lesions were placed more superiorly and posteriorly along the cingulate sulcus (1-way ANOVA, p = 0.003). The proportions of the cingulum bundle, cingulate gyrus, and paracingulate cortex affected by the lesions were the same between responders and nonresponders. However, all responders had lesions covering a larger subregion of Brodmann area (BA) 32. In particular, responder lesions covered a significantly greater proportion of the posterior BA32 (1-way ANOVA, p = 0.0064). CONCLUSIONS Lesions in patients responsive to cingulotomy tended to be located more superiorly and posteriorly and share greater coverage of a posterior subregion of BA32 than lesions in patients not responsive to this treatment.
Collapse
|
43
|
Peng Z, Guo Y, Wu X, Yang Q, Wei Z, Seger CA, Chen Q. Abnormal brain functional network dynamics in obsessive-compulsive disorder patients and their unaffected first-degree relatives. Hum Brain Mapp 2021; 42:4387-4398. [PMID: 34089285 PMCID: PMC8356985 DOI: 10.1002/hbm.25555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 01/01/2023] Open
Abstract
We utilized dynamic functional network connectivity (dFNC) analysis to compare participants with obsessive–compulsive disorder (OCD) with their unaffected first‐degree relative (UFDR) and healthy controls (HC). Resting state fMRI was performed on 46 OCD, 24 UFDR, and 49 HCs, along with clinical assessments. dFNC analyses revealed two distinct connectivity states: a less frequent, integrated state characterized by the predominance of between‐network connections (State I), and a more frequent, segregated state with strong within‐network connections (State II). OCD patients spent more time in State II and less time in State I than HC, as measured by fractional windows and mean dwell time. Time in each state for the UFDR were intermediate between OCD patients and HC. Within the OCD group, fractional windows of time spent in State I was positively correlated with OCD symptoms (as measured by the obsessive compulsive inventory‐revised [OCI‐R], r = .343, p<.05, FDR correction) and time in State II was negatively correlated with symptoms (r = −.343, p<.05, FDR correction). Within each state we also examined connectivity within and between established intrinsic connectivity networks, and found that UFDR were similar to the OCD group in State I, but more similar to the HC groups in State II. The similarities between OCD and UFDR groups in temporal properties and State I connectivity indicate that these features may reflect the endophenotype for OCD. These results indicate that the temporal dynamics of functional connectivity could be a useful biomarker to identify those at risk.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ya Guo
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiangshu Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qiong Yang
- Department of Psychiatry, Southern Medical University, Guangzhou, China.,Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,Department of Psychology, Colorado State University, Fort Collins, Colorado, USA
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
44
|
Hordacre B, Goldsworthy MR, Graetz L, Ridding MC. Motor network connectivity predicts neuroplastic response following theta burst stimulation in healthy adults. Brain Struct Funct 2021; 226:1893-1907. [PMID: 34043076 DOI: 10.1007/s00429-021-02299-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/10/2021] [Indexed: 01/17/2023]
Abstract
A patterned repetitive transcranial magnetic stimulation protocol, known as continuous theta burst stimulation (cTBS), can suppress corticospinal excitability via mechanisms that appear similar to long-term depression synaptic plasticity. Despite much potential, this technique is currently limited by substantial response variability. The purpose of this study was to investigate whether baseline resting state functional connectivity is a determinant of response to cTBS. Eighteen healthy young adults participated in up to three experimental sessions. Single-pulse transcranial magnetic stimulation was used to quantify change in corticospinal excitability following cTBS. Three minutes of resting electroencephalographic activity was recorded, and functional connectivity was estimated using the debiased weighted phase lag index across different frequency bands. Partial least squares regression identified models of connectivity between a seed region (C3) and the whole scalp that maximally accounted for variance in cTBS responses. There was no group-level effect of a single cTBS train or spaced cTBS trains on corticospinal excitability (p = 0.092). A low beta frequency band model of connectivity accounted for the largest proportion of variance in spaced cTBS response (R2 = 0.50). Based on the low beta frequency model, a-priori regions of interest were identified and predicted 39% of variance in response to spaced cTBS at a subsequent session. Importantly, weaker connectivity between the seed electrode (C3) and a cluster approximating a frontocentral region was associated with greater spaced cTBS response (p = 0.02). It appears M1-frontocentral networks may have an important role in determining the effects of cTBS on corticospinal excitability.
Collapse
Affiliation(s)
- Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia.
| | - Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lynton Graetz
- Lifespan Human Neurophysiology Group, Adelaide Medical School, The University of Adelaide, Adelaide, 5005, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Michael C Ridding
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia, City East Campus, GPO Box 2471, Adelaide, South, 5001, Australia
| |
Collapse
|
45
|
Stretton J, Walsh ND, Mobbs D, Schweizer S, van Harmelen A, Lombardo M, Goodyer I, Dalgleish T. How biopsychosocial depressive risk shapes behavioral and neural responses to social evaluation in adolescence. Brain Behav 2021; 11:e02005. [PMID: 33662187 PMCID: PMC8119860 DOI: 10.1002/brb3.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Understanding the emotional responsivity style and neurocognitive profiles of depression-related processes in at-risk youth may be helpful in revealing those most likely to develop affective disorders. However, the multiplicity of biopsychosocial risk factors makes it difficult to disentangle unique and combined effects at a neurobiological level. METHODS In a population-derived sample of 56 older adolescents (aged 17-20), we adopted partial least squares regression and correlation models to explore the relationships between multivariate biopsychosocial risks for later depression, emotional response style, and fMRI activity, to rejecting and inclusive social feedback. RESULTS Behaviorally, higher depressive risk was associated with both reduced negative affect following negative social feedback and reduced positive affect following positive social feedback. In response to both cues of rejection and inclusion, we observed a general neural pattern of increased cingulate, temporal, and striatal activity in the brain. Secondly, in response to rejection only, we observed a pattern of activity in ostensibly executive control- and emotion regulation-related brain regions encompassing fronto-parietal brain networks including the angular gyrus. CONCLUSION The results suggest that risk for depression is associated with a pervasive emotional insensitivity in the face of positive and negative social feedback.
Collapse
Affiliation(s)
- Jason Stretton
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Nicholas D Walsh
- School of PsychologyFaculty of Social SciencesUniversity of East AngliaNorwichUK
| | - Dean Mobbs
- Division of Humanities and Social SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Susanne Schweizer
- Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | | | - Michael Lombardo
- Department of Psychology and Center for Applied NeuroscienceUniversity of CyprusNicosiaCyprus
| | - Ian Goodyer
- Developmental Psychiatry SectionDepartment of PsychiatryUniversity of CambridgeCambridgeUK
| | - Tim Dalgleish
- Medical Research Council Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustCambridgeUK
| |
Collapse
|
46
|
Isobe M, Vaghi M, Fineberg NA, Apergis-Schoute AM, Bullmore ET, Sahakian BJ, Robbins TW, Chamberlain SR. Set-shifting-related basal ganglia deformation as a novel familial marker of obsessive-compulsive disorder. Br J Psychiatry 2021; 220:1-4. [PMID: 35049465 PMCID: PMC7613037 DOI: 10.1192/bjp.2021.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The symptoms of obsessive-compulsive disorder (OCD) are suggestive of cognitive rigidity, and previous work identified impaired flexible responding on set-shifting tasks in such patients. The basal ganglia are central to habit learning and are thought to be abnormal in OCD, contributing to inflexible, rigid habitual patterns of behaviour. Here, we demonstrate that increased cognitive inflexibility, indexed by poor performance on the set-shifting task, correlated with putamen morphology, and that patients and their asymptomatic relatives had common curvature abnormalities within this same structure. The association between the structure of the putamen and the extradimensional errors was found to be significantly familial in OCD proband-relative pairs. The data implicate changes in basal ganglia structure linked to cognitive inflexibility as a familial marker of OCD. This may reflect a predisposing heightened propensity toward habitual response patterns and deficits in goal-directed planning.
Collapse
Affiliation(s)
- Masanori Isobe
- Department of Psychiatry, Kyoto University, Japan; Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; and The Nippon Foundation, Japan
| | - Matilde Vaghi
- Department of Psychology, University of Cambridge, UK; University College London, UK
| | - Naomi A Fineberg
- University of Hertfordshire, UK; and Hertfordshire Partnership University NHS Trust, UK
| | | | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, UK; and Cambridge and Peterborough NHS Foundation Trust, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; and Department of Psychology, University of Cambridge, UK
| | | | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK; Department of Psychiatry, University of Southampton, UK; and Southern Health NHS Foundation Trust, UK
| |
Collapse
|
47
|
Peris TS, Salgari G, Perez J, Jurgiel J, Vreeland A, O'Neill J, Chang S, Piacentini J, Loo SK. Shared and unique neural mechanisms underlying pediatric trichotillomania and obsessive compulsive disorder. Psychiatry Res 2021; 298:113653. [PMID: 33621723 DOI: 10.1016/j.psychres.2020.113653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Little is known about the neural underpinnings of pediatric trichotillomania (TTM). We examined error-related negativity (ERN)-amplitude and theta-EEG power differences among youth with TTM, OCD, and healthy controls (HC). METHODS Forty channel EEG was recorded from 63 pediatric participants (22 with TTM, 22 with OCD, and 19 HC) during the Eriksen Flanker Task. EEG data from inhibitory control were used to derive estimates of ERN amplitude and event-related spectral power associated with motor inhibition. RESULTS TTM and HC were similar in brain activity patterns in frontal and central regions and TTM and OCD were similar in the parietal region. Frontal ERN-amplitude was significantly larger in OCD relative to TTM and HC, who did not differ from each other. The TTM group had higher theta power compared to OCD in frontal and central regions, and higher theta than both comparison groups in right motor cortex and superior parietal regions. Within TTM, flanker task performance was correlated with EEG activity in frontal, central, and motor cortices whereas global functioning and impairment were associated with EEG power in bilateral motor and parietal cortices. CONCLUSIONS Findings are discussed in terms of shared and unique neural mechanisms in TTM and OCD and treatment implications.
Collapse
Affiliation(s)
- Tara S Peris
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States.
| | - Giulia Salgari
- Department of Psychology, University of Central Florida, United States
| | - Jocelyn Perez
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| | - Joseph Jurgiel
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| | | | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| | - Susanna Chang
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| | - John Piacentini
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| | - Sandra K Loo
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience at UCLA, Los Angeles, CA 90024, United States
| |
Collapse
|
48
|
"First-episode psychosis: Structural covariance deficits in salience network correlate with symptoms severity". J Psychiatr Res 2021; 136:409-420. [PMID: 33647856 DOI: 10.1016/j.jpsychires.2021.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Patterns of coordinated variations of gray matter (GM) morphology across individuals are promising indicators of disease. However, it remains unclear if they can help characterize first-episode psychosis (FEP) and symptoms' severity. METHODS Sixty-seven FEP and 67 matched healthy controls (HC) were assessed with structural MRI to evaluate the existence of distributed GM structural covariance patterns associated to brain areas belonging to salience network. Voxel-based morphometry (VBM) and structural covariance differences, investigated with salience network seed-based Partial Least Square, were applied to explore differences between groups. GM density associations with Raven's intelligent quotient (IQ) and Positive and Negative Syndrome Scale (PANSS) scores were investigated. RESULTS Univariate VBM results gave trend without significant GM differences across groups. GM and IQ correlated positively in both groups: in FEP, mostly in hippocampus, insula, and fronto-temporal structures, while in HC mostly in amygdala, thalamus and fronto-temporal regions. GM and PANSS scores correlated negatively in FEP, with widespread clusters located in limbic regions. Multivariate analysis showed strong and opposite structural GM covariance with salience network for FEP and HC. Moreover, structural covariance of the salience network in FEP correlated negatively with severity of clinical symptoms. CONCLUSION Our study provides evidence supporting the insular dysfunction model of psychosis. Reduced structural GM covariance of the salience network, with its association to symptom's severity, appears a promising morphometry feature for FEP detection.
Collapse
|
49
|
Dayan-Riva A, Berger A, Anholt GE. Affordances, response conflict, and enhanced-action tendencies in obsessive-compulsive disorder: an ERP study. Psychol Med 2021; 51:948-963. [PMID: 31907102 DOI: 10.1017/s0033291719003866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by recurrent, intrusive thoughts and/or behaviors. OCD symptoms are often triggered by external stimuli. Therefore, it has been suggested that difficulty inhibiting responses to stimuli associated with strong action tendencies may underlie symptoms. The present electrophysiological study examined whether stimuli evoking a strong automatic response are associated with enhanced action tendencies in OCD participants relative to healthy controls. METHODS The lateralized readiness potential (LRP) and the N2 event-related potential (ERP) components were used as measures of action tendencies and inhibition, respectively. ERPs were recorded while 38 participants diagnosed with OCD and 38 healthy controls performed a variation of the Stroop task using colored arrows. RESULTS The OCD group presented with larger LRP amplitudes than the control group. This effect was found specifically in the incongruent condition. Furthermore, an interaction effect was found between group and congruency such that the OCD group showed a reduced N2 in the incongruent condition compared to the congruent condition, whereas the control group demonstrated the opposite effect. Results support the hypothesis that OCD is characterized by stronger readiness-for-action and impaired inhibitory mechanisms, particularly when the suppression of a dominant response tendency is required. Our results were supported by source localization analyses for the LRP and N2 components. These findings were specific to OCD and not associated with anxiety and depression symptoms. CONCLUSIONS The present results support the notion of stronger habitual behavior and embodiment tendencies in OCD and impaired inhibitory control under conditions of conflict.
Collapse
Affiliation(s)
- Adi Dayan-Riva
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Andrea Berger
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
50
|
Abramovitch A, Short T, Schweiger A. The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin Psychol Rev 2021; 86:102007. [PMID: 33864968 DOI: 10.1016/j.cpr.2021.102007] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022]
Abstract
Research into cognitive functions across psychological disorders suggests that cognitive deficiencies may be present across multiple disorders, potentially pointing to a transdiagnostic phenomenon. More recently, a single dimension model of psychopathology, the p factor, has been proposed, in which cognitive deficits are thought to be an intrinsic construct, assumed to be transdiagnostic. However, no systematic investigation to date tested this hypothesis. The aim of the present study was to systematically review meta-analyses to assess the hypothesis that the C factor (cognitive dysfunction) is transdiagnostic in psychopathology and review potential moderators that may account for such a phenomenon. We conducted a systematic review of meta-analyses examining cognitive function across all disorders for which data were available. Included meta-analyses (n = 82), comprising 97 clinical samples, yielded 1,055 effect sizes. Twelve major disorders/categories (e.g., bipolar disorder, substance use disorders) were included, comprising 29 distinct clinical entities (e.g., euthymic bipolar disorder; alcohol use disorder). Results show that all disorders reviewed are associated with underperformance across cognitive domains, supporting the hypothesis that the C factor (or cognitive dysfunction) is a transdiagnostic factor related to p. To examine moderators that may explain or contribute to c, we first consider important interpretative limitations of neuropsychological data in psychopathology. More crucially, we review oft-neglected motivational and emotional transdiagnostic constructs of p, as prominent contributing constructs to the C factor. These constructs are offered as a roadmap for future research examining these constructs related to p, that contribute, and may account for cognitive dysfunctions in psychopathology.
Collapse
Affiliation(s)
| | - Tatiana Short
- Department of Psychology, Texas State University, USA
| | | |
Collapse
|