1
|
Esfahan SM, Sepahi N, Rezayat E. How autism impacts children's working memory for faces. J Clin Exp Neuropsychol 2025:1-9. [PMID: 40364506 DOI: 10.1080/13803395.2025.2505585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
This study investigates visual working memory (WM) performance in children aged 7-12 years with Autism Spectrum Disorder (ASD) compared to typically developing (TD) peers, focusing on face stimuli to evaluate social-relevant memory processing. The research aims to identify differences in visual WM functioning and determine whether errors in recall stem from reduced precision or increased random guessing. Participants completed a visual WM task requiring them to memorize and reproduce the orientations of faces presented on a screen. Results demonstrated that children with ASD exhibited significantly poorer overall visual WM accuracy than TD children. A fine-grained analysis of error patterns revealed that the ASD group showed markedly lower precision in recalling spatial details of the stimuli, indicating less stable or detailed memory representations. However, rates of random guessing-a measure of attentional lapses or task disengagement-did not differ significantly between groups. These findings underscore that visual WM deficits in ASD are primarily driven by reduced precision rather than fluctuations in attention or motivation. The study highlights the importance of precision-based mechanisms in understanding atypical cognitive profiles in ASD, offering insights into potential interventions targeting memory consolidation or perceptual encoding strategies to enhance functional outcomes. By isolating precision as a key deficit, this work advances theoretical models of visual WM and informs tailored approaches to support memory-related challenges in ASD.
Collapse
Affiliation(s)
- Shahrzad M Esfahan
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
- Department of Cognitive Psychology, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Narges Sepahi
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
| | - Ehsan Rezayat
- Department of Cognitive Sciences, Psychology and Educational Science Faculty, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
2
|
Galli J, Vezzoli M, Loi E, Micheletti S, Molinaro A, Tagliavento L, Calza S, Sokolov AN, Pavlova MA, Fazzi E. Alterations in looking at face-pareidolia images in autism. Sci Rep 2025; 15:14915. [PMID: 40295674 PMCID: PMC12038013 DOI: 10.1038/s41598-025-98461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Face tuning is vital for adaptive and effective social cognition and interaction. This capability is impaired in a wide range of mental conditions including autism spectrum disorder (ASD). Yet the origins of this deficit are largely unknown. Here, an eye-tracking methodology had been implemented in adolescents with high-functioning ASD and in typically developing (TD) matched controls while administering a face-pareidolia task. The spatial distributions of eye fixation in five regions of interest [face, eyes, mouth, CFA (complementary face area, a face area beyond eyes and mouth) and non-face area (a screen area outside a face)] were recorded during spontaneous recognition of a set of Arcimboldo-like Face-n-Food images presented in a predetermined order from the least to most resembling a face. Individuals with ASD gave significantly fewer face responses and looked more often at the mouth, CFA, and non-face areas. By contrast, TD controls mostly fixated the face and eyes areas. The atypical visual scanning strategies could, at least partly, account for the lower face tuning in ASD, supporting the eye avoidance hypothesis, according to which ASD individuals concentrate less on the eyes because the eyes represent a source of emotional information that may make them feel uncomfortable.
Collapse
Affiliation(s)
- Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Marika Vezzoli
- BDbiomed, BODaI Lab, University of Brescia, Brescia, Italy
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Erika Loi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Serena Micheletti
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Anna Molinaro
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lucia Tagliavento
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Calza
- BDbiomed, BODaI Lab, University of Brescia, Brescia, Italy
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alexander N Sokolov
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Marina A Pavlova
- Social Neuroscience Unit, Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
3
|
Kleinhans N, Larsen SF, Estes A, Aylward E. Intrinsic Functional Connectivity Alterations of the Fusiform Face Area in Autism Spectrum Disorder. NEUROSCI 2025; 6:29. [PMID: 40265359 PMCID: PMC12015912 DOI: 10.3390/neurosci6020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
Intrinsic connectivity of the fusiform face area (FFA) was assessed using resting-state functional magnetic resonance imaging (fMRI) to compare adults with autism spectrum disorder (ASD; n = 17) and age-, sex-, and IQ-matched typically developing controls (TD; n = 22). The FFA seed region was delineated in each participant using a functional localizer task. Whole brain analyses of FFA connectivity revealed increased connectivity between the right FFA and the vermis, sensorimotor cortex, and extended face-processing network in individuals with ASD compared to TD participants; the TD group did not demonstrate increased functional connectivity. No group differences were observed from the left FFA. The relationship between FFA connectivity and the ability to remember faces significantly differed between the groups. Better face memory performance was positively correlated with increased connectivity within general visual processing areas in the ASD participants; whereas for the TD group, better face memory performance was associated with increased connectivity with brain regions related to face encoding, recognition, and retrieval. FFA overconnectivity with face, emotion, and memory processing areas, along with atypical relationships between FFA-occipito-temporal connections and face memory performance highlights a possible mechanism underlying social dysfunction in individuals with ASD.
Collapse
Affiliation(s)
- Natalia Kleinhans
- Department of Radiology, University of Washington, Seattle, WA 98109, USA;
- Integrated Brain Imaging Center, University of Washington, Seattle, WA 98195, USA
- Institute on Human Development and Disability, University of Washington, Seattle, WA 98195, USA;
| | - Sarah F. Larsen
- Department of Radiology, University of Washington, Seattle, WA 98109, USA;
- Integrated Brain Imaging Center, University of Washington, Seattle, WA 98195, USA
| | - Annette Estes
- Institute on Human Development and Disability, University of Washington, Seattle, WA 98195, USA;
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
4
|
Chen J, Liu S, Shen Y, Cai H, Zhao W, Yu Y, Zhu J. Functional gradient of the fusiform gyrus and its underlying molecular basis. Cereb Cortex 2025; 35:bhaf029. [PMID: 39976666 DOI: 10.1093/cercor/bhaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/03/2025] [Accepted: 01/28/2025] [Indexed: 05/10/2025] Open
Abstract
Evidence has evinced the functional complexity, anatomical heterogeneity, connectivity diversity, and clinical relevance of the fusiform gyrus. We aimed to investigate the hierarchical organization of the fusiform gyrus and its underlying molecular basis. Resting-state functional MRI data of 793 healthy subjects were collected from a discovery dataset and two independent cross-scanner, cross-race validation datasets. Functional gradients of the fusiform gyrus were calculated based on the voxel-wise fusiform gyrus-to-cerebrum functional connectivity to reflect its functional organization. Transcription-neuroimaging spatial correlation analysis was performed to determine genes with expression levels tracking the fusiform gyrus functional gradient. The dominant functional gradient that explained the greatest connectivity variance showed an anterior-posterior axis across the fusiform gyrus. More important, there was a strong association between the fusiform gyrus-dominant gradient and gene expression profiles, with two gene sets contributing significantly to this association yet differing in their specific expression and functional annotation. In addition, the fusiform gyrus-dominant gradient was linked closely to intrinsic geometry, slightly to cortical morphology, and gradually to behavioral domains from high-level cognitive processes to low-level sensory functions. Our findings add to the extant knowledge regarding the topographic organization of the fusiform gyrus by informing a novel conceptualization of how functional heterogeneity and multiplicity co-occur within the fusiform gyrus.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, No. 81, Meishan Road, Shushan District, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, No. 81, Meishan Road, Shushan District, Hefei 230032, China
| |
Collapse
|
5
|
Liu J, Chen H, Wang H, Wang Z. Neural correlates of facial recognition deficits in autism spectrum disorder: a comprehensive review. Front Psychiatry 2025; 15:1464142. [PMID: 39834575 PMCID: PMC11743606 DOI: 10.3389/fpsyt.2024.1464142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairments in social interaction, often manifested in facial recognition deficits. These deficits hinder individuals with ASD from recognizing facial identities and interpreting emotions, further complicating social communication. This review explores the neural mechanisms underlying these deficits, focusing on both functional anomalies and anatomical differences in key brain regions such as the fusiform gyrus (FG), amygdala, superior temporal sulcus (STS), and prefrontal cortex (PFC). It has been found that the reduced activation in the FG and atypical activation of the amygdala and STS contribute to difficulties in processing facial cues, while increased reliance on the PFC for facial recognition tasks imposes a cognitive load. Additionally, disrupted functional and structural connectivity between these regions further exacerbates facial recognition challenges. Future research should emphasize longitudinal, multimodal neuroimaging approaches to better understand developmental trajectories and design personalized interventions, leveraging AI and machine learning to optimize therapeutic outcomes for individuals with ASD.
Collapse
Affiliation(s)
- Jianmei Liu
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou, China
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Huihui Chen
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Haijing Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| | - Zhidan Wang
- School of Education Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
6
|
Floris DL, Llera A, Zabihi M, Moessnang C, Jones EJH, Mason L, Haartsen R, Holz NE, Mei T, Elleaume C, Vieira BH, Pretzsch CM, Forde NJ, Baumeister S, Dell’Acqua F, Durston S, Banaschewski T, Ecker C, Holt RJ, Baron-Cohen S, Bourgeron T, Charman T, Loth E, Murphy DGM, Buitelaar JK, Beckmann CF, Langer N. A multimodal neural signature of face processing in autism within the fusiform gyrus. NATURE. MENTAL HEALTH 2025; 3:31-45. [PMID: 39802935 PMCID: PMC11717707 DOI: 10.1038/s44220-024-00349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 10/07/2024] [Indexed: 01/16/2025]
Abstract
Atypical face processing is commonly reported in autism. Its neural correlates have been explored extensively across single neuroimaging modalities within key regions of the face processing network, such as the fusiform gyrus (FFG). Nonetheless, it is poorly understood how variation in brain anatomy and function jointly impacts face processing and social functioning. Here we leveraged a large multimodal sample to study the cross-modal signature of face processing within the FFG across four imaging modalities (structural magnetic resonance imaging (MRI), resting-state functional magnetic resonance imaging, task-functional magnetic resonance imaging and electroencephalography) in 204 autistic and nonautistic individuals aged 7-30 years (case-control design). We combined two methodological innovations-normative modeling and linked independent component analysis-to integrate individual-level deviations across modalities and assessed how multimodal components differentiated groups and informed social functioning in autism. Groups differed significantly in a multimodal component driven by bilateral resting-state functional MRI, bilateral structure, right task-functional MRI and left electroencephalography loadings in face-selective and retinotopic FFG. Multimodal components outperformed unimodal ones in differentiating groups. In autistic individuals, multimodal components were associated with cognitive and clinical features linked to social, but not nonsocial, functioning. These findings underscore the importance of elucidating multimodal neural associations of social functioning in autism, offering potential for the identification of mechanistic and prognostic biomarkers.
Collapse
Affiliation(s)
- Dorothea L. Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Lis Data Solutions, Santander, Spain
| | - Mariam Zabihi
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- MRC Unit Lifelong Health and Aging, University College London, London, UK
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Applied Psychology, SRH University, Heidelberg, Germany
| | - Emily J. H. Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Rianne Haartsen
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Nathalie E. Holz
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Center for Mental Health (DZPG), Partner site Mannheim–Heidelberg–Ulm, Mannheim, Germany
| | - Ting Mei
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camille Elleaume
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Bruno Hebling Vieira
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Natalie J. Forde
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Flavio Dell’Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- German Center for Mental Health (DZPG), Partner site Mannheim–Heidelberg–Ulm, Mannheim, Germany
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Rosemary J. Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions Unity, Institut Pasteur, Paris, France
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jan K. Buitelaar
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Zovetti N, Meller T, Evermann U, Pfarr JK, Hoffmann J, Federspiel A, Walther S, Grezellschak S, Jansen A, Abu-Akel A, Nenadić I. Multimodal imaging of the amygdala in non-clinical subjects with high vs. low autistic-like social skills traits. Psychiatry Res Neuroimaging 2025; 346:111910. [PMID: 39477779 DOI: 10.1016/j.pscychresns.2024.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Recent clinical and theoretical frameworks suggest that social skills and theory of mind impairments characteristic of autism spectrum disorder (ASD) are distributed in the general population on a continuum between healthy individuals and patients. The present multimodal study aimed at investigating the amygdala's function, perfusion, and volume in 56 non-clinical subjects from the general population with high (n = 28 High-SOC) or low (n = 28 Low-SOC) autistic-like social skills traits. Participants underwent magnetic resonance imaging to evaluate the amygdala's functional connectivity at rest, blood perfusion by means of arterial spin labelling, its activation during a face evaluation task and lastly grey matter volumes. The High-SOC group was characterised by higher blood perfusion in both amygdalae, lower volume of the left amygdala and higher activations of the right amygdala during processing of human faces with fearful value. Resting state analyses did not reveal any significant difference between the two groups. Overall, our results highlight the presence of overlapping morpho-functional alterations of the amygdala between healthy individuals and ASD patients confirming the importance of the amygdala in this disorder and in social and emotional processing. Our findings may help disentangle the neurobiological facets of ASD elucidating aetiology and the relationship between clinical symptomatology and neurobiology.
Collapse
Affiliation(s)
- Niccolò Zovetti
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Ulrika Evermann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Jonas Hoffmann
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sarah Grezellschak
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany; BrainImaging Core Facility, Philipps Universität Marburg, Marburg, Germany
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Haifa Brain and Behavior Hub (HBBH), University of Haifa, Haifa, Israel
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps Universität Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany.
| |
Collapse
|
8
|
Chen Y, Yang C, Gao B, Chen K, Jao Keehn RJ, Müller RA, Yuan LX, You Y. Altered Functional Connectivity of Unimodal Sensory and Multisensory Integration Networks Is Related to Symptom Severity in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00313-6. [PMID: 39491786 DOI: 10.1016/j.bpsc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Atypical sensory processing is a prevalent feature of autism spectrum disorder (ASD) and constitutes a core diagnostic criterion in DSM-5. However, the neurocognitive underpinnings of atypical unimodal and multimodal sensory processing and their relationships with autism symptoms remain unclear. METHODS In this study, we examined intrinsic functional connectivity (FC) patterns among 5 unimodal sensory and multisensory integration (MSI) networks in ASD using a large multisite dataset (N = 646) and investigated the relationships between altered FC, atypical sensory processing, social communicative deficits, and overall autism symptoms using correlation and mediation analyses. RESULTS Compared with typically developing control participants, participants in the ASD group demonstrated increased FC of the olfactory network, decreased FC within the MSI network, and decreased FC of the MSI-unimodal sensory networks. Furthermore, altered FC was positively associated with autism symptom severity, and such associations were completely mediated by atypical sensory processing and social communicative deficits. CONCLUSIONS ASD-specific olfactory overconnectivity and MSI-unimodal sensory underconnectivity lend support to the intense world theory and weak central coherence theory, suggesting olfactory hypersensitivity at the expense of MSI as a potential neural mechanism underlying atypical sensory processing in ASD. These atypical FC patterns suggest potential targets for psychological and neuromodulatory interventions.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Bicheng Gao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kehui Chen
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, California
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yuqi You
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Li H, Zhang Q, Duan T, Li J, Shi L, Hua Q, Li D, Ji GJ, Wang K, Zhu C. Sex differences in brain functional specialization and interhemispheric cooperation among children with autism spectrum disorders. Sci Rep 2024; 14:22096. [PMID: 39333138 PMCID: PMC11437118 DOI: 10.1038/s41598-024-72339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
The prevalence of autism spectrum disorders (ASDs) differs substantially between males and females, suggesting that sex-related neurodevelopmental factors are central to ASD pathogenesis. Numerous studies have suggested that abnormal brain specialization patterns and poor regional cooperation contribute to ASD pathogenesis, but relatively little is known about the related sex differences. Therefore, this study examined sex differences in brain functional specialization and cooperation among children with ASD. The autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) derived from resting-state functional magnetic resonance imaging (rs-fMRI) were compared between 58 male and 13 female children with ASD. In addition, correlations were examined between regional CFH values showing significant sex differences and symptom scores on the autism behavior checklist (ABC) and childhood autism rating scale (CARS). Male children with ASD demonstrated significantly greater CFH in the left fusiform gyrus (FG) and right opercular part of the inferior frontal gyrus (IFGoperc) than female children with ASD. In addition, the CFH value of the left FG in male children with ASD was negatively correlated with total ABC score and subscale scores for sensory and social abilities. In contrast, no sex differences were detected in brain specialization. These regional abnormalities in interhemispheric cooperation among male children with ASD may provide clues to the neural mechanisms underlying sex differences in ASD symptomatology and prevalence. Autism spectrum disorders, sex, resting-state functional magnetic resonance imaging, cerebral specialization, interhemispheric cooperation.
Collapse
Affiliation(s)
- Hong Li
- School of Mental Health and Psychological Sciences, Anhui Hospital Affiliated to the Pediatric Hospital of Fudan University, Hefei, 230002, China
| | - Qingqing Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Tao Duan
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lei Shi
- School of Mental Health and Psychological Sciences, Anhui Hospital Affiliated to the Pediatric Hospital of Fudan University, Hefei, 230002, China
| | - Qiang Hua
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dandan Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
| | - Gong-Jun Ji
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China
- Department of Psychology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230032, China.
- Department of Psychology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
10
|
Mu C, Dang X, Luo XJ. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat Hum Behav 2024; 8:1417-1428. [PMID: 38724650 DOI: 10.1038/s41562-024-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Dysfunction of brain resting-state functional networks has been widely reported in psychiatric disorders. However, the causal relationships between brain resting-state functional networks and psychiatric disorders remain largely unclear. Here we perform bidirectional two-sample Mendelian randomization (MR) analyses to investigate the causalities between 191 resting-state functional magnetic resonance imaging (rsfMRI) phenotypes (n = 34,691 individuals) and 12 psychiatric disorders (n = 14,307 to 698,672 individuals). Forward MR identified 8 rsfMRI phenotypes causally associated with the risk of psychiatric disorders. For example, the increase in the connectivity of motor, subcortical-cerebellum and limbic network was associated with lower risk of autism spectrum disorder. In adddition, increased connectivity in the default mode and central executive network was associated with lower risk of post-traumatic stress disorder and depression. Reverse MR analysis revealed significant associations between 4 psychiatric disorders and 6 rsfMRI phenotypes. For instance, the risk of attention-deficit/hyperactivity disorder increases the connectivity of the attention, salience, motor and subcortical-cerebellum network. The risk of schizophrenia mainly increases the connectivity of the default mode and central executive network and decreases the connectivity of the attention network. In summary, our findings reveal causal relationships between brain functional networks and psychiatric disorders, providing important interventional and therapeutic targets for psychiatric disorders at the brain functional network level.
Collapse
Affiliation(s)
- Changgai Mu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xinglun Dang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiong-Jian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Wang Y, Cao R, Chakravarthula PN, Yu H, Wang S. Atypical neural encoding of faces in individuals with autism spectrum disorder. Cereb Cortex 2024; 34:172-186. [PMID: 38696606 PMCID: PMC11065108 DOI: 10.1093/cercor/bhae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 05/04/2024] Open
Abstract
Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.
Collapse
Affiliation(s)
- Yue Wang
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Puneeth N Chakravarthula
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| |
Collapse
|
12
|
Nowling D, Crum KI, Joseph J. Sex differences in development of functional connections in the face processing network. J Neuroimaging 2024; 34:280-290. [PMID: 38169075 PMCID: PMC10939922 DOI: 10.1111/jon.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Understanding sex differences in typical development of the face processing network is important for elucidating disruptions during atypical development in sex-linked developmental disorders like autism spectrum disorder. Based on prior sex difference studies in other cognitive domains, this study examined whether females show increased integration of core and extended face regions with age for face viewing, while males would show increased segregation. METHODS This study used a cross-sectional design with typically developing children and adults (n = 133) and a functional MRI face localizer task. Psychophysiological interaction (PPI) analysis examined functional connectivity between canonical and extended face processing network regions with age, with greater segregation indexed by decreased core-extended region connectivity with age and greater integration indexed by increased core-extended region connectivity with age. RESULTS PPI analysis confirmed increased segregation for males-right fusiform face area (FFA) coupling to right inferior frontal gyrus (IFG) opercular when viewing faces and left amygdala when viewing objects decreased with age. Females showed increased integration with age (increased coupling of the right FFA to right IFG opercular region and right occipital face area [OFA] to right IFG orbital when viewing faces and objects, respectively) and increased segregation (decreased coupling with age of the right OFA with IFG opercular region when viewing faces). CONCLUSIONS Development of core and extended face processing network connectivity follows sexually dimorphic paths. These differential changes mostly occur across childhood and adolescence, with males experiencing segregation and females both segregation and integration changes in connectivity.
Collapse
Affiliation(s)
- Duncan Nowling
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Kathleen I. Crum
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Jane Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
13
|
Mosconi MW, Stevens CJ, Unruh KE, Shafer R, Elison JT. Endophenotype trait domains for advancing gene discovery in autism spectrum disorder. J Neurodev Disord 2023; 15:41. [PMID: 37993779 PMCID: PMC10664534 DOI: 10.1186/s11689-023-09511-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is associated with a diverse range of etiological processes, including both genetic and non-genetic causes. For a plurality of individuals with ASD, it is likely that the primary causes involve multiple common inherited variants that individually account for only small levels of variation in phenotypic outcomes. This genetic landscape creates a major challenge for detecting small but important pathogenic effects associated with ASD. To address similar challenges, separate fields of medicine have identified endophenotypes, or discrete, quantitative traits that reflect genetic likelihood for a particular clinical condition and leveraged the study of these traits to map polygenic mechanisms and advance more personalized therapeutic strategies for complex diseases. Endophenotypes represent a distinct class of biomarkers useful for understanding genetic contributions to psychiatric and developmental disorders because they are embedded within the causal chain between genotype and clinical phenotype, and they are more proximal to the action of the gene(s) than behavioral traits. Despite their demonstrated power for guiding new understanding of complex genetic structures of clinical conditions, few endophenotypes associated with ASD have been identified and integrated into family genetic studies. In this review, we argue that advancing knowledge of the complex pathogenic processes that contribute to ASD can be accelerated by refocusing attention toward identifying endophenotypic traits reflective of inherited mechanisms. This pivot requires renewed emphasis on study designs with measurement of familial co-variation including infant sibling studies, family trio and quad designs, and analysis of monozygotic and dizygotic twin concordance for select trait dimensions. We also emphasize that clarification of endophenotypic traits necessarily will involve integration of transdiagnostic approaches as candidate traits likely reflect liability for multiple clinical conditions and often are agnostic to diagnostic boundaries. Multiple candidate endophenotypes associated with ASD likelihood are described, and we propose a new focus on the analysis of "endophenotype trait domains" (ETDs), or traits measured across multiple levels (e.g., molecular, cellular, neural system, neuropsychological) along the causal pathway from genes to behavior. To inform our central argument for research efforts toward ETD discovery, we first provide a brief review of the concept of endophenotypes and their application to psychiatry. Next, we highlight key criteria for determining the value of candidate endophenotypes, including unique considerations for the study of ASD. Descriptions of different study designs for assessing endophenotypes in ASD research then are offered, including analysis of how select patterns of results may help prioritize candidate traits in future research. We also present multiple candidate ETDs that collectively cover a breadth of clinical phenomena associated with ASD, including social, language/communication, cognitive control, and sensorimotor processes. These ETDs are described because they represent promising targets for gene discovery related to clinical autistic traits, and they serve as models for analysis of separate candidate domains that may inform understanding of inherited etiological processes associated with ASD as well as overlapping neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA.
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA.
| | - Cassandra J Stevens
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Robin Shafer
- Schiefelbusch Institute for Life Span Studies and Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Chen B, Jiang L, Lu G, Li Y, Zhang S, Huang X, Xu P, Li F, Yao D. Altered dynamic network interactions in children with ASD during face recognition revealed by time-varying EEG networks. Cereb Cortex 2023; 33:11170-11180. [PMID: 37750334 DOI: 10.1093/cercor/bhad355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Although the electrophysiological event-related potential in face processing (e.g. N170) is widely accepted as a face-sensitivity biomarker that is deficient in children with autism spectrum disorders, the time-varying brain networks during face recognition are still awaiting further investigation. To explore the social deficits in autism spectrum disorder, especially the time-varying brain networks during face recognition, the current study analyzed the N170, cortical activity, and time-varying networks under 3 tasks (face-upright, face-inverted, and house-upright) in autism spectrum disorder and typically developing children. The results revealed a smaller N170 amplitude in autism spectrum disorder compared with typically developing, along with decreased cortical activity mainly in occipitotemporal areas. Concerning the time-varying networks, the atypically stronger information flow and brain network connections across frontal, parietal, and temporal regions in autism spectrum disorder were reported, which reveals greater effort was exerted by autism spectrum disorder to obtain comparable performance to the typically developing children, although the amplitude of N170 was still smaller than that of the typically developing children. Different brain activation states and interaction patterns of brain regions during face processing were discovered between autism spectrum disorder and typically developing. These findings shed light on the face-processing mechanisms in children with autism spectrum disorder and provide new insight for understanding the social dysfunction of autism spectrum disorder.
Collapse
Affiliation(s)
- Baodan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoqing Lu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 600054, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shu Zhang
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xunan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Foreign Languages, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of Neuro Information, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Jing J, Klugah-Brown B, Xia S, Sheng M, Biswal BB. Comparative analysis of group information-guided independent component analysis and independent vector analysis for assessing brain functional network characteristics in autism spectrum disorder. Front Neurosci 2023; 17:1252732. [PMID: 37928736 PMCID: PMC10620743 DOI: 10.3389/fnins.2023.1252732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Group information-guided independent component analysis (GIG-ICA) and independent vector analysis (IVA) are two methods that improve estimation of subject-specific independent components in neuroimaging studies. These methods have shown better performance than traditional group independent component analysis (GICA) with respect to intersubject variability (ISV). Methods In this study, we compared the patterns of community structure, spatial variance, and prediction performance of GIG-ICA and IVA-GL, respectively. The dataset was obtained from the publicly available Autism Brain Imaging Data Exchange (ABIDE) database, comprising 75 healthy controls (HC) and 102 Autism Spectrum Disorder (ASD) participants. The greedy rule was used to match components from IVA-GL and GIG-ICA in order to compare the similarities between the two methods. Results Robust correspondence was observed between the two methods the following networks: cerebellum network (CRN; |r| = 0.7813), default mode network (DMN; |r| = 0.7263), self-reference network (SRN; |r| = 0.7818), ventral attention network (VAN; |r| = 0.7574), and visual network (VSN; |r| = 0.7503). Additionally, the Sensorimotor Network demonstrated the highest similarity between IVA-GL and GIG-ICA (SOM: |r| = 0.8125). Our findings revealed a significant difference in the number of modules identified by the two methods (HC: p < 0.001; ASD: p < 0.001). GIG-ICA identified significant differences in FNC between HC and ASD compared to IVA-GL. However, in correlation analysis, IVA-GL identified a statistically negative correlation between FNC of ASD and the social total subscore of the classic Autism Diagnostic Observation Schedule (ADOS: pi = -0.26, p = 0.0489). Moreover, both methods demonstrated similar prediction performances on age within specific networks, as indicated by GIG-ICA-CRN (R2 = 0.91, RMSE = 3.05) and IVA-VAN (R2 = 0.87, RMSE = 3.21). Conclusion In summary, IVA-GL demonstrated lower modularity, suggesting greater sensitivity in estimating networks with higher intersubject variability. The improved age prediction of cerebellar-attention networks underscores their importance in the developmental progression of ASD. Overall, IVA-GL may be appropriate for investigating disorders with greater variability, while GIG-ICA identifies functional networks with distinct modularity patterns.
Collapse
Affiliation(s)
- Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyu Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B. Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
16
|
Zhuang W, Jia H, Liu Y, Cong J, Chen K, Yao D, Kang X, Xu P, Zhang T. Identification and analysis of autism spectrum disorder via large-scale dynamic functional network connectivity. Autism Res 2023; 16:1512-1526. [PMID: 37365978 DOI: 10.1002/aur.2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with severe cognitive impairment. Several studies have reported that brain functional network connectivity (FNC) has great potential for identifying ASD from healthy control (HC) and revealing the relationships between the brain and behaviors of ASD. However, few studies have explored dynamic large-scale FNC as a feature to identify individuals with ASD. This study used a time-sliding window method to study the dynamic FNC (dFNC) on the resting-state fMRI. To avoid arbitrarily determining the window length, we set a window length range of 10-75 TRs (TR = 2 s). We constructed linear support vector machine classifiers for all window length conditions. Using a nested 10-fold cross-validation framework, we obtained a grand average accuracy of 94.88% across window length conditions, which is higher than those reported in previous studies. In addition, we determined the optimal window length using the highest classification accuracy of 97.77%. Based on the optimal window length, we found that the dFNCs were located mainly in dorsal and ventral attention networks (DAN and VAN) and exhibited the highest weight in classification. Specifically, we found that the dFNC between DAN and temporal orbitofrontal network (TOFN) was significantly negatively correlated with social scores of ASD. Finally, using the dFNCs with high classification weights as features, we construct a model to predict the clinical score of ASD. Overall, our findings demonstrated that the dFNC could be a potential biomarker to identify ASD and provide new perspectives to detect cognitive changes in ASD.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Hai Jia
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Yunhong Liu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Jing Cong
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Kai Chen
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaodong Kang
- The Department of Sichuan 81 Rehabilitation Center, Chengdu University of TCM, Chengdu, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Wang S, Li X. A revisit of the amygdala theory of autism: Twenty years after. Neuropsychologia 2023; 183:108519. [PMID: 36803966 PMCID: PMC10824605 DOI: 10.1016/j.neuropsychologia.2023.108519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The human amygdala has long been implicated to play a key role in autism spectrum disorder (ASD). Yet it remains unclear to what extent the amygdala accounts for the social dysfunctions in ASD. Here, we review studies that investigate the relationship between amygdala function and ASD. We focus on studies that employ the same task and stimuli to directly compare people with ASD and patients with focal amygdala lesions, and we also discuss functional data associated with these studies. We show that the amygdala can only account for a limited number of deficits in ASD (primarily face perception tasks but not social attention tasks), a network view is, therefore, more appropriate. We next discuss atypical brain connectivity in ASD, factors that can explain such atypical brain connectivity, and novel tools to analyze brain connectivity. Lastly, we discuss new opportunities from multimodal neuroimaging with data fusion and human single-neuron recordings that can enable us to better understand the neural underpinnings of social dysfunctions in ASD. Together, the influential amygdala theory of autism should be extended with emerging data-driven scientific discoveries such as machine learning-based surrogate models to a broader framework that considers brain connectivity at the global scale.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
18
|
Khandan Khadem-Reza Z, Shahram MA, Zare H. Altered resting-state functional connectivity of the brain in children with autism spectrum disorder. Radiol Phys Technol 2023; 16:284-291. [PMID: 37040021 DOI: 10.1007/s12194-023-00717-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders. Brain mapping has shown that functional brain connections are altered in autism. This study investigated the pattern of brain connection changes in autistic people compared to healthy people. This study aimed to analyze functional abnormalities within the brain due to ASD, using resting-state functional magnetic resonance imaging (fMRI). Resting-state functional magnetic resonance images of 26 individuals with ASD and 26 healthy controls were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. The DPARSF (data processing assistant for resting-state fMRI) toolbox was used for resting-state functional image processing, and features related to functional connections were extracted from these images. Then, the extracted features from both groups were compared using an Independent Two-Sample T Test, and the features with significant differences between the two groups were identified. Compared with healthy controls, individuals with ASD showed hyper-connectivity in the frontal lobe, anterior cingulum, parahippocampal, left precuneus, angular, caudate, superior temporal, and left pallidum, as well as hypo-connectivity in the precentral, left superior frontal, left middle orbitofrontal, right amygdala, and left posterior cingulum. Our findings show that abnormal functional connectivity exists in patients with ASD. This study makes an important advancement in our understanding of the abnormal neurocircuits causing autism.
Collapse
Affiliation(s)
- Zahra Khandan Khadem-Reza
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Street, Mashhad, Razavi Khorasan, Iran
| | - Mohammad Amin Shahram
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Street, Mashhad, Razavi Khorasan, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Razavi Khorasan, Iran.
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Street, Mashhad, Razavi Khorasan, Iran.
| |
Collapse
|
19
|
D'Mello AM, Frosch IR, Meisler SL, Grotzinger H, Perrachione TK, Gabrieli JDE. Diminished Repetition Suppression Reveals Selective and Systems-Level Face Processing Differences in ASD. J Neurosci 2023; 43:1952-1962. [PMID: 36759192 PMCID: PMC10027049 DOI: 10.1523/jneurosci.0608-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Repeated exposure to a stimulus results in reduced neural response, or repetition suppression, in brain regions responsible for processing that stimulus. This rapid accommodation to repetition is thought to underlie learning, stimulus selectivity, and strengthening of perceptual expectations. Importantly, reduced sensitivity to repetition has been identified in several neurodevelopmental, learning, and psychiatric disorders, including autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by challenges in social communication and repetitive behaviors and restricted interests. Reduced ability to exploit or learn from repetition in ASD is hypothesized to contribute to sensory hypersensitivities, and parallels several theoretical frameworks claiming that ASD individuals show difficulty using regularities in the environment to facilitate behavior. Using fMRI in autistic and neurotypical human adults (females and males), we assessed the status of repetition suppression across two modalities (vision, audition) and with four stimulus categories (faces, objects, printed words, and spoken words). ASD individuals showed domain-specific reductions in repetition suppression for face stimuli only, but not for objects, printed words, or spoken words. Reduced repetition suppression for faces was associated with greater challenges in social communication in ASD. We also found altered functional connectivity between atypically adapting cortical regions and higher-order face recognition regions, and microstructural differences in related white matter tracts in ASD. These results suggest that fundamental neural mechanisms and system-wide circuits are selectively altered for face processing in ASD and enhance our understanding of how disruptions in the formation of stable face representations may relate to higher-order social communication processes.SIGNIFICANCE STATEMENT A common finding in neuroscience is that repetition results in plasticity in stimulus-specific processing regions, reflecting selectivity and adaptation (repetition suppression [RS]). RS is reduced in several neurodevelopmental and psychiatric conditions including autism spectrum disorder (ASD). Theoretical frameworks of ASD posit that reduced adaptation may contribute to associated challenges in social communication and sensory processing. However, the scope of RS differences in ASD is unknown. We examined RS for multiple categories across visual and auditory domains (faces, objects, printed words, spoken words) in autistic and neurotypical individuals. We found reduced RS in ASD for face stimuli only and altered functional connectivity and white matter microstructure between cortical face-recognition areas. RS magnitude correlated with social communication challenges among autistic individuals.
Collapse
Affiliation(s)
- Anila M D'Mello
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Isabelle R Frosch
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Steven L Meisler
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, 02115
| | - Hannah Grotzinger
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Tyler K Perrachione
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215
| | - John D E Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
20
|
Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders. Brain Imaging Behav 2023; 17:257-269. [PMID: 36633738 PMCID: PMC10049951 DOI: 10.1007/s11682-022-00754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
Social and non-social deficits in autism spectrum disorders (ASD) persist into adulthood and may share common regions of aberrant neural activations. The current meta-analysis investigated activation differences between ASD and neurotypical controls irrespective of task type. Activation likelihood estimation meta-analyses were performed to examine consistent hypo-activated and/or hyper-activated regions for all tasks combined, and for social and non-social tasks separately; meta-analytic connectivity modelling and behavioral/paradigm analyses were performed to examine co-activated regions and associated behaviors. One hundred studies (mean age range = 18-41 years) were included. For all tasks combined, the ASD group showed significant (p < .05) hypo-activation in one cluster around the left amygdala (peak - 26, -2, -20, volume = 1336 mm3, maximum ALE = 0.0327), and this cluster co-activated with two other clusters around the right cerebellum (peak 42, -56, -22, volume = 2560mm3, maximum ALE = 0.049) Lobule VI/Crus I and the left fusiform gyrus (BA47) (peak - 42, -46, -18, volume = 1616 mm3, maximum ALE = 0.046) and left cerebellum (peak - 42, -58, -20, volume = 1616mm3, maximum ALE = 0.033) Lobule VI/Crus I. While the left amygdala was associated with negative emotion (fear) (z = 3.047), the left fusiform gyrus/cerebellum Lobule VI/Crus I cluster was associated with language semantics (z = 3.724) and action observation (z = 3.077). These findings highlight the left amygdala as a region consistently hypo-activated in ASD and suggest the potential involvement of fusiform gyrus and cerebellum in social cognition in ASD. Future research should further elucidate if and how amygdala-fusiform/cerebellar connectivity relates to social and non-social cognition in adults with ASD.
Collapse
|
21
|
Desaunay P, Guillery B, Moussaoui E, Eustache F, Bowler DM, Guénolé F. Brain correlates of declarative memory atypicalities in autism: a systematic review of functional neuroimaging findings. Mol Autism 2023; 14:2. [PMID: 36627713 PMCID: PMC9832704 DOI: 10.1186/s13229-022-00525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
The long-described atypicalities of memory functioning experienced by people with autism have major implications for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we highlight functional brain asymmetries in three anatomical planes during memory processing between individuals with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right in ASD participants, of posterior brain regions-including hippocampus-rather than anterior ones, and presumably of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information, impaired active maintenance in working memory, and preserved relational memory despite poor context processing in episodic memory.
Collapse
Affiliation(s)
- Pierre Desaunay
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Bérengère Guillery
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Edgar Moussaoui
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France
| | - Francis Eustache
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Dermot M. Bowler
- grid.28577.3f0000 0004 1936 8497Autism Research Group, City University of London, DG04 Rhind Building, Northampton Square, EC1V 0HB London, UK
| | - Fabian Guénolé
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France ,grid.412043.00000 0001 2186 4076Faculté de Médecine, Pôle des Formation et de Recherche en Santé, Université de Caen Normandie, 2 rue des Rochambelles, 14032 Caen cedex CS, France
| |
Collapse
|
22
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Specific tractography differences in autism compared to developmental coordination disorder. Sci Rep 2022; 12:19246. [PMID: 36376319 PMCID: PMC9663575 DOI: 10.1038/s41598-022-21538-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
About 85% of children with autism spectrum disorder (ASD) experience comorbid motor impairments, making it unclear whether white matter abnormalities previously found in ASD are related to social communication deficits, the hallmark of ASD, or instead related to comorbid motor impairment. Here we aim to understand specific white matter signatures of ASD beyond those related to comorbid motor impairment by comparing youth (aged 8-18) with ASD (n = 22), developmental coordination disorder (DCD; n = 16), and typically developing youth (TD; n = 22). Diffusion weighted imaging was collected and quantitative anisotropy, radial diffusivity, mean diffusivity, and axial diffusivity were compared between the three groups and correlated with social and motor measures. Compared to DCD and TD groups, diffusivity differences were found in the ASD group in the mid-cingulum longitudinal and u-fibers, the corpus callosum forceps minor/anterior commissure, and the left middle cerebellar peduncle. Compared to the TD group, the ASD group had diffusivity differences in the right inferior frontal occipital/extreme capsule and genu of the corpus callosum. These diffusion differences correlated with emotional deficits and/or autism severity. By contrast, children with DCD showed unique abnormality in the left cortico-spinal and cortico-pontine tracts.Trial Registration All data are available on the National Institute of Mental Health Data Archive: https://nda.nih.gov/edit_collection.html?id=2254 .
Collapse
|
24
|
Korisky A, Gordon I, Goldstein A. Oxytocin impacts top-down and bottom-up social perception in adolescents with ASD: a MEG study of neural connectivity. Mol Autism 2022; 13:36. [PMID: 36064612 PMCID: PMC9446859 DOI: 10.1186/s13229-022-00513-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In the last decade, accumulative evidence has shown that oxytocin can modulate social perception in typically developed individuals and individuals diagnosed with autism. While several studies show that oxytocin (OT) modulates neural activation in social-related neural regions, the mechanism that underlies OT effects in ASD is not fully known yet. Despite evidence from animal studies on connections between the oxytocinergic system and excitation/inhibition neural balance, the influence of OT on oscillatory responses among individuals with ASD has been rarely examined. To bridge these gaps in knowledge, we investigated the effects of OT on both social and non-social stimuli while focusing on its specific influence on the neural connectivity between three socially related neural regions-the left and right fusiform and the medial frontal cortex. METHODS Twenty-five adolescents with ASD participated in a wall-established social task during a randomized, double-blind placebo-controlled MEG and OT administration study. Our main task was a social-related task that required the identification of social and non-social-related pictures. We hypothesized that OT would modulate the oscillatory connectivity between three pre-selected regions of interest to be more adaptive to social processing. Specifically, we focused on alpha and gamma bands which are known to play an important role in face processing and top-down/bottom-up balance. RESULTS Compared to placebo, OT reduced the connectivity between the medial frontal cortex and the fusiform in the low gamma more for social stimuli than for non-social ones, a reduction that was correlated with individuals' performance in the task. Additionally, for both social and non-social stimuli, OT increased the connectivity in the alpha and beta bands. LIMITATIONS Sample size was determined based on sample sizes previously reported in MEG in clinical populations, especially OT administration studies in combination with neuroimaging in ASD. We were limited in our capability to recruit for such a study, and as such, the sample size was not based on a priori power analysis. Additionally, we limited our analyses to specific neural bands and regions. To validate the current results, future studies may be needed to explore other parameters using whole-brain approaches in larger samples. CONCLUSION These results suggest that OT influenced social perception by modifying the communication between frontal and posterior regions, an attenuation that potentially impacts both social and non-social early perception. We also show that OT influences differ between top-down and bottom-up processes, depending on the social context. Overall, by showing that OT influences both social-related perception and overall attention during early processing stages, we add new information to the existing understanding of the impact of OT on neural processing in ASD. Furthermore, by highlighting the influence of OT on early perception, we provide new directions for treatments for difficulties in early attentional phases in this population. Trial registration Registered on October 27, 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05096676 (details on clinical registration can be found in www. CLINICALTRIAL gov , unique identifier: NCT05096676 ).
Collapse
Affiliation(s)
- Adi Korisky
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Ilanit Gordon
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.
- Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Abraham Goldstein
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel
- Department of Psychology, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
25
|
Young children with autism show atypical prefrontal cortical responses to humanoid robots: An fNIRS study. Int J Psychophysiol 2022; 181:23-32. [PMID: 36037937 DOI: 10.1016/j.ijpsycho.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous behavioral studies have found that children with autism spectrum disorder (ASD) show greater interest in humanoid robots than in humans. However, the neural mechanism underlying this is not clear. This study compared brain activation patterns between children with ASD and neurotypical children while they watched videos with robots and humans. METHOD We recruited 45 children with ASD and 53 neurotypical children aged 4-6 years and recorded their neural activity in the dorsolateral prefrontal cortex (DLPFC) using a functional near-infrared spectroscopy (fNIRS) device when the two groups interacted with a robot or a human in a video. RESULTS First, neural activity in the right DLPFC in children with ASD was significantly lower in the robot condition than in the human condition. Neural activity in the right DLPFC in children with ASD was also significantly lower than that of neurotypical children in the robot condition. Second, the neural activity in the left DLPFC between the human and robot conditions was negatively correlated in children with ASD, while it was positively correlated in neurotypical children. Moreover, neural activity in the left DLPFC in children with ASD was significantly correlated with the ADOS scores in both conditions. CONCLUSIONS While neurotypical children showed comparable neural activity to humanoid robots and human beings, the children with ASD showed significantly different neural activity under those two conditions. Children with ASD may need more selective attention resources for human interaction than for robot interaction. It is also much more difficult for children with ASD to neglect the attraction of robots. Neural activity of the left DLPFC of children with ASD is correlated with their symptoms, which maybe a possible indicator for early diagnosis. Neural activity of the right DLPFC guided their atypical reactions and engagements with robots. Our study contributes to the current understanding of the neural mechanisms responsible for the different behavioral reactions in children with ASD toward robots and humans.
Collapse
|
26
|
Long J, Lu F, Yang S, Zhang Q, Chen X, Pang Y, Wang M, He B, Liu H, Duan X, Chen H, Ye S, Chen H. Different functional connectivity optimal frequency in autism compared with healthy controls and the relationship with social communication deficits: Evidence from gene expression and behavior symptom analyses. Hum Brain Mapp 2022; 44:258-268. [PMID: 35822559 PMCID: PMC9783427 DOI: 10.1002/hbm.26011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Studies have reported that different brain regions/connections possess distinct frequency properties, which are related to brain function. Previous studies have proposed altered brain activity frequency and frequency-specific functional connectivity (FC) patterns in autism spectrum disorder (ASD), implying the varied dominant frequency of FC in ASD. However, the difference of the dominant frequency of FC between ASD and healthy controls (HCs) remains unclear. In the present study, the dominant frequency of FC was measured by FC optimal frequency, which was defined as the intermediate of the frequency bin at which the FC strength could reach the maximum. A multivariate pattern analysis was conducted to determine whether the FC optimal frequency in ASD differs from that in HCs. Partial least squares regression (PLSR) and enrichment analyses were conducted to determine the relationship between the FC optimal frequency difference of ASD/HCs and cortical gene expression. PLSR analyses were also performed to explore the relationship between FC optimal frequency and the clinical symptoms of ASD. Results showed a significant difference of FC optimal frequency between ASD and HCs. Some genes whose cortical expression patterns are related to the FC optimal frequency difference of ASD/HCs were enriched for social communication problems. Meanwhile, the FC optimal frequency in ASD was significantly related to social communication symptoms. These results may help us understand the neuro-mechanism of the social communication deficits in ASD.
Collapse
Affiliation(s)
- Jinjin Long
- School of MedicineGuizhou UniversityGuiyangChina,Guiyang Hospital of StomatologyGuiyangChina
| | - Fengmei Lu
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | | | | | - Xue Chen
- School of MedicineGuizhou UniversityGuiyangChina
| | - Yajing Pang
- School of Electrical EngineeringZhengzhou UniversityZhengzhouChina
| | - Min Wang
- Bioinformatics and BioMedical Bigdata Mining Laboratory, School of Big HealthGuizhou Medical UniversityChina
| | - Bifang He
- School of MedicineGuizhou UniversityGuiyangChina
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical UniversityMedical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xujun Duan
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Shaobing Ye
- The People's Hospital of Kaizhou DistrictChongqingChina
| | - Heng Chen
- School of MedicineGuizhou UniversityGuiyangChina,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
27
|
The Antiepileptic Drug and Toxic Teratogen Valproic Acid Alters Microglia in an Environmental Mouse Model of Autism. TOXICS 2022; 10:toxics10070379. [PMID: 35878284 PMCID: PMC9319720 DOI: 10.3390/toxics10070379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022]
Abstract
Autism spectrum disorder (ASD), a neurodevelopmental condition affecting approximately 1 in 44 children in North America, is thought to be a connectivity disorder. Valproic acid (VPA) is a multi-target drug widely used to treat epilepsy. It is also a toxic teratogen as well as a histone deacetylase inhibitor, and fetal exposure to VPA increases the risk of ASD. While the VPA model has been well-characterized for behavioral and neuronal deficits including hyperconnectivity, microglia, the principal immune cells of CNS that regulate dendrite and synapse formation during early brain development, have not been well-characterized and may provide potential hints regarding the etiology of this disorder. Therefore, in this study, we determined the effect of prenatal exposure to VPA on microglial numbers during early postnatal brain development. We found that prenatal exposure to VPA causes a significant reduction in the number of microglia in the primary motor cortex (PMC) during early postnatal brain development, particularly at postnatal day 6 (P6) and postnatal day 10 (P10) in male mice. The early microglial reduction in the VPA model coincides with active cortical synaptogenesis and is significant because it may potentially play a role in mediating impaired connectivity in ASD.
Collapse
|
28
|
Whi W, Ha S, Kang H, Lee DS. Hyperbolic disc embedding of functional human brain connectomes using resting-state fMRI. Netw Neurosci 2022; 6:745-764. [PMID: 36607197 PMCID: PMC9810369 DOI: 10.1162/netn_a_00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/03/2022] [Indexed: 01/10/2023] Open
Abstract
The brain presents a real complex network of modular, small-world, and hierarchical nature, which are features of non-Euclidean geometry. Using resting-state functional magnetic resonance imaging, we constructed a scale-free binary graph for each subject, using internodal time series correlation of regions of interest as a proximity measure. The resulting network could be embedded onto manifolds of various curvatures and dimensions. While maintaining the fidelity of embedding (low distortion, high mean average precision), functional brain networks were found to be best represented in the hyperbolic disc. Using the 𝕊1/ℍ2 model, we reduced the dimension of the network into two-dimensional hyperbolic space and were able to efficiently visualize the internodal connections of the brain, preserving proximity as distances and angles on the hyperbolic discs. Each individual disc revealed relevance with its anatomic counterpart and absence of center-spaced node. Using the hyperbolic distance on the 𝕊1/ℍ2 model, we could detect the anomaly of network in autism spectrum disorder subjects. This procedure of embedding grants us a reliable new framework for studying functional brain networks and the possibility of detecting anomalies of the network in the hyperbolic disc on an individual scale.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea,Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, South Korea
| | - Hyejin Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea,* Corresponding Authors: ;
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea,Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea,Medical Research Center, Seoul National University, Seoul, South Korea,* Corresponding Authors: ;
| |
Collapse
|
29
|
A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. MACHINE LEARNING WITH APPLICATIONS 2022. [DOI: 10.1016/j.mlwa.2022.100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
30
|
Jure R. The “Primitive Brain Dysfunction” Theory of Autism: The Superior Colliculus Role. Front Integr Neurosci 2022; 16:797391. [PMID: 35712344 PMCID: PMC9194533 DOI: 10.3389/fnint.2022.797391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the pathogenesis of autism will help clarify our conception of the complexity of normal brain development. The crucial deficit may lie in the postnatal changes that vision produces in the brainstem nuclei during early life. The superior colliculus is the primary brainstem visual center. Although difficult to examine in humans with present techniques, it is known to support behaviors essential for every vertebrate to survive, such as the ability to pay attention to relevant stimuli and to produce automatic motor responses based on sensory input. From birth to death, it acts as a brain sentinel that influences basic aspects of our behavior. It is the main brainstem hub that lies between the environment and the rest of the higher neural system, making continuous, implicit decisions about where to direct our attention. The conserved cortex-like organization of the superior colliculus in all vertebrates allows the early appearance of primitive emotionally-related behaviors essential for survival. It contains first-line specialized neurons enabling the detection and tracking of faces and movements from birth. During development, it also sends the appropriate impulses to help shape brain areas necessary for social-communicative abilities. These abilities require the analysis of numerous variables, such as the simultaneous evaluation of incoming information sustained by separate brain networks (visual, auditory and sensory-motor, social, emotional, etc.), and predictive capabilities which compare present events to previous experiences and possible responses. These critical aspects of decision-making allow us to evaluate the impact that our response or behavior may provoke in others. The purpose of this review is to show that several enigmas about the complexity of autism might be explained by disruptions of collicular and brainstem functions. The results of two separate lines of investigation: 1. the cognitive, etiologic, and pathogenic aspects of autism on one hand, and two. the functional anatomy of the colliculus on the other, are considered in order to bridge the gap between basic brain science and clinical studies and to promote future research in this unexplored area.
Collapse
|
31
|
Kim H, Jung J, Park S, Joo Y, Lee S, Lee S. Effects of Repetitive Transcranial Magnetic Stimulation on the Primary Motor Cortex of Individuals with Fibromyalgia: A Systematic Review and Meta-Analysis. Brain Sci 2022; 12:570. [PMID: 35624957 PMCID: PMC9139594 DOI: 10.3390/brainsci12050570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The purpose of this study was to quantify the effect of repetitive transcranial magnetic stimulation (rTMS), which is recommended for the improvement of some pain-related symptoms and for antidepressant treatment, on the primary motor cortex (M1) in patients with fibromyalgia (FM). We searched for studies comparing rTMS and sham rTMS in the M1 of FM patients. Pain intensity, quality of life, health status, and depression were compared with or without rTMS for at least 10 sessions. We searched four databases. Quality assessment and quantitative analysis were performed using RevMan 5.4. After screening, five randomized controlled trials of 170 patients with FM were included in the analysis. As a result of the meta-analysis of rTMS on the M1 of individuals with FM, high-frequency rTMS resulted in a significant improvement on quality of life (MD = -2.50; 95% CI: -3.99 to -1.01) compared with sham rTMS. On the other hand, low-frequency rTMS resulted in a significant improvement on health status (MD = 15.02; 95% CI: 5.59 to 24.45). The application of rTMS to the M1 is proposed as an adjunctive measure in the treatment of individuals with FM. Because rTMS has various effects depending on each application site, it is necessary to classify sites or set frequencies as variables.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Jihye Jung
- Institute of SMART Rehabilitation, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea;
| | - Sungeon Park
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Younglan Joo
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Sangbong Lee
- Department of Physical Therapy, Graduate School, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea; (H.K.); (S.P.); (Y.J.); (S.L.)
| | - Seungwon Lee
- Department of Physical Therapy, Sahmyook University, 815, Hwarang-ro, Seoul 01795, Korea
| |
Collapse
|
32
|
Chen J, Zhang C, Wang R, Jiang P, Cai H, Zhao W, Zhu J, Yu Y. Molecular basis underlying functional connectivity of fusiform gyrus subregions: A transcriptome-neuroimaging spatial correlation study. Cortex 2022; 152:59-73. [DOI: 10.1016/j.cortex.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/13/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
|
33
|
Safar K, Vandewouw MM, Pang EW, de Villa K, Crosbie J, Schachar R, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Lerch JP, Anagnostou E, Taylor MJ. Shared and Distinct Patterns of Functional Connectivity to Emotional Faces in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder Children. Front Psychol 2022; 13:826527. [PMID: 35356352 PMCID: PMC8959934 DOI: 10.3389/fpsyg.2022.826527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Impairments in emotional face processing are demonstrated by individuals with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which is associated with altered emotion processing networks. Despite accumulating evidence of high rates of diagnostic overlap and shared symptoms between ASD and ADHD, functional connectivity underpinning emotion processing across these two neurodevelopmental disorders, compared to typical developing peers, has rarely been examined. The current study used magnetoencephalography to investigate whole-brain functional connectivity during the presentation of happy and angry faces in 258 children (5–19 years), including ASD, ADHD and typically developing (TD) groups to determine possible differences in emotion processing. Data-driven clustering was also applied to determine whether the patterns of connectivity differed among diagnostic groups. We found reduced functional connectivity in the beta band in ASD compared to TD, and a further reduction in the ADHD group compared to the ASD and the TD groups, across emotions. A group-by-emotion interaction in the gamma frequency band was also observed. Greater connectivity to happy compared to angry faces was found in the ADHD and TD groups, while the opposite pattern was seen in ASD. Data-driven subgrouping identified two distinct subgroups: NDD-dominant and TD-dominant; these subgroups demonstrated emotion- and frequency-specific differences in connectivity. Atypicalities in specific brain networks were strongly correlated with the severity of diagnosis-specific symptoms. Functional connectivity strength in the beta network was negatively correlated with difficulties in attention; in the gamma network, functional connectivity strength to happy faces was positively correlated with adaptive behavioural functioning, but in contrast, negatively correlated to angry faces. Our findings establish atypical frequency- and emotion-specific patterns of functional connectivity between NDD and TD children. Data-driven clustering further highlights a high degree of comorbidity and symptom overlap between the ASD and ADHD children.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Muhammed Ayub
- Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Tseng A, Camchong J, Francis SM, Mueller BA, Lim KO, Conelea CA, Jacob S. Differential extrinsic brain network connectivity and social cognitive task-specific demands in Autism Spectrum Disorder (ASD). J Psychiatr Res 2022; 148:230-239. [PMID: 35149435 DOI: 10.1016/j.jpsychires.2022.01.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Few studies have used task-based functional connectivity (FC) magnetic resonance imaging to examine emotion-processing during the critical neurodevelopmental period of adolescence in Autism Spectrum Disorders (ASDs). Moreover, task designs with pervasive confounds (e.g., lack of appropriate controls) persist because they activate neural circuits of interest reliably. As an alternative approach to "subtracting" activity from putative control conditions, we propose examining FC across an entire task run. By pivoting our analysis and interpretation of existing paradigms, we may better understand neural response to non-focal instances of socially-relevant stimuli that approximate real-world experiences more closely. Hence, using two well-established affective tasks (face-viewing, face-matching) with diverging social-cognitive demands, we investigated extrinsic FC from amygdala (AMG) and fusiform gyrus (FG) seeds in typically-developing (TD; N = 17) and ASD (N = 17) male adolescents (10-18 yo) and clinical correlations (Social Communication Questionnaire; SCQ) of group FC differences. Participant data (4TD, 6ASD) with excessive head-motion were excluded from final analysis. Direct between-group comparisons revealed significant differences between groups for neural response but not task performance (accuracy, reaction time). During face-viewing, we found greater FC from AMG and FG seeds for ASD participants (ASD > TD) in regions involved in the Default Mode and Fronto-Parietal Task Control Networks. During face-matching, we found greater FC from AMG and FG seeds for TD participants (TD > ASD), in regions associated with the Salience, Dorsal Attention, and Somatosensory Networks. SCQ scores correlated positively with regions with group differences on the face-viewing task and negatively with regions identified for the face-matching task. Task-dependent group differences in FC despite comparable behavioral performance suggest that high-functioning ASD may wield compensatory strategies; clinically-correlated FC patterns may associate with differential task-demands, ecological validity, and context-dependent processing. Employing this novel approach may further the development of targeted therapeutic interventions informed by individual differences in the highly heterogeneous ASD population.
Collapse
Affiliation(s)
- Angela Tseng
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Jazmin Camchong
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Sunday M Francis
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kelvin O Lim
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Christine A Conelea
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Suma Jacob
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Procyshyn TL, Lombardo MV, Lai MC, Jassim N, Auyeung B, Crockford SK, Deakin JB, Soubramanian S, Sule A, Terburg D, Baron-Cohen S, Bethlehem RAI. Oxytocin Enhances Basolateral Amygdala Activation and Functional Connectivity While Processing Emotional Faces: Preliminary Findings in Autistic Versus Non-Autistic Women. Soc Cogn Affect Neurosci 2022; 17:929-938. [PMID: 35254443 PMCID: PMC9527468 DOI: 10.1093/scan/nsac016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/13/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxytocin is hypothesized to promote social interactions by enhancing the salience of social stimuli. While previous neuroimaging studies have reported that oxytocin enhances amygdala activation to face stimuli in autistic men, effects in autistic women remain unclear. In this study, the influence of intranasal oxytocin on activation and functional connectivity of the basolateral amygdala—the brain’s ‘salience detector’—while processing emotional faces vs shapes was tested in 16 autistic and 21 non-autistic women by functional magnetic resonance imaging in a placebo-controlled, within-subject, cross-over design. In the placebo condition, minimal activation differences were observed between autistic and non-autistic women. However, significant drug × group interactions were observed for both basolateral amygdala activation and functional connectivity. Oxytocin increased left basolateral amygdala activation among autistic women (35-voxel cluster, Montreal Neurological Institute (MNI) coordinates of peak voxel = −22 −10 −28; mean change = +0.079%, t = 3.159, PTukey = 0.0166) but not among non-autistic women (mean change = +0.003%, t = 0.153, PTukey = 0.999). Furthermore, oxytocin increased functional connectivity of the right basolateral amygdala with brain regions associated with socio-emotional information processing in autistic women, but not in non-autistic women, attenuating group differences in the placebo condition. Taken together, these findings extend evidence of oxytocin’s effects on the amygdala to specifically include autistic women and specify the subregion of the effect.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Nazia Jassim
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bonnie Auyeung
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah K Crockford
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Theoretical and Applied Linguistics, University of Cambridge, Cambridge, UK
| | - Julia B Deakin
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Sentil Soubramanian
- South West London and St. George’s Mental Health NHS Trust, London, UK
- Liaison Psychiatry Service, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, Surrey, UK
| | - Akeem Sule
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - David Terburg
- Department of Experimental Psychology, Utrecht University, Utrecht, the Netherlands
- Department of Psychiatry and Mental Health, Groote Schuur Hospital, MRC Unit on Anxiety & Stress Disorders, University of Cape Town, Cape Town, South Africa
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Chen Y, Liu A, Fu X, Wen J, Chen X. An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification. Front Neurosci 2022; 15:828512. [PMID: 35185454 PMCID: PMC8854990 DOI: 10.3389/fnins.2021.828512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is one common developmental disorder with great variations in symptoms and severity, making the diagnosis of ASD a challenging task. Existing deep learning models using brain connectivity features to classify ASD still suffer from degraded performance for multi-center data due to limited feature representation ability and insufficient interpretability. Given that Graph Convolutional Network (GCN) has demonstrated superiority in learning discriminative representations of brain connectivity networks, in this paper, we propose an invertible dynamic GCN model to identify ASD and investigate the alterations of connectivity patterns associated with the disease. In order to select explainable features from the model, invertible blocks are introduced in the whole network, and we are able to reconstruct the input dynamic features from the network's output. A pre-screening of connectivity features is adopted to reduce the redundancy of the input information, and a fully-connected layer is added to perform classification. The experimental results on 867 subjects show that our proposed method achieves superior disease classification performance. It provides an interpretable deep learning model for brain connectivity analysis and is of great potential in studying brain-related disorders.
Collapse
Affiliation(s)
- Yueying Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
- USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Aiping Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
- USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
- *Correspondence: Aiping Liu
| | - Xueyang Fu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
- USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Jie Wen
- Division of Life Sciences and Medicine, Department of Radiology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, China
| | - Xun Chen
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China
- USTC IAT-Huami Joint Laboratory for Brain-Machine Intelligence, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Chen B. A Preliminary Study of Abnormal Centrality of Cortical Regions and Subsystems in Whole Brain Functional Connectivity of Autism Spectrum Disorder Boys. Clin EEG Neurosci 2022; 53:3-11. [PMID: 34152841 DOI: 10.1177/15500594211026282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The abnormal cortices of autism spectrum disorder (ASD) brains are uncertain. However, the pathological alterations of ASD brains are distributed throughout interconnected cortical systems. Functional connections (FCs) methodology identifies cooperation and separation characteristics of information process in macroscopic cortical activity patterns under the context of network neuroscience. Embracing the graph theory concepts, this paper introduces eigenvector centrality index (EC score) ground on the FCs, and further develops a new framework for researching the dysfunctional cortex of ASD in holism significance. The important process is to uncover noticeable regions and subsystems endowed with antagonistic stance in EC-scores of 26 ASD boys and 28 matched healthy controls (HCs). For whole brain regional EC scores of ASD boys, orbitofrontal superior medial cortex, insula R, posterior cingulate gyrus L, and cerebellum 9 L are endowed with different EC scores significantly. In the brain subsystems level, EC scores of DMN, prefrontal lobe, and cerebellum are aberrant in the ASD boys. Generally, the EC scores display widespread distribution of diseased regions in ASD brains. Meanwhile, the discovered regions and subsystems, such as MPFC, AMYG, INS, prefrontal lobe, and DMN, are engaged in social processing. Meanwhile, the CBCL externalizing problem scores are associated with EC scores.
Collapse
Affiliation(s)
- Bo Chen
- 12626Hangzhou Dianzi University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
38
|
Bathelt J, Koolschijn PCM, Geurts HM. Atypically slow processing of faces and non-faces in older autistic adults. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2021; 26:1737-1751. [PMID: 34961340 PMCID: PMC9483195 DOI: 10.1177/13623613211065297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Face recognition is a fundamental function that requires holistic processing. Differences in face processing have been consistently identified in autistic children, but it is unknown whether these differences persist across the adult lifespan. Using event-related functional magnetic resonance imaging, we measured holistic face processing with a rapid Mooney faces task in 50 autistic and 49 non-autistic participants (30–74 years). Behavioral tasks included a self-paced version of the same paradigm and a global–local processing task (Navon). Reduced detection rates for faces, but not non-faces, were found in autistic adults, including slower responses on all conditions. Without time constraints, differences in accuracy disappeared between groups, although reaction times in correctly identifying faces remained higher in autistic adults. The functional magnetic resonance imaging results showed lower activation in the left and right superior frontal gyrus in the autism group but no age-related differences. Overall, our findings point toward slower information processing speed rather than a face recognition deficit in autistic adults. This suggests that face-processing differences are not a core feature of autism across the adult lifespan.
Collapse
Affiliation(s)
- Joe Bathelt
- University of Amsterdam, The Netherlands.,Royal Holloway, University of London, UK
| | | | - Hilde M Geurts
- University of Amsterdam, The Netherlands.,Leo Kannerhuis, Youz/Parnassiagroup, The Netherlands
| |
Collapse
|
39
|
Similarity and stability of face network across populations and throughout adolescence and adulthood. Neuroimage 2021; 244:118587. [PMID: 34560271 DOI: 10.1016/j.neuroimage.2021.118587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
The ability to extract cues from faces is fundamental for social animals, including humans. An individual's profile of functional connectivity across a face network can be shaped by common organizing principles, stable individual traits, and time-varying mental states. In the present study, we used data obtained with functional magnetic resonance imaging in two cohorts, IMAGEN (N = 534) and ALSPAC (N = 465), to investigate - both at group and individual levels - the consistency of the regional profile of functional connectivity across populations (IMAGEN, ALSPAC) and time (Visits 1 to 3 in IMAGEN; age 14 to 22 years). At the group level, we found a robust canonical profile of connectivity both across populations and time. At the individual level, connectivity profiles deviated from the canonical profile, and the magnitude of this deviation related to the presence of psychopathology. These findings suggest that the brain processes faces in a highly stereotypical manner, and that the deviations from this normative pattern may be related to the risk of mental illness.
Collapse
|
40
|
Prillinger K, Radev ST, Amador de Lara G, Klöbl M, Lanzenberger R, Plener PL, Poustka L, Konicar L. Repeated Sessions of Transcranial Direct Current Stimulation on Adolescents With Autism Spectrum Disorder: Study Protocol for a Randomized, Double-Blind, and Sham-Controlled Clinical Trial. Front Psychiatry 2021; 12:680525. [PMID: 34526918 PMCID: PMC8435587 DOI: 10.3389/fpsyt.2021.680525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background: Social-emotional difficulties are a core symptom of autism spectrum disorder (ASD). Accordingly, individuals with ASD have problems with social cognition such as recognizing emotions from other peoples' faces. Various results from functional magnetic resonance imaging and electroencephalography studies as well as eye-tracking data reveal a neurophysiological basis of these deficits by linking them to abnormal brain activity. Thus, an intervention targeting the neural origin of ASD impairments seems warranted. A safe method able to influence neural activity is transcranial direct current stimulation (tDCS). This non-invasive brain stimulation method has already demonstrated promising results in several neuropsychiatric disorders in adults and children. The aim of this project is to investigate the effects of tDCS on ASD symptoms and their neural correlates in children and adolescents with ASD. Method: This study is designed as a double-blind, randomized, and sham-controlled trial with a target sample size of 20 male participants (aged 12-17 years) diagnosed with ASD. Before randomization, the participants will be stratified into comorbid depression, comorbid ADHS/conduct disorder, or no-comorbidity groups. The intervention phase comprises 10 sessions of anodal or sham tDCS applied over the left prefrontal cortex within 2 consecutive weeks. To engage the targeted brain regions, participants will perform a social cognition training during the stimulation. TDCS-induced effects on ASD symptoms and involved neural circuits will be investigated through psychological, neurophysiological, imaging, and behavioral data at pre- and post-measurements. Tolerability will be evaluated using a standardized questionnaire. Follow-up assessments 1 and 6 months after the intervention will examine long-lasting effects. Discussion: The results of this study will provide insights into the changeability of social impairments in ASD by investigating social and emotional abilities on different modalities following repeated sessions of anodal tDCS with an intra-simulation training. Furthermore, this trial will elucidate the tolerability and the potential of tDCS as a new treatment approach for ASD in adolescents. Clinical Trial Registration: The study is ongoing and has been registered in the German Registry of Clinical Trials (DRKS00017505) on 02/07/2019.
Collapse
Affiliation(s)
- Karin Prillinger
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Stefan T. Radev
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Gabriel Amador de Lara
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul L. Plener
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Ulm, Ulm, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Lilian Konicar
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Atypical development of emotional face processing networks in autism spectrum disorder from childhood through to adulthood. Dev Cogn Neurosci 2021; 51:101003. [PMID: 34416703 PMCID: PMC8377538 DOI: 10.1016/j.dcn.2021.101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 11/12/2022] Open
Abstract
MEG connectivity to emotional faces in ASD and typical controls 6–39 years of age was investigated. Distinct age-related changes in connectivity were observed in the groups to happy and angry faces. Age-related between-group differences in functional connectivity were found in gamma band. Emotion-specific age-related between-group differences were seen in beta. Findings highlight specific neurodevelopmental trajectories to emotional faces in ASD vs. TD.
Impairments in social functioning are hallmarks of autism spectrum disorder (ASD) and atypical functional connectivity may underlie these difficulties. Emotion processing networks typically undergo protracted maturational changes, however, those with ASD show either hyper- or hypo-connectivity with little consensus on the functional connectivity underpinning emotion processing. Magnetoencephalography was used to investigate age-related changes in whole-brain functional connectivity of eight regions of interest during happy and angry face processing in 190 children, adolescents and adults (6–39 years) with and without ASD. Findings revealed age-related changes from child- through to mid-adulthood in functional connectivity in controls and in ASD in theta, as well as age-related between-group differences across emotions, with connectivity decreasing in ASD, but increasing for controls, in gamma. Greater connectivity to angry faces was observed across groups in gamma. Emotion-specific age-related between-group differences in beta were also found, that showed opposite trends with age for happy and angry in ASD. Our results establish altered, frequency-specific developmental trajectories of functional connectivity in ASD, across distributed networks and a broad age range, which may finally help explain the heterogeneity in the literature.
Collapse
|
42
|
Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, Davis PE, M Bebin E, Krueger DA, Northrup H, Y Wu J, Sahin M, Warfield SK. The Connectivity Fingerprint of the Fusiform Gyrus Captures the Risk of Developing Autism in Infants with Tuberous Sclerosis Complex. Cereb Cortex 2021; 30:2199-2214. [PMID: 31812987 DOI: 10.1093/cercor/bhz233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by benign tumors throughout the body; it is generally diagnosed early in life and has a high prevalence of autism spectrum disorder (ASD), making it uniquely valuable in studying the early development of autism, before neuropsychiatric symptoms become apparent. One well-documented deficit in ASD is an impairment in face processing. In this work, we assessed whether anatomical connectivity patterns of the fusiform gyrus, a central structure in face processing, capture the risk of developing autism early in life. We longitudinally imaged TSC patients at 1, 2, and 3 years of age with diffusion compartment imaging. We evaluated whether the anatomical connectivity fingerprint of the fusiform gyrus was associated with the risk of developing autism measured by the Autism Observation Scale for Infants (AOSI). Our findings suggest that the fusiform gyrus connectivity captures the risk of developing autism as early as 1 year of age and provides evidence that abnormal fusiform gyrus connectivity increases with age. Moreover, the identified connections that best capture the risk of developing autism involved the fusiform gyrus and limbic and paralimbic regions that were consistent with the ASD phenotype, involving an increased number of left-lateralized structures with increasing age.
Collapse
Affiliation(s)
- Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Jurriaan M Peters
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Peter E Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Elizabeth M Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233 USA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030 USA
| | - Joyce Y Wu
- Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095 USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115 USA
| |
Collapse
|
43
|
Quiñones-Camacho LE, Fishburn FA, Belardi K, Williams DL, Huppert TJ, Perlman SB. Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder. Autism Res 2021; 14:1585-1596. [PMID: 33847461 PMCID: PMC11413982 DOI: 10.1002/aur.2513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023]
Abstract
Social deficits in autism spectrum disorder (ASD) have been linked to atypical activation of the mentalizing network. This work, however, has been limited by a focus on the brain activity of a single person during computerized social tasks rather than exploring brain activity during in vivo interactions. The current study assessed neural synchronization during a conversation as a mechanism for social impairment in adults with ASD (n = 24) and matched controls (n = 26). Functional near-infrared spectroscopy (fNIRS) data were collected from the prefrontal cortex (PFC) and tempoparietal junction (TPJ). Participants self-reported on their social communication and videos of the interaction were coded for utterances and conversational turns. As expected, controls showed more neural synchrony than participants with ASD in the TPJ. Also as expected, controls showed less social communication impairment than participants with ASD. However, participants with ASD did not have fewer utterances compared with control subjects. Overall, less neural synchrony in the TPJ was associated with higher social impairment and marginally fewer utterances. Our findings advance our understanding of social difficulties in ASD by linking them to decreased neural synchronization of the TPJ. LAY SUMMARY: The coordination of brain responses is important for efficient social interactions. The current study explored the coordination of brain responses in neurotypical adults and adults with ASD to investigate if difficulties in social interactions are related to difficulties coordinating brain responses in ASD. We found that participants with ASD had more difficulties coordinating brain responses during a conversation with an interacting partner. Additionally, we found that the level of coordination in brain responses was linked to problems with social communication.
Collapse
Affiliation(s)
| | - Frank A. Fishburn
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Belardi
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane L. Williams
- Department of Communication Sciences and Disorders, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan B. Perlman
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
44
|
Arioli M, Cattaneo Z, Ricciardi E, Canessa N. Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Hum Brain Mapp 2021; 42:4777-4804. [PMID: 34322943 PMCID: PMC8410528 DOI: 10.1002/hbm.25570] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 06/15/2021] [Indexed: 01/10/2023] Open
Abstract
While the discussion on the foundations of social understanding mainly revolves around the notions of empathy, affective mentalizing, and cognitive mentalizing, their degree of overlap versus specificity is still unclear. We took a meta-analytic approach to unveil the neural bases of cognitive mentalizing, affective mentalizing, and empathy, both in healthy individuals and pathological conditions characterized by social deficits such as schizophrenia and autism. We observed partially overlapping networks for cognitive and affective mentalizing in the medial prefrontal, posterior cingulate, and lateral temporal cortex, while empathy mainly engaged fronto-insular, somatosensory, and anterior cingulate cortex. Adjacent process-specific regions in the posterior lateral temporal, ventrolateral, and dorsomedial prefrontal cortex might underpin a transition from abstract representations of cognitive mental states detached from sensory facets to emotionally-charged representations of affective mental states. Altered mentalizing-related activity involved distinct sectors of the posterior lateral temporal cortex in schizophrenia and autism, while only the latter group displayed abnormal empathy related activity in the amygdala. These data might inform the design of rehabilitative treatments for social cognitive deficits.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | | | - Nicola Canessa
- ICoN center, Scuola Universitaria Superiore IUSS, Pavia, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Pavia, Italy
| |
Collapse
|
45
|
Spencer APC, Brooks JCW, Masuda N, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Tonks J, Goodfellow M, Cowan FM, Chakkarapani E. Disrupted brain connectivity in children treated with therapeutic hypothermia for neonatal encephalopathy. Neuroimage Clin 2021; 30:102582. [PMID: 33636541 PMCID: PMC7906894 DOI: 10.1016/j.nicl.2021.102582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Therapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower reaction times and reduced visuo-spatial processing abilities compared to typically developing controls. We acquired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy at birth, and a matched control group. Voxelwise analysis (33 cases, 36 controls) confirmed reduced fractional anisotropy in widespread areas of white matter in cases, particularly in the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally and cingulum bilaterally. In structural brain networks constructed using probabilistic tractography (22 cases, 32 controls), graph-theoretic measures of strength, local and global efficiency, clustering coefficient and characteristic path length were found to correlate with IQ in cases but not controls. Network-based statistic analysis implicated brain regions involved in visuo-spatial processing and attention, aligning with previous behavioural findings. These included the precuneus, thalamus, left superior parietal gyrus and left inferior temporal gyrus. Our findings demonstrate that, despite the manifest successes of therapeutic hypothermia, brain development is impaired in these children.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States; Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - James Tonks
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; University of Exeter Medical School, Exeter, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
46
|
Barron A, McCarthy CM, O'Keeffe GW. Preeclampsia and Neurodevelopmental Outcomes: Potential Pathogenic Roles for Inflammation and Oxidative Stress? Mol Neurobiol 2021; 58:2734-2756. [PMID: 33492643 DOI: 10.1007/s12035-021-02290-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.
Collapse
Affiliation(s)
- Aaron Barron
- Department of Anatomy and Neuroscience, University College, Cork, Ireland.,Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College, Cork, Ireland. .,Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| |
Collapse
|
47
|
Huang Y, Yu S, Wilson G, Park J, Cheng M, Kong X, Lu T, Kong J. Altered Extended Locus Coeruleus and Ventral Tegmental Area Networks in Boys with Autism Spectrum Disorders: A Resting-State Functional Connectivity Study. Neuropsychiatr Dis Treat 2021; 17:1207-1216. [PMID: 33911868 PMCID: PMC8075355 DOI: 10.2147/ndt.s301106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Previous studies have suggested that cerebral projections of the norepinephrine (NE) and dopamine (DA) systems have important etiology and treatment implications for autism spectrum disorder (ASD). METHODS We used functional magnetic resonance imaging to evaluate spontaneous resting state functional connectivity in boys aged 7-15 years with ASD (n=86) and age-, intelligence quotient-matched typically developing boys (TD, n=118). Specifically, we investigated functional connectivity of the locus coeruleus (LC) and ventral tegmental area (VTA), the main source projection of neurotransmitters NE and DA, respectively. RESULTS 1) Both the LC and VTA showed reduced connectivity with the postcentral gyrus (PoCG) in boys with ASD, reflecting the potential roles of NE and DA in modulating the function of the somatosensory cortex in boys with ASD. 2) The VTA had increased connectivity with bilateral thalamus in ASD; this alteration was correlated with repetitive and restrictive features. 3) Altered functional connectivity of both the LC and VTA with brain regions such as the angular gyrus (AG), middle temporal gyrus visual area (MT/V5), and occipital face area (OFA) in ASD group. DISCUSSION Our findings implicate the role of LC-NE and VTA-DA systems from the perspective of functional neuroimaging and may shed light on pharmacological studies targeting NE and DA for the treatment of autism in the future.
Collapse
Affiliation(s)
- Yiting Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Siyi Yu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joel Park
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ming Cheng
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuejun Kong
- Martino Imaging Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Hendriks MHA, Dillen C, Vettori S, Vercammen L, Daniels N, Steyaert J, Op de Beeck H, Boets B. Neural processing of facial identity and expression in adults with and without autism: A multi-method approach. NEUROIMAGE-CLINICAL 2020; 29:102520. [PMID: 33338966 PMCID: PMC7750419 DOI: 10.1016/j.nicl.2020.102520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
The ability to recognize faces and facial expressions is a common human talent. It has, however, been suggested to be impaired in individuals with autism spectrum disorder (ASD). The goal of this study was to compare the processing of facial identity and emotion between individuals with ASD and neurotypicals (NTs). Behavioural and functional magnetic resonance imaging (fMRI) data from 46 young adults (aged 17-23 years, NASD = 22, NNT = 24) was analysed. During fMRI data acquisition, participants discriminated between short clips of a face transitioning from a neutral to an emotional expression. Stimuli included four identities and six emotions. We performed behavioural, univariate, multi-voxel, adaptation and functional connectivity analyses to investigate potential group differences. The ASD-group did not differ from the NT-group on behavioural identity and expression processing tasks. At the neural level, we found no differences in average neural activation, neural activation patterns and neural adaptation to faces in face-related brain regions. In terms of functional connectivity, we found that amygdala seems to be more strongly connected to inferior occipital cortex and V1 in individuals with ASD. Overall, the findings indicate that neural representations of facial identity and expression have a similar quality in individuals with and without ASD, but some regions containing these representations are connected differently in the extended face processing network.
Collapse
Affiliation(s)
- Michelle H A Hendriks
- Department of Brain and Cognition, KU Leuven, Tiensestraat 102 - bus 3714, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium
| | - Claudia Dillen
- Department of Brain and Cognition, KU Leuven, Tiensestraat 102 - bus 3714, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium
| | - Sofie Vettori
- Centre for Developmental Psychiatry, KU Leuven, Kapucijnenvoer 7 blok h - bus 7001, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium
| | - Laura Vercammen
- Department of Brain and Cognition, KU Leuven, Tiensestraat 102 - bus 3714, Leuven, Belgium
| | - Nicky Daniels
- Department of Brain and Cognition, KU Leuven, Tiensestraat 102 - bus 3714, Leuven, Belgium; Centre for Developmental Psychiatry, KU Leuven, Kapucijnenvoer 7 blok h - bus 7001, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium
| | - Jean Steyaert
- Centre for Developmental Psychiatry, KU Leuven, Kapucijnenvoer 7 blok h - bus 7001, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium
| | - Hans Op de Beeck
- Department of Brain and Cognition, KU Leuven, Tiensestraat 102 - bus 3714, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Centre for Developmental Psychiatry, KU Leuven, Kapucijnenvoer 7 blok h - bus 7001, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium; Leuven Autism Research Consortium, KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Khan NA, Waheeb SA, Riaz A, Shang X. A Three-Stage Teacher, Student Neural Networks and Sequential Feed Forward Selection-Based Feature Selection Approach for the Classification of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10100754. [PMID: 33086634 PMCID: PMC7603385 DOI: 10.3390/brainsci10100754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
Autism disorder, generally known as Autism Spectrum Disorder (ASD) is a brain disorder characterized by lack of communication skills, social aloofness and repetitions in the actions in the patients, which is affecting millions of the people across the globe. Accurate identification of autistic patients is considered a challenging task in the domain of brain disorder science. To address this problem, we have proposed a three-stage feature selection approach for the classification of ASD on the preprocessed Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI Dataset. In the first stage, a large neural network which we call a “Teacher ” was trained on the correlation-based connectivity matrix to learn the latent representation of the input. In the second stage an autoencoder which we call a “Student” autoencoder was given the task to learn those trained “Teacher” embeddings using the connectivity matrix input. Lastly, an SFFS-based algorithm was employed to select the subset of most discriminating features between the autistic and healthy controls. On the combined site data across 17 sites, we achieved the maximum 10-fold accuracy of 82% and for the individual site-wise data, based on 5-fold accuracy, our results outperformed other state of the art methods in 13 out of the total 17 site-wise comparisons.
Collapse
Affiliation(s)
- Naseer Ahmed Khan
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
| | - Samer Abdulateef Waheeb
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
| | - Atif Riaz
- Department of Computer Science, University of London, London WC1E 7HU, UK;
| | - Xuequn Shang
- School of Computer Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; (N.A.K.); (S.A.W.)
- Correspondence: ; Tel.: +86-133-1927-3686
| |
Collapse
|
50
|
Stefanou ME, Dundon NM, Bestelmeyer PEG, Ioannou C, Bender S, Biscaldi M, Smyrnis N, Klein C. Late attentional processes potentially compensate for early perceptual multisensory integration deficits in children with autism: evidence from evoked potentials. Sci Rep 2020; 10:16157. [PMID: 32999327 PMCID: PMC7527489 DOI: 10.1038/s41598-020-73022-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
Sensory processing deficits and altered long-range connectivity putatively underlie Multisensory Integration (MSI) deficits in Autism Spectrum Disorder (ASD). The present study set out to investigate non-social MSI stimuli and their electrophysiological correlates in young neurotypical adolescents and adolescents with ASD. We report robust MSI effects at behavioural and electrophysiological levels. Both groups demonstrated normal behavioural MSI. However, at the neurophysiological level, the ASD group showed less MSI-related reduction of the visual P100 latency, greater MSI-related slowing of the auditory P200 and an overall temporally delayed and spatially constrained onset of MSI. Given the task design and patient sample, and the age of our participants, we argue that electro-cortical indices of MSI deficits in ASD: (a) can be detected in early-adolescent ASD, (b) occur at early stages of perceptual processing, (c) can possibly be compensated by later attentional processes, (d) thus leading to normal MSI at the behavioural level.
Collapse
Affiliation(s)
- Maria Elena Stefanou
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK
| | - Neil M Dundon
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany
- Brain Imaging Center, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | | | - Chara Ioannou
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Monica Biscaldi
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany
| | - Nikolaos Smyrnis
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528, Athens, Greece
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Hauptstrasse 8, 79104, Freiburg, Germany.
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
- Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528, Athens, Greece.
| |
Collapse
|